/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dalvik_system_VMRuntime.h"
#ifdef ART_TARGET_ANDROID
#include <sys/resource.h>
#include <sys/time.h>
extern "C" void android_set_application_target_sdk_version(uint32_t version);
#endif
#include <limits.h>
#include "nativehelper/scoped_utf_chars.h"
#include "android-base/stringprintf.h"
#include "arch/instruction_set.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "debugger.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_types.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocator/dlmalloc.h"
#include "gc/heap.h"
#include "gc/space/dlmalloc_space.h"
#include "gc/space/image_space.h"
#include "gc/task_processor.h"
#include "intern_table.h"
#include "java_vm_ext.h"
#include "jni_internal.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "native_util.h"
#include "nativehelper/jni_macros.h"
#include "nativehelper/scoped_local_ref.h"
#include "runtime.h"
#include "scoped_fast_native_object_access-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "well_known_classes.h"
namespace art {
using android::base::StringPrintf;
static jfloat VMRuntime_getTargetHeapUtilization(JNIEnv*, jobject) {
return Runtime::Current()->GetHeap()->GetTargetHeapUtilization();
}
static void VMRuntime_nativeSetTargetHeapUtilization(JNIEnv*, jobject, jfloat target) {
Runtime::Current()->GetHeap()->SetTargetHeapUtilization(target);
}
static void VMRuntime_startJitCompilation(JNIEnv*, jobject) {
}
static void VMRuntime_disableJitCompilation(JNIEnv*, jobject) {
}
static jboolean VMRuntime_hasUsedHiddenApi(JNIEnv*, jobject) {
return Runtime::Current()->HasPendingHiddenApiWarning() ? JNI_TRUE : JNI_FALSE;
}
static void VMRuntime_setHiddenApiExemptions(JNIEnv* env,
jclass,
jobjectArray exemptions) {
std::vector<std::string> exemptions_vec;
int exemptions_length = env->GetArrayLength(exemptions);
for (int i = 0; i < exemptions_length; i++) {
jstring exemption = reinterpret_cast<jstring>(env->GetObjectArrayElement(exemptions, i));
const char* raw_exemption = env->GetStringUTFChars(exemption, nullptr);
exemptions_vec.push_back(raw_exemption);
env->ReleaseStringUTFChars(exemption, raw_exemption);
}
Runtime::Current()->SetHiddenApiExemptions(exemptions_vec);
}
static void VMRuntime_setHiddenApiAccessLogSamplingRate(JNIEnv*, jclass, jint rate) {
Runtime::Current()->SetHiddenApiEventLogSampleRate(rate);
}
static jobject VMRuntime_newNonMovableArray(JNIEnv* env, jobject, jclass javaElementClass,
jint length) {
ScopedFastNativeObjectAccess soa(env);
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return nullptr;
}
ObjPtr<mirror::Class> element_class = soa.Decode<mirror::Class>(javaElementClass);
if (UNLIKELY(element_class == nullptr)) {
ThrowNullPointerException("element class == null");
return nullptr;
}
Runtime* runtime = Runtime::Current();
ObjPtr<mirror::Class> array_class =
runtime->GetClassLinker()->FindArrayClass(soa.Self(), &element_class);
if (UNLIKELY(array_class == nullptr)) {
return nullptr;
}
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentNonMovingAllocator();
ObjPtr<mirror::Array> result = mirror::Array::Alloc<true>(soa.Self(),
array_class,
length,
array_class->GetComponentSizeShift(),
allocator);
return soa.AddLocalReference<jobject>(result);
}
static jobject VMRuntime_newUnpaddedArray(JNIEnv* env, jobject, jclass javaElementClass,
jint length) {
ScopedFastNativeObjectAccess soa(env);
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return nullptr;
}
ObjPtr<mirror::Class> element_class = soa.Decode<mirror::Class>(javaElementClass);
if (UNLIKELY(element_class == nullptr)) {
ThrowNullPointerException("element class == null");
return nullptr;
}
Runtime* runtime = Runtime::Current();
ObjPtr<mirror::Class> array_class = runtime->GetClassLinker()->FindArrayClass(soa.Self(),
&element_class);
if (UNLIKELY(array_class == nullptr)) {
return nullptr;
}
