/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "EncryptInplace.h" #include <stdio.h> #include <stdint.h> #include <inttypes.h> #include <time.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <ext4_utils/ext4.h> #include <ext4_utils/ext4_utils.h> #include <f2fs_sparseblock.h> #include <algorithm> #include <android-base/logging.h> #include <android-base/properties.h> // HORRIBLE HACK, FIXME #include "cryptfs.h" // FIXME horrible cut-and-paste code static inline int unix_read(int fd, void* buff, int len) { return TEMP_FAILURE_RETRY(read(fd, buff, len)); } static inline int unix_write(int fd, const void* buff, int len) { return TEMP_FAILURE_RETRY(write(fd, buff, len)); } #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE) /* aligned 32K writes tends to make flash happy. * SD card association recommends it. */ #ifndef CONFIG_HW_DISK_ENCRYPTION #define BLOCKS_AT_A_TIME 8 #else #define BLOCKS_AT_A_TIME 1024 #endif struct encryptGroupsData { int realfd; int cryptofd; off64_t numblocks; off64_t one_pct, cur_pct, new_pct; off64_t blocks_already_done, tot_numblocks; off64_t used_blocks_already_done, tot_used_blocks; char* real_blkdev, * crypto_blkdev; int count; off64_t offset; char* buffer; off64_t last_written_sector; int completed; time_t time_started; int remaining_time; bool set_progress_properties; }; static void update_progress(struct encryptGroupsData* data, int is_used) { data->blocks_already_done++; if (is_used) { data->used_blocks_already_done++; } if (data->tot_used_blocks) { data->new_pct = data->used_blocks_already_done / data->one_pct; } else { data->new_pct = data->blocks_already_done / data->one_pct; } if (!data->set_progress_properties) return; if (data->new_pct > data->cur_pct) { char buf[8]; data->cur_pct = data->new_pct; snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct); android::base::SetProperty("vold.encrypt_progress", buf); } if (data->cur_pct >= 5) { struct timespec time_now; if (clock_gettime(CLOCK_MONOTONIC, &time_now)) { LOG(WARNING) << "Error getting time"; } else { double elapsed_time = difftime(time_now.tv_sec, data->time_started); off64_t remaining_blocks = data->tot_used_blocks - data->used_blocks_already_done; int remaining_time = (int)(elapsed_time * remaining_blocks / data->used_blocks_already_done); // Change time only if not yet set, lower, or a lot higher for // best user experience if (data->remaining_time == -1 || remaining_time < data->remaining_time || remaining_time > data->remaining_time + 60) { char buf[8]; snprintf(buf, sizeof(buf), "%d", remaining_time); android::base::SetProperty("vold.encrypt_time_remaining", buf); data->remaining_time = remaining_time; } } } } static void log_progress(struct encryptGroupsData const* data, bool completed) { // Precondition - if completed data = 0 else data != 0 // Track progress so we can skip logging blocks static off64_t offset = -1; // Need to close existing 'Encrypting from' log? if (completed || (offset != -1 && data->offset != offset)) { LOG(INFO) << "Encrypted to sector " << offset / info.block_size * CRYPT_SECTOR_SIZE; offset = -1; } // Need to start new 'Encrypting from' log? if (!completed && offset != data->offset) { LOG(INFO) << "Encrypting from sector " << data->offset / info.block_size * CRYPT_SECTOR_SIZE; } // Update offset if (!completed) { offset = data->offset + (off64_t)data->count * info.block_size; } } static int flush_outstanding_data(struct encryptGroupsData* data) { if (data->count == 0) { return 0; } LOG(VERBOSE) << "Copying " << data->count << " blocks at offset " << data->offset; if (pread64(data->realfd, data->buffer, info.block_size * data->count, data->offset) <= 0) { LOG(ERROR) << "Error reading real_blkdev " << data->real_blkdev << " for inplace encrypt"; return -1; } if (pwrite64(data->cryptofd, data->buffer, info.block_size * data->count, data->offset) <= 0) { LOG(ERROR) << "Error writing crypto_blkdev " << data->crypto_blkdev << " for inplace encrypt"; return -1; } else { log_progress(data, false); } data->count = 0; data->last_written_sector = (data->offset + data->count) / info.block_size * CRYPT_SECTOR_SIZE - 1; return 0; } static int encrypt_groups(struct