// // Copyright (C) 2012 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/delta_performer.h" #include <inttypes.h> #include <sys/mount.h> #include <algorithm> #include <string> #include <vector> #include <base/files/file_path.h> #include <base/files/file_util.h> #include <base/strings/string_util.h> #include <base/strings/stringprintf.h> #include <google/protobuf/repeated_field.h> #include <gtest/gtest.h> #include <openssl/pem.h> #include "update_engine/common/constants.h" #include "update_engine/common/fake_boot_control.h" #include "update_engine/common/fake_hardware.h" #include "update_engine/common/mock_prefs.h" #include "update_engine/common/test_utils.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/mock_download_action.h" #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_consumer/payload_verifier.h" #include "update_engine/payload_generator/delta_diff_generator.h" #include "update_engine/payload_generator/payload_signer.h" #include "update_engine/update_metadata.pb.h" namespace chromeos_update_engine { using std::string; using std::vector; using test_utils::GetBuildArtifactsPath; using test_utils::ScopedLoopMounter; using test_utils::System; using test_utils::kRandomString; using testing::Return; using testing::_; extern const char* kUnittestPrivateKeyPath; extern const char* kUnittestPublicKeyPath; extern const char* kUnittestPrivateKey2Path; extern const char* kUnittestPublicKey2Path; static const uint32_t kDefaultKernelSize = 4096; // Something small for a test static const uint8_t kNewData[] = {'T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'n', 'e', 'w', ' ', 'd', 'a', 't', 'a', '.'}; namespace { struct DeltaState { string a_img; string b_img; string result_img; size_t image_size; string delta_path; uint64_t metadata_size; string old_kernel; brillo::Blob old_kernel_data; string new_kernel; brillo::Blob new_kernel_data; string result_kernel; brillo::Blob result_kernel_data; size_t kernel_size; // The InstallPlan referenced by the DeltaPerformer. This needs to outlive // the DeltaPerformer. InstallPlan install_plan; // The in-memory copy of delta file. brillo::Blob delta; // Mock and fake instances used by the delta performer. FakeBootControl fake_boot_control_; FakeHardware fake_hardware_; MockDownloadActionDelegate mock_delegate_; }; enum SignatureTest { kSignatureNone, // No payload signing. kSignatureGenerator, // Sign the payload at generation time. kSignatureGenerated, // Sign the payload after it's generated. kSignatureGeneratedPlaceholder, // Insert placeholder signatures, then real. kSignatureGeneratedPlaceholderMismatch, // Insert a wrong sized placeholder. kSignatureGeneratedShell, // Sign the generated payload through shell cmds. kSignatureGeneratedShellBadKey, // Sign with a bad key through shell cmds. kSignatureGeneratedShellRotateCl1, // Rotate key, test client v1 kSignatureGeneratedShellRotateCl2, // Rotate key, test client v2 }; enum OperationHashTest { kInvalidOperationData, kValidOperationData, }; } // namespace class DeltaPerformerIntegrationTest : public ::testing::Test { public: static void SetSupportedVersion(DeltaPerformer* performer, uint64_t minor_version) { performer->supported_minor_version_ = minor_version; } }; static void CompareFilesByBlock(const string& a_file, const string& b_file, size_t image_size) { EXPECT_EQ(0U, image_size % kBlockSize); brillo::Blob a_data, b_data; EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file; EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file; EXPECT_GE(a_data.size(), image_size); EXPECT_GE(b_data.size(), image_size); for (size_t i = 0; i < image_size; i += kBlockSize) { EXPECT_EQ(0U, i % kBlockSize); brillo::Blob a_sub(&a_data[i], &a_data[i + kBlockSize]); brillo::Blob b_sub(&b_data[i], &b_data[i + kBlockSize]); EXPECT_TRUE(a_sub == b_sub) << "Block " << (i/kBlockSize) << " differs"; } if (::testing::Test::HasNonfatalFailure()) { LOG(INFO) << "Compared filesystems with size " << image_size << ", partition A " << a_file << " size: " << a_data.size() << ", partition B " << b_file << " size: " << b_data.size(); } } static bool WriteSparseFile(const string& path, off_t size) { int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644); TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); ScopedFdCloser