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
ObjPtr<mirror::Array> result = mirror::Array::Alloc<true, true>(
soa.Self(),
array_class,
length,
array_class->GetComponentSizeShift(),
allocator);
return soa.AddLocalReference<jobject>(result);
}
static jlong VMRuntime_addressOf(JNIEnv* env, jobject, jobject javaArray) {
if (javaArray == nullptr) { // Most likely allocation failed
return 0;
}
ScopedFastNativeObjectAccess soa(env);
ObjPtr<mirror::Array> array = soa.Decode<mirror::Array>(javaArray);
if (!array->IsArrayInstance()) {
ThrowIllegalArgumentException("not an array");
return 0;
}
if (Runtime::Current()->GetHeap()->IsMovableObject(array)) {
ThrowRuntimeException("Trying to get address of movable array object");
return 0;
}
return reinterpret_cast<uintptr_t>(array->GetRawData(array->GetClass()->GetComponentSize(), 0));
}
static void VMRuntime_clearGrowthLimit(JNIEnv*, jobject) {
Runtime::Current()->GetHeap()->ClearGrowthLimit();
}
static void VMRuntime_clampGrowthLimit(JNIEnv*, jobject) {
Runtime::Current()->GetHeap()->ClampGrowthLimit();
}
static jboolean VMRuntime_isDebuggerActive(JNIEnv*, jobject) {
return Dbg::IsDebuggerActive();
}
static jboolean VMRuntime_isNativeDebuggable(JNIEnv*, jobject) {
return Runtime::Current()->IsNativeDebuggable();
}
static jboolean VMRuntime_isJavaDebuggable(JNIEnv*, jobject) {
return Runtime::Current()->IsJavaDebuggable();
}
static jobjectArray VMRuntime_properties(JNIEnv* env, jobject) {
DCHECK(WellKnownClasses::java_lang_String != nullptr);
const std::vector<std::string>& properties = Runtime::Current()->GetProperties();
ScopedLocalRef<jobjectArray> ret(env,
env->NewObjectArray(static_cast<jsize>(properties.size()),
WellKnownClasses::java_lang_String,
nullptr /* initial element */));
if (ret == nullptr) {
DCHECK(env->ExceptionCheck());
return nullptr;
}
for (size_t i = 0; i != properties.size(); ++i) {
ScopedLocalRef<jstring> str(env, env->NewStringUTF(properties[i].c_str()));
if (str == nullptr) {
DCHECK(env->ExceptionCheck());
return nullptr;
}
env->SetObjectArrayElement(ret.get(), static_cast<jsize>(i), str.get());
DCHECK(!env->ExceptionCheck());
}
return ret.release();
}
// This is for backward compatibility with dalvik which returned the
// meaningless "." when no boot classpath or classpath was
// specified. Unfortunately, some tests were using java.class.path to
// lookup relative file locations, so they are counting on this to be
// ".", presumably some applications or libraries could have as well.
static const char* DefaultToDot(const std::string& class_path) {
return class_path.empty() ? "." : class_path.c_str();
}
static jstring VMRuntime_bootClassPath(JNIEnv* env, jobject) {
return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetBootClassPathString()));
}
static jstring VMRuntime_classPath(JNIEnv* env, jobject) {
return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetClassPathString()));
}
static jstring VMRuntime_vmVersion(JNIEnv* env, jobject) {
return env->NewStringUTF(Runtime::GetVersion());
}
static jstring VMRuntime_vmLibrary(JNIEnv* env, jobject) {
return env->NewStringUTF(kIsDebugBuild ? "libartd.so" : "libart.so");
}
static jstring VMRuntime_vmInstructionSet(JNIEnv* env, jobject) {
InstructionSet isa = Runtime::Current()->GetInstructionSet();
const char* isa_string = GetInstructionSetString(isa);
return env->NewStringUTF(isa_string);
}
static jboolean VMRuntime_is64Bit(JNIEnv*, jobject) {
bool is64BitMode = (sizeof(void*) == sizeof(uint64_t));
return is64BitMode ? JNI_TRUE : JNI_FALSE;
}
static jboolean VMRuntime_isCheckJniEnabled(JNIEnv* env, jobject) {
return down_cast<JNIEnvExt*>(env)->GetVm()->IsCheckJniEnabled() ? JNI_TRUE : JNI_FALSE;
}
static void VMRuntime_setTargetSdkVersionNative(JNIEnv*, jobject, jint target_sdk_version) {
// This is the target SDK version of the app we're about to run. It is intended that this a place
// where workarounds can be enabled.