encryptGroupsData* data) { unsigned int i; u8 *block_bitmap = 0; unsigned int block; off64_t ret; int rc = -1; data->buffer = (char*) malloc(info.block_size * BLOCKS_AT_A_TIME); if (!data->buffer) { LOG(ERROR) << "Failed to allocate crypto buffer"; goto errout; } block_bitmap = (u8*) malloc(info.block_size); if (!block_bitmap) { LOG(ERROR) << "failed to allocate block bitmap"; goto errout; } for (i = 0; i < aux_info.groups; ++i) { LOG(INFO) << "Encrypting group " << i; u32 first_block = aux_info.first_data_block + i * info.blocks_per_group; u32 block_count = std::min(info.blocks_per_group, (u32)(aux_info.len_blocks - first_block)); off64_t offset = (u64)info.block_size * aux_info.bg_desc[i].bg_block_bitmap; ret = pread64(data->realfd, block_bitmap, info.block_size, offset); if (ret != (int)info.block_size) { LOG(ERROR) << "failed to read all of block group bitmap " << i; goto errout; } offset = (u64)info.block_size * first_block; data->count = 0; for (block = 0; block < block_count; block++) { int used = (aux_info.bg_desc[i].bg_flags & EXT4_BG_BLOCK_UNINIT) ? 0 : bitmap_get_bit(block_bitmap, block); update_progress(data, used); if (used) { if (data->count == 0) { data->offset = offset; } data->count++; } else { if (flush_outstanding_data(data)) { goto errout; } } offset += info.block_size; /* Write data if we are aligned or buffer size reached */ if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0 || data->count == BLOCKS_AT_A_TIME) { if (flush_outstanding_data(data)) { goto errout; } } } if (flush_outstanding_data(data)) { goto errout; } } data->completed = 1; rc = 0; errout: log_progress(0, true); free(data->buffer); free(block_bitmap); return rc; } static int cryptfs_enable_inplace_ext4(char* crypto_blkdev, char* real_blkdev, off64_t size, off64_t* size_already_done, off64_t tot_size, off64_t previously_encrypted_upto, bool set_progress_properties) { u32 i; struct encryptGroupsData data; int rc; // Can't initialize without causing warning -Wclobbered int retries = RETRY_MOUNT_ATTEMPTS; struct timespec time_started = {0}; if (previously_encrypted_upto > *size_already_done) { LOG(DEBUG) << "Not fast encrypting since resuming part way through"; return -1; } memset(&data, 0, sizeof(data)); data.real_blkdev = real_blkdev; data.crypto_blkdev = crypto_blkdev; data.set_progress_properties = set_progress_properties; LOG(DEBUG) << "Opening" << real_blkdev; if ( (data.realfd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for inplace encrypt"; rc = -1; goto errout; } LOG(DEBUG) << "Opening" << crypto_blkdev; // Wait until the block device appears. Re-use the mount retry values since it is reasonable. while ((data.cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { if (--retries) { PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev << " for ext4 inplace encrypt, retrying"; sleep(RETRY_MOUNT_DELAY_SECONDS); } else { PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev << " for ext4 inplace encrypt"; rc = ENABLE_INPLACE_ERR_DEV; goto errout; } } if (setjmp(setjmp_env)) { // NOLINT LOG(ERROR) << "Reading ext4 extent caused an exception"; rc = -1; goto errout; } if (read_ext(data.realfd, 0) != 0) { LOG(ERROR) << "Failed to read ext4 extent"; rc = -1; goto errout; } data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; LOG(INFO) << "Encrypting ext4 filesystem in place..."; data.tot_used_blocks = data.numblocks; for (i = 0; i < aux_info.groups; ++i) { data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count; } data.one_pct = data.tot_used_blocks / 100; data.cur_pct = 0; if (clock_gettime(CLOCK_MONOTONIC, &time_started)) { LOG(WARNING) << "Error getting time at start"; // Note - continue anyway - we'll run with 0 } data.time_started = time_started.tv_sec; data.remaining_time = -1; rc = encrypt_groups(&data); if (rc) { LOG(ERROR) << "Error encrypting groups"; goto errout; } *size_already_done += data.completed ? size : data.last_written_sector; rc = 0; errout: close(data.realfd); close(data.cryptofd); return rc; } static void log_progress_f2fs(u64 block, bool completed) { // Precondition - if completed data = 0 else data != 0 // Track progress so we can skip logging blocks static u64 