fd_closer(&fd); off_t rc = lseek(fd, size + 1, SEEK_SET); TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1)); int return_code = ftruncate(fd, size); TEST_AND_RETURN_FALSE_ERRNO(return_code == 0); return true; } static bool WriteByteAtOffset(const string& path, off_t offset) { int fd = open(path.c_str(), O_CREAT | O_WRONLY, 0644); TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); ScopedFdCloser fd_closer(&fd); EXPECT_TRUE(utils::PWriteAll(fd, "\0", 1, offset)); return true; } static size_t GetSignatureSize(const string& private_key_path) { const brillo::Blob data(1, 'x'); brillo::Blob hash; EXPECT_TRUE(HashCalculator::RawHashOfData(data, &hash)); brillo::Blob signature; EXPECT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature)); return signature.size(); } static bool InsertSignaturePlaceholder(int signature_size, const string& payload_path, uint64_t* out_metadata_size) { vector<brillo::Blob> signatures; signatures.push_back(brillo::Blob(signature_size, 0)); return PayloadSigner::AddSignatureToPayload( payload_path, signatures, {}, payload_path, out_metadata_size); } static void SignGeneratedPayload(const string& payload_path, uint64_t* out_metadata_size) { string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath); int signature_size = GetSignatureSize(private_key_path); brillo::Blob hash; ASSERT_TRUE(PayloadSigner::HashPayloadForSigning( payload_path, {signature_size}, &hash, nullptr)); brillo::Blob signature; ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature)); ASSERT_TRUE(PayloadSigner::AddSignatureToPayload( payload_path, {signature}, {}, payload_path, out_metadata_size)); EXPECT_TRUE(PayloadSigner::VerifySignedPayload( payload_path, GetBuildArtifactsPath(kUnittestPublicKeyPath))); } static void SignGeneratedShellPayload(SignatureTest signature_test, const string& payload_path) { string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath); if (signature_test == kSignatureGeneratedShellBadKey) { ASSERT_TRUE(utils::MakeTempFile("key.XXXXXX", &private_key_path, nullptr)); } else { ASSERT_TRUE(signature_test == kSignatureGeneratedShell || signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2); } ScopedPathUnlinker key_unlinker(private_key_path); key_unlinker.set_should_remove(signature_test == kSignatureGeneratedShellBadKey); // Generates a new private key that will not match the public key. if (signature_test == kSignatureGeneratedShellBadKey) { LOG(INFO) << "Generating a mismatched private key."; // The code below executes the equivalent of: // openssl genrsa -out <private_key_path> 2048 RSA* rsa = RSA_new(); BIGNUM* e = BN_new(); EXPECT_EQ(1, BN_set_word(e, RSA_F4)); EXPECT_EQ(1, RSA_generate_key_ex(rsa, 2048, e, nullptr)); BN_free(e); FILE* fprikey = fopen(private_key_path.c_str(), "w"); EXPECT_NE(nullptr, fprikey); EXPECT_EQ(1, PEM_write_RSAPrivateKey( fprikey, rsa, nullptr, nullptr, 0, nullptr, nullptr)); fclose(fprikey); RSA_free(rsa); } int signature_size = GetSignatureSize(private_key_path); string hash_file; ASSERT_TRUE(utils::MakeTempFile("hash.XXXXXX", &hash_file, nullptr)); ScopedPathUnlinker hash_unlinker(hash_file); string signature_size_string; if (signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2) signature_size_string = base::StringPrintf("%d:%d", signature_size, signature_size); else signature_size_string = base::StringPrintf("%d", signature_size); string delta_generator_path = GetBuildArtifactsPath("delta_generator"); ASSERT_EQ(0, System(base::StringPrintf( "%s -in_file=%s -signature_size=%s -out_hash_file=%s", delta_generator_path.c_str(), payload_path.c_str(), signature_size_string.c_str(), hash_file.c_str()))); // Sign the hash brillo::Blob hash, signature; ASSERT_TRUE(utils::ReadFile(hash_file, &hash)); ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature)); string sig_file; ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file, nullptr)); ScopedPathUnlinker sig_unlinker(sig_file); ASSERT_TRUE(test_utils::WriteFileVector(sig_file, signature)); string sig_file2; ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file2, nullptr)); ScopedPathUnlinker sig2_unlinker(sig_file2); if (signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2) { ASSERT_TRUE(PayloadSigner::SignHash( hash, GetBuildArtifactsPath(kUnittestPrivateKey2Path), &signature)); ASSERT_TRUE(test_utils::WriteFileVector(sig_file2, signature)); // Append