// Note that targetSdkVersion may be CUR_DEVELOPMENT (10000).
// Note that targetSdkVersion may be 0, meaning "current".
Runtime::Current()->SetTargetSdkVersion(target_sdk_version);
#ifdef ART_TARGET_ANDROID
// This part is letting libc/dynamic linker know about current app's
// target sdk version to enable compatibility workarounds.
android_set_application_target_sdk_version(static_cast<uint32_t>(target_sdk_version));
#endif
}
static void VMRuntime_registerNativeAllocation(JNIEnv* env, jobject, jint bytes) {
if (UNLIKELY(bytes < 0)) {
ScopedObjectAccess soa(env);
ThrowRuntimeException("allocation size negative %d", bytes);
return;
}
Runtime::Current()->GetHeap()->RegisterNativeAllocation(env, static_cast<size_t>(bytes));
}
static void VMRuntime_registerSensitiveThread(JNIEnv*, jobject) {
Runtime::Current()->RegisterSensitiveThread();
}
static void VMRuntime_registerNativeFree(JNIEnv* env, jobject, jint bytes) {
if (UNLIKELY(bytes < 0)) {
ScopedObjectAccess soa(env);
ThrowRuntimeException("allocation size negative %d", bytes);
return;
}
Runtime::Current()->GetHeap()->RegisterNativeFree(env, static_cast<size_t>(bytes));
}
static void VMRuntime_updateProcessState(JNIEnv*, jobject, jint process_state) {
Runtime* runtime = Runtime::Current();
runtime->UpdateProcessState(static_cast<ProcessState>(process_state));
}
static void VMRuntime_trimHeap(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->Trim(ThreadForEnv(env));
}
static void VMRuntime_concurrentGC(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->ConcurrentGC(ThreadForEnv(env), gc::kGcCauseBackground, true);
}
static void VMRuntime_requestHeapTrim(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->RequestTrim(ThreadForEnv(env));
}
static void VMRuntime_requestConcurrentGC(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->RequestConcurrentGC(ThreadForEnv(env),
gc::kGcCauseBackground,
true);
}
static void VMRuntime_startHeapTaskProcessor(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->GetTaskProcessor()->Start(ThreadForEnv(env));
}
static void VMRuntime_stopHeapTaskProcessor(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->GetTaskProcessor()->Stop(ThreadForEnv(env));
}
static void VMRuntime_runHeapTasks(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->GetTaskProcessor()->RunAllTasks(ThreadForEnv(env));
}
typedef std::map<std::string, ObjPtr<mirror::String>> StringTable;
class PreloadDexCachesStringsVisitor : public SingleRootVisitor {
public:
explicit PreloadDexCachesStringsVisitor(StringTable* table) : table_(table) { }
void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::String> string = root->AsString();
table_->operator[](string->ToModifiedUtf8()) = string;
}
private:
StringTable* const table_;
};
// Based on ClassLinker::ResolveString.
static void PreloadDexCachesResolveString(
ObjPtr<mirror::DexCache> dex_cache, dex::StringIndex string_idx, StringTable& strings)
REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
auto pair = dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
if (!pair.object.IsNull()) {
return; // The entry already contains some String.
}
const DexFile* dex_file = dex_cache->GetDexFile();
const char* utf8 = dex_file->StringDataByIdx(string_idx);
ObjPtr<mirror::String> string = strings[utf8];
if (string == nullptr) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved string=" << utf8;
dex_cache->SetResolvedString(string_idx, string);
}
// Based on ClassLinker::ResolveType.
static void PreloadDexCachesResolveType(Thread* self,
ObjPtr<mirror::DexCache> dex_cache,
dex::TypeIndex type_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
auto pair = dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
if (!pair.object.IsNull()) {
return; // The entry already contains some Class.