last_block = (u64)-1; // Need to close existing 'Encrypting from' log? if (completed || (last_block != (u64)-1 && block != last_block + 1)) { LOG(INFO) << "Encrypted to block " << last_block; last_block = -1; } // Need to start new 'Encrypting from' log? if (!completed && (last_block == (u64)-1 || block != last_block + 1)) { LOG(INFO) << "Encrypting from block " << block; } // Update offset if (!completed) { last_block = block; } } static int encrypt_one_block_f2fs(u64 pos, void *data) { struct encryptGroupsData *priv_dat = (struct encryptGroupsData *)data; priv_dat->blocks_already_done = pos - 1; update_progress(priv_dat, 1); off64_t offset = pos * CRYPT_INPLACE_BUFSIZE; if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) { LOG(ERROR) << "Error reading real_blkdev " << priv_dat->crypto_blkdev << " for f2fs inplace encrypt"; return -1; } if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) { LOG(ERROR) << "Error writing crypto_blkdev " << priv_dat->crypto_blkdev << " for f2fs inplace encrypt"; return -1; } else { log_progress_f2fs(pos, false); } return 0; } static int cryptfs_enable_inplace_f2fs(char* crypto_blkdev, char* real_blkdev, off64_t size, off64_t* size_already_done, off64_t tot_size, off64_t previously_encrypted_upto, bool set_progress_properties) { struct encryptGroupsData data; struct f2fs_info *f2fs_info = NULL; int rc = ENABLE_INPLACE_ERR_OTHER; if (previously_encrypted_upto > *size_already_done) { LOG(DEBUG) << "Not fast encrypting since resuming part way through"; return ENABLE_INPLACE_ERR_OTHER; } memset(&data, 0, sizeof(data)); data.real_blkdev = real_blkdev; data.crypto_blkdev = crypto_blkdev; data.set_progress_properties = set_progress_properties; data.realfd = -1; data.cryptofd = -1; if ( (data.realfd = open64(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for f2fs inplace encrypt"; goto errout; } if ( (data.cryptofd = open64(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev << " for f2fs inplace encrypt"; rc = ENABLE_INPLACE_ERR_DEV; goto errout; } f2fs_info = generate_f2fs_info(data.realfd); if (!f2fs_info) goto errout; data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; data.tot_used_blocks = get_num_blocks_used(f2fs_info); data.one_pct = data.tot_used_blocks / 100; data.cur_pct = 0; data.time_started = time(NULL); data.remaining_time = -1; data.buffer = (char*) malloc(f2fs_info->block_size); if (!data.buffer) { LOG(ERROR) << "Failed to allocate crypto buffer"; goto errout; } data.count = 0; /* Currently, this either runs to completion, or hits a nonrecoverable error */ rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data); if (rc) { LOG(ERROR) << "Error in running over f2fs blocks"; rc = ENABLE_INPLACE_ERR_OTHER; goto errout; } *size_already_done += size; rc = 0; errout: if (rc) LOG(ERROR) << "Failed to encrypt f2fs filesystem on " << real_blkdev; log_progress_f2fs(0, true); free(f2fs_info); free(data.buffer); close(data.realfd); close(data.cryptofd); return rc; } static int cryptfs_enable_inplace_full(char* crypto_blkdev, char* real_blkdev, off64_t size, off64_t* size_already_done, off64_t tot_size, off64_t previously_encrypted_upto, bool set_progress_properties) { int realfd, cryptofd; char *buf[CRYPT_INPLACE_BUFSIZE]; int rc = ENABLE_INPLACE_ERR_OTHER; off64_t numblocks, i, remainder; off64_t one_pct, cur_pct, new_pct; off64_t blocks_already_done, tot_numblocks; if ( (realfd = open(real_blkdev, O_RDONLY|O_CLOEXEC)) < 0) { PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for inplace encrypt"; return ENABLE_INPLACE_ERR_OTHER; } if ( (cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev << " for inplace encrypt"; close(realfd); return ENABLE_INPLACE_ERR_DEV; } /* This is pretty much a simple loop of reading 4K, and writing 4K. * The size passed in is the number of 512 byte sectors in the filesystem. * So compute the number of whole 4K blocks we should read/write, * and the remainder. */ numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; remainder = size % CRYPT_SECTORS_PER_BUFSIZE; tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; LOG(ERROR) << "Encrypting filesystem in place..."; i = previously_encrypted_upto + 1 - *size_already_done; if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) { PLOG(ERROR) << "Cannot seek to previously encrypted point on " << real_blkdev; goto errout; } if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) { PLOG(ERROR) << "Cannot seek to previously encrypted point on " << crypto_blkdev; goto errout; } for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) { if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) { PLOG(ERROR) << "Error reading initial sectors from real_blkdev " << real_blkdev << " for inplace encrypt"; goto errout; } if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) { PLOG(ERROR) << "Error writing initial sectors to crypto_blkdev " << crypto_blkdev << " for inplace encrypt"; goto errout; } else { LOG(INFO) << "Encrypted 1 block at " << i; } } one_pct = tot_numblocks / 100; cur_pct = 0; /* process the majority of the filesystem in blocks */ for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) { new_pct = (i + blocks_already_done) / one_pct; if (set_progress_properties && new_pct > cur_pct) { char buf[8]; cur_pct = new_pct; snprintf(buf, sizeof(buf), "%" PRId64, cur_pct); android::base::SetProperty("vold.encrypt_progress", buf); } if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { PLOG(ERROR) << "Error reading real_blkdev " << real_blkdev << " for inplace encrypt"; goto errout; } if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { PLOG(ERROR) << "Error writing crypto_blkdev " << crypto_blkdev << " for inplace encrypt"; goto errout; } else { LOG(DEBUG) << "Encrypted " << CRYPT_SECTORS_PER_BUFSIZE << " block at " << i * CRYPT_SECTORS_PER_BUFSIZE; } } /* Do any remaining sectors */ for (i=0; i<remainder; i++) { if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) { LOG(ERROR) << "Error reading final sectors from real_blkdev " << real_blkdev << " for inplace encrypt"; goto errout; } if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) { LOG(ERROR) << "Error writing final sectors to crypto_blkdev " << crypto_blkdev << " for inplace encrypt"; goto errout; } else { LOG(INFO) << "Encrypted 1 block at next location"; } } *size_already_done += size; rc = 0; errout: close(realfd); close(cryptofd); return rc; } /* returns on of the ENABLE_INPLACE_* return codes */ int cryptfs_enable_inplace(char* crypto_blkdev, char* real_blkdev, off64_t size, off64_t* size_already_done, off64_t tot_size, off64_t previously_encrypted_upto, bool set_progress_properties) { int rc_ext4, rc_f2fs, rc_full; LOG(DEBUG) << "cryptfs_enable_inplace(" << crypto_blkdev << ", " << real_blkdev << ", " << size << ", " << size_already_done << ", " << tot_size << ", " << previously_encrypted_upto << ", " << set_progress_properties << ")"; if (previously_encrypted_upto) { LOG(DEBUG) << "Continuing encryption from " << previously_encrypted_upto; } if (*size_already_done + size < previously_encrypted_upto) { LOG(DEBUG) << "cryptfs_enable_inplace already done"; *size_already_done += size; return 0; } /* TODO: identify filesystem type. * As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and * then we will drop down to cryptfs_enable_inplace_f2fs. * */ if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev, size, size_already_done, tot_size, previously_encrypted_upto, set_progress_properties)) == 0) { LOG(DEBUG) << "cryptfs_enable_inplace_ext4 success"; return 0; } LOG(DEBUG) << "cryptfs_enable_inplace_ext4()=" << rc_ext4; if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev, size, size_already_done, tot_size, previously_encrypted_upto, set_progress_properties)) == 0) { LOG(DEBUG) << "cryptfs_enable_inplace_f2fs success"; return 0; } LOG(DEBUG) << "cryptfs_enable_inplace_f2fs()=" << rc_f2fs; rc_full = cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev, size, size_already_done, tot_size, previously_encrypted_upto, set_progress_properties); LOG(DEBUG) << "cryptfs_enable_inplace_full()=" << rc_full; /* Hack for b/17898962, the following is the symptom... */ if (rc_ext4 == ENABLE_INPLACE_ERR_DEV && rc_f2fs == ENABLE_INPLACE_ERR_DEV && rc_full == ENABLE_INPLACE_ERR_DEV) { LOG(DEBUG) << "ENABLE_INPLACE_ERR_DEV"; return ENABLE_INPLACE_ERR_DEV; } return rc_full; }