second sig file to first path sig_file += ":" + sig_file2; } ASSERT_EQ(0, System(base::StringPrintf( "%s -in_file=%s -signature_file=%s -out_file=%s", delta_generator_path.c_str(), payload_path.c_str(), sig_file.c_str(), payload_path.c_str()))); int verify_result = System(base::StringPrintf( "%s -in_file=%s -public_key=%s -public_key_version=%d", delta_generator_path.c_str(), payload_path.c_str(), (signature_test == kSignatureGeneratedShellRotateCl2 ? GetBuildArtifactsPath(kUnittestPublicKey2Path) : GetBuildArtifactsPath(kUnittestPublicKeyPath)) .c_str(), signature_test == kSignatureGeneratedShellRotateCl2 ? 2 : 1)); if (signature_test == kSignatureGeneratedShellBadKey) { ASSERT_NE(0, verify_result); } else { ASSERT_EQ(0, verify_result); } } static void GenerateDeltaFile(bool full_kernel, bool full_rootfs, bool noop, ssize_t chunk_size, SignatureTest signature_test, DeltaState *state, uint32_t minor_version) { EXPECT_TRUE(utils::MakeTempFile("a_img.XXXXXX", &state->a_img, nullptr)); EXPECT_TRUE(utils::MakeTempFile("b_img.XXXXXX", &state->b_img, nullptr)); // result_img is used in minor version 2. Instead of applying the update // in-place on A, we apply it to a new image, result_img. EXPECT_TRUE( utils::MakeTempFile("result_img.XXXXXX", &state->result_img, nullptr)); EXPECT_TRUE( base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"), base::FilePath(state->a_img))); state->image_size = utils::FileSize(state->a_img); // Create ImageInfo A & B ImageInfo old_image_info; ImageInfo new_image_info; if (!full_rootfs) { old_image_info.set_channel("src-channel"); old_image_info.set_board("src-board"); old_image_info.set_version("src-version"); old_image_info.set_key("src-key"); old_image_info.set_build_channel("src-build-channel"); old_image_info.set_build_version("src-build-version"); } new_image_info.set_channel("test-channel"); new_image_info.set_board("test-board"); new_image_info.set_version("test-version"); new_image_info.set_key("test-key"); new_image_info.set_build_channel("test-build-channel"); new_image_info.set_build_version("test-build-version"); // Make some changes to the A image. { string a_mnt; ScopedLoopMounter b_mounter(state->a_img, &a_mnt, 0); brillo::Blob hardtocompress; while (hardtocompress.size() < 3 * kBlockSize) { hardtocompress.insert(hardtocompress.end(), std::begin(kRandomString), std::end(kRandomString)); } EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress", a_mnt.c_str()).c_str(), hardtocompress.data(), hardtocompress.size())); brillo::Blob zeros(16 * 1024, 0); EXPECT_EQ(static_cast<int>(zeros.size()), base::WriteFile(base::FilePath(base::StringPrintf( "%s/move-to-sparse", a_mnt.c_str())), reinterpret_cast<const char*>(zeros.data()), zeros.size())); EXPECT_TRUE( WriteSparseFile(base::StringPrintf("%s/move-from-sparse", a_mnt.c_str()), 16 * 1024)); EXPECT_TRUE(WriteByteAtOffset( base::StringPrintf("%s/move-semi-sparse", a_mnt.c_str()), 4096)); // Write 1 MiB of 0xff to try to catch the case where writing a bsdiff // patch fails to zero out the final block. brillo::Blob ones(1024 * 1024, 0xff); EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/ones", a_mnt.c_str()).c_str(), ones.data(), ones.size())); } if (noop) { EXPECT_TRUE(base::CopyFile(base::FilePath(state->a_img), base::FilePath(state->b_img))); old_image_info = new_image_info; } else { if (minor_version == kSourceMinorPayloadVersion) { // Create a result image with image_size bytes of garbage. brillo::Blob ones(state->image_size, 0xff); EXPECT_TRUE(utils::WriteFile(state->result_img.c_str(), ones.data(), ones.size())); EXPECT_EQ(utils::FileSize(state->a_img), utils::FileSize(state->result_img)); } EXPECT_TRUE( base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"), base::FilePath(state->b_img))); // Make some changes to the B image. string b_mnt; ScopedLoopMounter b_mounter(state->b_img, &b_mnt, 0); base::FilePath mnt_path(b_mnt); EXPECT_TRUE(base::CopyFile(mnt_path.Append("regular-small"), mnt_path.Append("regular-small2"))); EXPECT_TRUE(base::DeleteFile(mnt_path.Append("regular-small"), false)); EXPECT_TRUE(base::Move(mnt_path.Append("regular-small2"), mnt_path.Append("regular-small"))); EXPECT_TRUE( test_utils::WriteFileString(mnt_path.Append("foo").value(), "foo")); EXPECT_EQ(0, base::WriteFile(mnt_path.Append("emptyfile"), "", 