}
const DexFile* dex_file = dex_cache->GetDexFile();
const char* class_name = dex_file->StringByTypeIdx(type_idx);
ClassLinker* linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> klass = (class_name[1] == '\0')
? linker->FindPrimitiveClass(class_name[0])
: linker->LookupClass(self, class_name, nullptr);
if (klass == nullptr) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved klass=" << class_name;
dex_cache->SetResolvedType(type_idx, klass);
// Skip uninitialized classes because filled static storage entry implies it is initialized.
if (!klass->IsInitialized()) {
// LOG(INFO) << "VMRuntime.preloadDexCaches uninitialized klass=" << class_name;
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches static storage klass=" << class_name;
}
// Based on ClassLinker::ResolveField.
static void PreloadDexCachesResolveField(ObjPtr<mirror::DexCache> dex_cache,
uint32_t field_idx,
bool is_static)
REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t slot_idx = dex_cache->FieldSlotIndex(field_idx);
auto pair = mirror::DexCache::GetNativePairPtrSize(dex_cache->GetResolvedFields(),
slot_idx,
kRuntimePointerSize);
if (pair.object != nullptr) {
return; // The entry already contains some ArtField.
}
const DexFile* dex_file = dex_cache->GetDexFile();
const DexFile::FieldId& field_id = dex_file->GetFieldId(field_idx);
ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
field_id.class_idx_, dex_cache, /* class_loader */ nullptr);
if (klass == nullptr) {
return;
}
ArtField* field = is_static
? mirror::Class::FindStaticField(Thread::Current(), klass, dex_cache, field_idx)
: klass->FindInstanceField(dex_cache, field_idx);
if (field == nullptr) {
return;
}
dex_cache->SetResolvedField(field_idx, field, kRuntimePointerSize);
}
// Based on ClassLinker::ResolveMethod.
static void PreloadDexCachesResolveMethod(ObjPtr<mirror::DexCache> dex_cache, uint32_t method_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t slot_idx = dex_cache->MethodSlotIndex(method_idx);
auto pair = mirror::DexCache::GetNativePairPtrSize(dex_cache->GetResolvedMethods(),
slot_idx,
kRuntimePointerSize);
if (pair.object != nullptr) {
return; // The entry already contains some ArtMethod.
}
const DexFile* dex_file = dex_cache->GetDexFile();
const DexFile::MethodId& method_id = dex_file->GetMethodId(method_idx);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> klass = class_linker->LookupResolvedType(
method_id.class_idx_, dex_cache, /* class_loader */ nullptr);
if (klass == nullptr) {
return;
}
// Call FindResolvedMethod to populate the dex cache.
class_linker->FindResolvedMethod(klass, dex_cache, /* class_loader */ nullptr, method_idx);
}
struct DexCacheStats {
uint32_t num_strings;
uint32_t num_types;
uint32_t num_fields;
uint32_t num_methods;
DexCacheStats() : num_strings(0),
num_types(0),
num_fields(0),
num_methods(0) {}
};
static const bool kPreloadDexCachesEnabled = true;
// Disabled because it takes a long time (extra half second) but
// gives almost no benefit in terms of saving private dirty pages.
static const bool kPreloadDexCachesStrings = false;
static const bool kPreloadDexCachesTypes = true;
static const bool kPreloadDexCachesFieldsAndMethods = true;
static const bool kPreloadDexCachesCollectStats = true;
static void PreloadDexCachesStatsTotal(DexCacheStats* total) {
if (!kPreloadDexCachesCollectStats) {
return;
}
ClassLinker* linker = Runtime::Current()->GetClassLinker();
const std::vector<const DexFile*>& boot_class_path = linker->GetBootClassPath();
for (size_t i = 0; i< boot_class_path.size(); i++) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != nullptr);
total->num_strings += dex_file->NumStringIds();
total->num_fields += dex_file->NumFieldIds();
total->num_methods += dex_file->NumMethodIds();
total->num_types += dex_file->NumTypeIds();
}
}
static void PreloadDexCachesStatsFilled(DexCacheStats* filled)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!kPreloadDexCachesCollectStats) {
return;
}
// TODO: Update for hash-based DexCache arrays.