0)); EXPECT_TRUE( WriteSparseFile(mnt_path.Append("fullsparse").value(), 1024 * 1024)); EXPECT_TRUE( WriteSparseFile(mnt_path.Append("move-to-sparse").value(), 16 * 1024)); brillo::Blob zeros(16 * 1024, 0); EXPECT_EQ(static_cast<int>(zeros.size()), base::WriteFile(mnt_path.Append("move-from-sparse"), reinterpret_cast<const char*>(zeros.data()), zeros.size())); EXPECT_TRUE( WriteByteAtOffset(mnt_path.Append("move-semi-sparse").value(), 4096)); EXPECT_TRUE(WriteByteAtOffset(mnt_path.Append("partsparse").value(), 4096)); EXPECT_TRUE( base::CopyFile(mnt_path.Append("regular-16k"), mnt_path.Append("tmp"))); EXPECT_TRUE(base::Move(mnt_path.Append("tmp"), mnt_path.Append("link-hard-regular-16k"))); EXPECT_TRUE(base::DeleteFile(mnt_path.Append("link-short_symlink"), false)); EXPECT_TRUE(test_utils::WriteFileString( mnt_path.Append("link-short_symlink").value(), "foobar")); brillo::Blob hardtocompress; while (hardtocompress.size() < 3 * kBlockSize) { hardtocompress.insert(hardtocompress.end(), std::begin(kRandomString), std::end(kRandomString)); } EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress", b_mnt.c_str()).c_str(), hardtocompress.data(), hardtocompress.size())); } string old_kernel; EXPECT_TRUE(utils::MakeTempFile("old_kernel.XXXXXX", &state->old_kernel, nullptr)); string new_kernel; EXPECT_TRUE(utils::MakeTempFile("new_kernel.XXXXXX", &state->new_kernel, nullptr)); string result_kernel; EXPECT_TRUE(utils::MakeTempFile("result_kernel.XXXXXX", &state->result_kernel, nullptr)); state->kernel_size = kDefaultKernelSize; state->old_kernel_data.resize(kDefaultKernelSize); state->new_kernel_data.resize(state->old_kernel_data.size()); state->result_kernel_data.resize(state->old_kernel_data.size()); test_utils::FillWithData(&state->old_kernel_data); test_utils::FillWithData(&state->new_kernel_data); test_utils::FillWithData(&state->result_kernel_data); // change the new kernel data std::copy(std::begin(kNewData), std::end(kNewData), state->new_kernel_data.begin()); if (noop) { state->old_kernel_data = state->new_kernel_data; } // Write kernels to disk EXPECT_TRUE(utils::WriteFile(state->old_kernel.c_str(), state->old_kernel_data.data(), state->old_kernel_data.size())); EXPECT_TRUE(utils::WriteFile(state->new_kernel.c_str(), state->new_kernel_data.data(), state->new_kernel_data.size())); EXPECT_TRUE(utils::WriteFile(state->result_kernel.c_str(), state->result_kernel_data.data(), state->result_kernel_data.size())); EXPECT_TRUE(utils::MakeTempFile("delta.XXXXXX", &state->delta_path, nullptr)); LOG(INFO) << "delta path: " << state->delta_path; { const string private_key = signature_test == kSignatureGenerator ? GetBuildArtifactsPath(kUnittestPrivateKeyPath) : ""; PayloadGenerationConfig payload_config; payload_config.is_delta = !full_rootfs; payload_config.hard_chunk_size = chunk_size; payload_config.rootfs_partition_size = kRootFSPartitionSize; payload_config.version.major = kChromeOSMajorPayloadVersion; payload_config.version.minor = minor_version; if (!full_rootfs) { payload_config.source.partitions.emplace_back(kLegacyPartitionNameRoot); payload_config.source.partitions.emplace_back(kLegacyPartitionNameKernel); payload_config.source.partitions.front().path = state->a_img; if (!full_kernel) payload_config.source.partitions.back().path = state->old_kernel; payload_config.source.image_info = old_image_info; EXPECT_TRUE(payload_config.source.LoadImageSize()); for (PartitionConfig& part : payload_config.source.partitions) EXPECT_TRUE(part.OpenFilesystem()); } else { if (payload_config.hard_chunk_size == -1) // Use 1 MiB chunk size for the full unittests. payload_config.hard_chunk_size = 1024 * 1024; } payload_config.target.partitions.emplace_back(kLegacyPartitionNameRoot); payload_config.target.partitions.back().path = state->b_img; payload_config.target.partitions.emplace_back(kLegacyPartitionNameKernel); payload_config.target.partitions.back().path = state->new_kernel; payload_config.target.image_info = new_image_info; EXPECT_TRUE(payload_config.target.LoadImageSize()); for (PartitionConfig& part : payload_config.target.partitions) EXPECT_TRUE(part.OpenFilesystem()); EXPECT_TRUE(payload_config.Validate()); EXPECT_TRUE( GenerateUpdatePayloadFile( payload_config, state->delta_path, private_key, &state->metadata_size)); } // Extend the "partitions" holding the file system a bit. EXPECT_EQ(0, HANDLE_EINTR(truncate(state->a_img.c_str(), state->image_size + 1024 * 1024))); EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024), utils::FileSize(state->a_img)); EXPECT_EQ(0, HANDLE_EINTR(truncate(state->b_img.c_str(), state->image_size + 1024 * 1024))); EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024), utils::FileSize(state->b_img)); if (signature_test == kSignatureGeneratedPlaceholder || signature_test == kSignatureGeneratedPlaceholderMismatch) { int signature_size = GetSignatureSize(GetBuildArtifactsPath(kUnittestPrivateKeyPath)); LOG(INFO) << "Inserting placeholder signature."; ASSERT_TRUE(InsertSignaturePlaceholder(signature_size, state->delta_path, &state->metadata_size)); if (signature_test == kSignatureGeneratedPlaceholderMismatch) { signature_size -= 1; LOG(INFO) << "Inserting mismatched placeholder signature."; ASSERT_FALSE(InsertSignaturePlaceholder(signature_size, state->delta_path, &state->metadata_size)); return; } } if (signature_test == kSignatureGenerated || signature_test == kSignatureGeneratedPlaceholder || signature_test == kSignatureGeneratedPlaceholderMismatch) { // Generate the signed payload and update the metadata size in state to // reflect the new size after adding the signature operation to the // manifest. LOG(INFO) << "Signing payload."; SignGeneratedPayload(state->delta_path, &state->metadata_size); } else if (signature_test == kSignatureGeneratedShell || signature_test == kSignatureGeneratedShellBadKey || signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2) { SignGeneratedShellPayload(signature_test, state->delta_path); } } static void ApplyDeltaFile(bool full_kernel, bool full_rootfs, bool noop, SignatureTest signature_test, DeltaState* state, bool hash_checks_mandatory, OperationHashTest op_hash_test, DeltaPerformer** performer, uint32_t minor_version) { // Check the metadata. { DeltaArchiveManifest manifest; EXPECT_TRUE(PayloadSigner::LoadPayloadMetadata(state->delta_path, nullptr, &manifest, nullptr, &state->metadata_size, nullptr)); LOG(INFO) << "Metadata size: " << state->metadata_size; EXPECT_TRUE(utils::ReadFile(state->delta_path, &state->delta)); if (signature_test == kSignatureNone) { EXPECT_FALSE(manifest.has_signatures_offset()); EXPECT_FALSE(manifest.has_signatures_size()); } else { EXPECT_TRUE(manifest.has_signatures_offset()); EXPECT_TRUE(manifest.has_signatures_size()); Signatures sigs_message; EXPECT_TRUE(sigs_message.ParseFromArray( &state->delta[state->metadata_size + manifest.signatures_offset()], manifest.signatures_size())); if (signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2) EXPECT_EQ(2, sigs_message.signatures_size()); else EXPECT_EQ(1, sigs_message.signatures_size()); const Signatures_Signature& signature = sigs_message.signatures(0); EXPECT_EQ(1U, signature.version()); uint64_t expected_sig_data_length = 0; vector<string> key_paths{GetBuildArtifactsPath(kUnittestPrivateKeyPath)}; if (signature_test == kSignatureGeneratedShellRotateCl1 || signature_test == kSignatureGeneratedShellRotateCl2) { key_paths.push_back(GetBuildArtifactsPath(kUnittestPrivateKey2Path)); } EXPECT_TRUE(PayloadSigner::SignatureBlobLength( key_paths, &expected_sig_data_length)); EXPECT_EQ(expected_sig_data_length, manifest.signatures_size()); EXPECT_FALSE(signature.data().empty()); } if (noop) { EXPECT_EQ(0, manifest.install_operations_size()); EXPECT_EQ(1, manifest.kernel_install_operations_size()); } if (full_kernel) { EXPECT_FALSE(manifest.has_old_kernel_info()); } else { EXPECT_EQ(state->old_kernel_data.size(), manifest.old_kernel_info().size()); EXPECT_FALSE(manifest.old_kernel_info().hash().empty()); } EXPECT_EQ(manifest.new_image_info().channel(), "test-channel"); EXPECT_EQ(manifest.new_image_info().board(), "test-board"); EXPECT_EQ(manifest.new_image_info().version(), "test-version"); EXPECT_EQ(manifest.new_image_info().key(), "test-key"); EXPECT_EQ(manifest.new_image_info().build_channel(), "test-build-channel"); EXPECT_EQ(manifest.new_image_info().build_version(), "test-build-version"); if (!full_rootfs) { if (noop) { EXPECT_EQ(manifest.old_image_info().channel(), "test-channel"); EXPECT_EQ(manifest.old_image_info().board(), "test-board"); EXPECT_EQ(manifest.old_image_info().version(), "test-version"); EXPECT_EQ(manifest.old_image_info().key(), "test-key"); EXPECT_EQ(manifest.old_image_info().build_channel(), "test-build-channel"); EXPECT_EQ(manifest.old_image_info().build_version(), "test-build-version"); } else { EXPECT_EQ(manifest.old_image_info().channel(), "src-channel"); EXPECT_EQ(manifest.old_image_info().board(), "src-board"); EXPECT_EQ(manifest.old_image_info().version(), "src-version"); EXPECT_EQ(manifest.old_image_info().key(), "src-key"); EXPECT_EQ(manifest.old_image_info().build_channel(), "src-build-channel"); EXPECT_EQ(manifest.old_image_info().build_version(), "src-build-version"); } } if (full_rootfs) { EXPECT_FALSE(manifest.has_old_rootfs_info()); EXPECT_FALSE(manifest.has_old_image_info()); EXPECT_TRUE(manifest.has_new_image_info()); } else { EXPECT_EQ(state->image_size, manifest.old_rootfs_info().size()); EXPECT_FALSE(manifest.old_rootfs_info().hash().empty()); } EXPECT_EQ(state->new_kernel_data.size(), manifest.new_kernel_info().size()); EXPECT_EQ(state->image_size, manifest.new_rootfs_info().size()); EXPECT_FALSE(manifest.new_kernel_info().hash().empty()); EXPECT_FALSE(manifest.new_rootfs_info().hash().empty()); } MockPrefs prefs; EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize, state->metadata_size)).WillOnce(Return(true)); EXPECT_CALL(prefs, SetInt64(kPrefsManifestSignatureSize, 0)) .WillOnce(Return(true)); EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _)) .WillOnce(Return(false)); EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataLength, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _)) .WillRepeatedly(Return(true)); if (op_hash_test == kValidOperationData && signature_test != kSignatureNone) { EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignatureBlob, _)) .WillOnce(Return(true)); } EXPECT_CALL(state->mock_delegate_, ShouldCancel(_)) .WillRepeatedly(Return(false)); // Update the A image in place. InstallPlan* install_plan = &state->install_plan; install_plan->hash_checks_mandatory = hash_checks_mandatory; install_plan->payloads = {{.metadata_size = state->metadata_size, .type = (full_kernel && full_rootfs) ? InstallPayloadType::kFull : InstallPayloadType::kDelta}}; install_plan->source_slot = 0; install_plan->target_slot = 1; InstallPlan::Partition root_part; root_part.name = kLegacyPartitionNameRoot; InstallPlan::Partition kernel_part; kernel_part.name = kLegacyPartitionNameKernel; LOG(INFO) << "Setting payload metadata size in Omaha = " << state->metadata_size; ASSERT_TRUE(PayloadSigner::GetMetadataSignature( state->delta.data(), state->metadata_size, GetBuildArtifactsPath(kUnittestPrivateKeyPath), &install_plan->payloads[0].metadata_signature)); EXPECT_FALSE(install_plan->payloads[0].metadata_signature.empty()); *performer = new DeltaPerformer(&prefs, &state->fake_boot_control_, &state->fake_hardware_, &state->mock_delegate_, install_plan, &install_plan->payloads[0], false /* is_interactive */); string public_key_path = GetBuildArtifactsPath(kUnittestPublicKeyPath); EXPECT_TRUE(utils::FileExists(public_key_path.c_str())); (*performer)->set_public_key_path(public_key_path); DeltaPerformerIntegrationTest::SetSupportedVersion(*performer, minor_version); EXPECT_EQ(static_cast<off_t>(state->image_size), HashCalculator::RawHashOfFile( state->a_img, state->image_size, &root_part.source_hash)); EXPECT_TRUE(HashCalculator::RawHashOfData( state->old_kernel_data, &kernel_part.source_hash)); // The partitions should be empty before DeltaPerformer. install_plan->partitions.clear(); // With minor version 2, we want the target to be the new image, result_img, // but with version 1, we want to update A in place. string target_root, target_kernel; if (minor_version == kSourceMinorPayloadVersion) { target_root = state->result_img; target_kernel = state->result_kernel; } else { target_root = state->a_img; target_kernel = state->old_kernel; } state->fake_boot_control_.SetPartitionDevice( kLegacyPartitionNameRoot, install_plan->source_slot, state->a_img); state->fake_boot_control_.SetPartitionDevice( kLegacyPartitionNameKernel, install_plan->source_slot, state->old_kernel); state->fake_boot_control_.SetPartitionDevice( kLegacyPartitionNameRoot, install_plan->target_slot, target_root); state->fake_boot_control_.SetPartitionDevice( kLegacyPartitionNameKernel, install_plan->target_slot, target_kernel); ErrorCode