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
Thread* const self = Thread::Current();
for (const DexFile* dex_file : class_linker->GetBootClassPath()) {
CHECK(dex_file != nullptr);
// In fallback mode, not all boot classpath components might be registered, yet.
if (!class_linker->IsDexFileRegistered(self, *dex_file)) {
continue;
}
ObjPtr<mirror::DexCache> const dex_cache = class_linker->FindDexCache(self, *dex_file);
DCHECK(dex_cache != nullptr); // Boot class path dex caches are never unloaded.
for (size_t j = 0, num_strings = dex_cache->NumStrings(); j < num_strings; ++j) {
auto pair = dex_cache->GetStrings()[j].load(std::memory_order_relaxed);
if (!pair.object.IsNull()) {
filled->num_strings++;
}
}
for (size_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; ++j) {
auto pair = dex_cache->GetResolvedTypes()[j].load(std::memory_order_relaxed);
if (!pair.object.IsNull()) {
filled->num_types++;
}
}
for (size_t j = 0, num_fields = dex_cache->NumResolvedFields(); j < num_fields; ++j) {
auto pair = mirror::DexCache::GetNativePairPtrSize(dex_cache->GetResolvedFields(),
j,
kRuntimePointerSize);
if (pair.object != nullptr) {
filled->num_fields++;
}
}
for (size_t j = 0, num_methods = dex_cache->NumResolvedMethods(); j < num_methods; ++j) {
auto pair = mirror::DexCache::GetNativePairPtrSize(dex_cache->GetResolvedMethods(),
j,
kRuntimePointerSize);
if (pair.object != nullptr) {
filled->num_methods++;
}
}
}
}
// TODO: http://b/11309598 This code was ported over based on the
// Dalvik version. However, ART has similar code in other places such
// as the CompilerDriver. This code could probably be refactored to
// serve both uses.
static void VMRuntime_preloadDexCaches(JNIEnv* env, jobject) {
if (!kPreloadDexCachesEnabled) {
return;
}
ScopedObjectAccess soa(env);
DexCacheStats total;
DexCacheStats before;
if (kPreloadDexCachesCollectStats) {
LOG(INFO) << "VMRuntime.preloadDexCaches starting";
PreloadDexCachesStatsTotal(&total);
PreloadDexCachesStatsFilled(&before);
}
Runtime* runtime = Runtime::Current();
ClassLinker* linker = runtime->GetClassLinker();
// We use a std::map to avoid heap allocating StringObjects to lookup in gDvm.literalStrings
StringTable strings;
if (kPreloadDexCachesStrings) {
PreloadDexCachesStringsVisitor visitor(&strings);
runtime->GetInternTable()->VisitRoots(&visitor, kVisitRootFlagAllRoots);
}
const std::vector<const DexFile*>& boot_class_path = linker->GetBootClassPath();
for (size_t i = 0; i < boot_class_path.size(); i++) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != nullptr);
ObjPtr<mirror::DexCache> dex_cache = linker->RegisterDexFile(*dex_file, nullptr);
CHECK(dex_cache != nullptr); // Boot class path dex caches are never unloaded.
if (kPreloadDexCachesStrings) {
for (size_t j = 0; j < dex_cache->NumStrings(); j++) {
PreloadDexCachesResolveString(dex_cache, dex::StringIndex(j), strings);
}
}
if (kPreloadDexCachesTypes) {
for (size_t j = 0; j < dex_cache->NumResolvedTypes(); j++) {
PreloadDexCachesResolveType(soa.Self(), dex_cache, dex::TypeIndex(j));
}
}
if (kPreloadDexCachesFieldsAndMethods) {
for (size_t class_def_index = 0;
class_def_index < dex_file->NumClassDefs();
class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data == nullptr) {
continue;
}
ClassDataItemIterator it(*dex_file, class_data);
for (; it.HasNextStaticField(); it.Next()) {
uint32_t field_idx = it.GetMemberIndex();
PreloadDexCachesResolveField(dex_cache, field_idx, true);
}
for (; it.HasNextInstanceField(); it.Next()) {
uint32_t field_idx = it.GetMemberIndex();
PreloadDexCachesResolveField(dex_cache, field_idx, false);
}
for (; it.HasNextDirectMethod(); it.Next()) {
uint32_t method_idx = it.GetMemberIndex();
PreloadDexCachesResolveMethod(dex_cache, method_idx);
}
for (; it.HasNextVirtualMethod(); it.Next()) {
uint32_t method_idx = it.GetMemberIndex();
PreloadDexCachesResolveMethod(dex_cache, method_idx);
}
}
}
}
if (kPreloadDexCachesCollectStats) {
DexCacheStats after;
PreloadDexCachesStatsFilled(&after);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches strings total=%d before=%d after=%d",
total.num_strings, before.num_strings, after.num_strings);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches types total=%d before=%d after=%d",
total.num_types, before.num_types, after.num_types);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches fields total=%d before=%d after=%d",
total.num_fields, before.num_fields, after.num_fields);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches methods total=%d before=%d after=%d",
total.num_methods, before.num_methods, after.num_methods);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches finished");
}
}
/*
* This is called by the framework when it knows the application directory and
* process name.