expected_error, actual_error; bool continue_writing; switch (op_hash_test) { case kInvalidOperationData: { // Muck with some random offset post the metadata size so that // some operation hash will result in a mismatch. int some_offset = state->metadata_size + 300; LOG(INFO) << "Tampered value at offset: " << some_offset; state->delta[some_offset]++; expected_error = ErrorCode::kDownloadOperationHashMismatch; continue_writing = false; break; } case kValidOperationData: default: // no change. expected_error = ErrorCode::kSuccess; continue_writing = true; break; } // Write at some number of bytes per operation. Arbitrarily chose 5. const size_t kBytesPerWrite = 5; for (size_t i = 0; i < state->delta.size(); i += kBytesPerWrite) { size_t count = std::min(state->delta.size() - i, kBytesPerWrite); bool write_succeeded = ((*performer)->Write(&state->delta[i], count, &actual_error)); // Normally write_succeeded should be true every time and // actual_error should be ErrorCode::kSuccess. If so, continue the loop. // But if we seeded an operation hash error above, then write_succeeded // will be false. The failure may happen at any operation n. So, all // Writes until n-1 should succeed and the nth operation will fail with // actual_error. In this case, we should bail out of the loop because // we cannot proceed applying the delta. if (!write_succeeded) { LOG(INFO) << "Write failed. Checking if it failed with expected error"; EXPECT_EQ(expected_error, actual_error); if (!continue_writing) { LOG(INFO) << "Cannot continue writing. Bailing out."; break; } } EXPECT_EQ(ErrorCode::kSuccess, actual_error); } // If we had continued all the way through, Close should succeed. // Otherwise, it should fail. Check appropriately. bool close_result = (*performer)->Close(); if (continue_writing) EXPECT_EQ(0, close_result); else EXPECT_LE(0, close_result); } void VerifyPayloadResult(DeltaPerformer* performer, DeltaState* state, ErrorCode expected_result, uint32_t minor_version) { if (!performer) { EXPECT_TRUE(!"Skipping payload verification since performer is null."); return; } int expected_times = (expected_result == ErrorCode::kSuccess) ? 1 : 0; EXPECT_CALL(state->mock_delegate_, DownloadComplete()).Times(expected_times); LOG(INFO) << "Verifying payload for expected result " << expected_result; brillo::Blob expected_hash; HashCalculator::RawHashOfData(state->delta, &expected_hash); EXPECT_EQ(expected_result, performer->VerifyPayload(expected_hash, state->delta.size())); LOG(INFO) << "Verified payload."; if (expected_result != ErrorCode::kSuccess) { // no need to verify new partition if VerifyPayload failed. return; } brillo::Blob updated_kernel_partition; if (minor_version == kSourceMinorPayloadVersion) { CompareFilesByBlock(state->result_kernel, state->new_kernel, state->kernel_size); CompareFilesByBlock(state->result_img, state->b_img, state->image_size); EXPECT_TRUE(utils::ReadFile(state->result_kernel, &updated_kernel_partition)); } else { CompareFilesByBlock(state->old_kernel, state->new_kernel, state->kernel_size); CompareFilesByBlock(state->a_img, state->b_img, state->image_size); EXPECT_TRUE(utils::ReadFile(state->old_kernel, &updated_kernel_partition)); } ASSERT_GE(updated_kernel_partition.size(), arraysize(kNewData)); EXPECT_TRUE(std::equal(std::begin(kNewData), std::end(kNewData), updated_kernel_partition.begin())); const auto& partitions = state->install_plan.partitions; EXPECT_EQ(2U, partitions.size()); EXPECT_EQ(kLegacyPartitionNameRoot, partitions[0].name); EXPECT_EQ(kLegacyPartitionNameKernel, partitions[1].name); EXPECT_EQ(kDefaultKernelSize, partitions[1].target_size); brillo::Blob expected_new_kernel_hash; EXPECT_TRUE(HashCalculator::RawHashOfData(state->new_kernel_data, &expected_new_kernel_hash)); EXPECT_EQ(expected_new_kernel_hash, partitions[1].target_hash); EXPECT_EQ(state->image_size, partitions[0].target_size); brillo::Blob expected_new_rootfs_hash; EXPECT_EQ(static_cast<off_t>(state->image_size), HashCalculator::RawHashOfFile(state->b_img, state->image_size, &expected_new_rootfs_hash)); EXPECT_EQ(expected_new_rootfs_hash, partitions[0].target_hash); } void VerifyPayload(DeltaPerformer* performer, DeltaState* state, SignatureTest signature_test, uint32_t minor_version) { ErrorCode expected_result = ErrorCode::kSuccess; switch (signature_test) { case kSignatureNone: expected_result = ErrorCode::kSignedDeltaPayloadExpectedError; break; case kSignatureGeneratedShellBadKey: expected_result = ErrorCode::kDownloadPayloadPubKeyVerificationError; break; default: break; // appease gcc } VerifyPayloadResult(performer, state, expected_result, minor_version); } void DoSmallImageTest(bool full_kernel, bool full_rootfs, bool noop, ssize_t chunk_size, SignatureTest signature_test, bool hash_checks_mandatory, uint32_t minor_version) { DeltaState state; DeltaPerformer *performer = nullptr; GenerateDeltaFile(full_kernel, full_rootfs, noop, chunk_size, signature_test, &state, minor_version); ScopedPathUnlinker a_img_unlinker(state.a_img); ScopedPathUnlinker b_img_unlinker(state.b_img); ScopedPathUnlinker new_img_unlinker(state.result_img); ScopedPathUnlinker delta_unlinker(state.delta_path); ScopedPathUnlinker old_kernel_unlinker(state.old_kernel); ScopedPathUnlinker new_kernel_unlinker(state.new_kernel); ScopedPathUnlinker result_kernel_unlinker(state.result_kernel); ApplyDeltaFile(full_kernel, full_rootfs, noop, signature_test, &state, hash_checks_mandatory, kValidOperationData, &performer, minor_version); VerifyPayload(performer, &state, signature_test, minor_version); delete performer; } void DoOperationHashMismatchTest(OperationHashTest op_hash_test, bool hash_checks_mandatory) { DeltaState state; uint64_t minor_version = kFullPayloadMinorVersion; GenerateDeltaFile(true, true, false, -1, kSignatureGenerated, &state, minor_version); ScopedPathUnlinker a_img_unlinker(state.a_img); ScopedPathUnlinker b_img_unlinker(state.b_img); ScopedPathUnlinker delta_unlinker(state.delta_path); ScopedPathUnlinker old_kernel_unlinker(state.old_kernel); ScopedPathUnlinker new_kernel_unlinker(state.new_kernel); DeltaPerformer *performer = nullptr; ApplyDeltaFile(true, true, false, kSignatureGenerated, &state, hash_checks_mandatory, op_hash_test, &performer, minor_version); delete performer; } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageTest) { DoSmallImageTest(false, false, false, -1, kSignatureGenerator, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderTest) { DoSmallImageTest(false, false, false, -1, kSignatureGeneratedPlaceholder, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderMismatchTest) { DeltaState state; GenerateDeltaFile(false, false, false, -1, kSignatureGeneratedPlaceholderMismatch, &state, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageChunksTest) { DoSmallImageTest(false, false, false, kBlockSize, kSignatureGenerator, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootFullKernelSmallImageTest) { DoSmallImageTest(true, false, false, -1, kSignatureGenerator, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootFullSmallImageTest) { DoSmallImageTest(true, true, false, -1, kSignatureGenerator, true, kFullPayloadMinorVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootNoopSmallImageTest) { DoSmallImageTest(false, false, true, -1, kSignatureGenerator, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignNoneTest) { DoSmallImageTest(false, false, false, -1, kSignatureNone, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedTest) { DoSmallImageTest(false, false, false, -1, kSignatureGenerated, true, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellTest) { DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShell, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellBadKeyTest) { DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellBadKey, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl1Test) { DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl1, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl2Test) { DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl2, false, kInPlaceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSourceOpsTest) { DoSmallImageTest(false, false, false, -1, kSignatureGenerator, false, kSourceMinorPayloadVersion); } TEST(DeltaPerformerIntegrationTest, RunAsRootMandatoryOperationHashMismatchTest) { DoOperationHashMismatchTest(kInvalidOperationData, true); } } // namespace chromeos_update_engine