*/
static void VMRuntime_registerAppInfo(JNIEnv* env,
jclass clazz ATTRIBUTE_UNUSED,
jstring profile_file,
jobjectArray code_paths) {
std::vector<std::string> code_paths_vec;
int code_paths_length = env->GetArrayLength(code_paths);
for (int i = 0; i < code_paths_length; i++) {
jstring code_path = reinterpret_cast<jstring>(env->GetObjectArrayElement(code_paths, i));
const char* raw_code_path = env->GetStringUTFChars(code_path, nullptr);
code_paths_vec.push_back(raw_code_path);
env->ReleaseStringUTFChars(code_path, raw_code_path);
}
const char* raw_profile_file = env->GetStringUTFChars(profile_file, nullptr);
std::string profile_file_str(raw_profile_file);
env->ReleaseStringUTFChars(profile_file, raw_profile_file);
Runtime::Current()->RegisterAppInfo(code_paths_vec, profile_file_str);
}
static jboolean VMRuntime_isBootClassPathOnDisk(JNIEnv* env, jclass, jstring java_instruction_set) {
ScopedUtfChars instruction_set(env, java_instruction_set);
if (instruction_set.c_str() == nullptr) {
return JNI_FALSE;
}
InstructionSet isa = GetInstructionSetFromString(instruction_set.c_str());
if (isa == InstructionSet::kNone) {
ScopedLocalRef<jclass> iae(env, env->FindClass("java/lang/IllegalArgumentException"));
std::string message(StringPrintf("Instruction set %s is invalid.", instruction_set.c_str()));
env->ThrowNew(iae.get(), message.c_str());
return JNI_FALSE;
}
std::string error_msg;
std::unique_ptr<ImageHeader> image_header(gc::space::ImageSpace::ReadImageHeader(
Runtime::Current()->GetImageLocation().c_str(), isa, &error_msg));
return image_header.get() != nullptr;
}
static jstring VMRuntime_getCurrentInstructionSet(JNIEnv* env, jclass) {
return env->NewStringUTF(GetInstructionSetString(kRuntimeISA));
}
static jboolean VMRuntime_didPruneDalvikCache(JNIEnv* env ATTRIBUTE_UNUSED,
jclass klass ATTRIBUTE_UNUSED) {
return Runtime::Current()->GetPrunedDalvikCache() ? JNI_TRUE : JNI_FALSE;
}
static void VMRuntime_setSystemDaemonThreadPriority(JNIEnv* env ATTRIBUTE_UNUSED,
jclass klass ATTRIBUTE_UNUSED) {
#ifdef ART_TARGET_ANDROID
Thread* self = Thread::Current();
DCHECK(self != nullptr);
pid_t tid = self->GetTid();
// We use a priority lower than the default for the system daemon threads (eg HeapTaskDaemon) to
// avoid jank due to CPU contentions between GC and other UI-related threads. b/36631902.
// We may use a native priority that doesn't have a corresponding java.lang.Thread-level priority.
static constexpr int kSystemDaemonNiceValue = 4; // priority 124
if (setpriority(PRIO_PROCESS, tid, kSystemDaemonNiceValue) != 0) {
PLOG(INFO) << *self << " setpriority(PRIO_PROCESS, " << tid << ", "
<< kSystemDaemonNiceValue << ") failed";
}
#endif
}
static void VMRuntime_setDedupeHiddenApiWarnings(JNIEnv* env ATTRIBUTE_UNUSED,
jclass klass ATTRIBUTE_UNUSED,
jboolean dedupe) {
Runtime::Current()->SetDedupeHiddenApiWarnings(dedupe);
}
static void VMRuntime_setProcessPackageName(JNIEnv* env,
jclass klass ATTRIBUTE_UNUSED,
jstring java_package_name) {
ScopedUtfChars package_name(env, java_package_name);
Runtime::Current()->SetProcessPackageName(package_name.c_str());
}
static JNINativeMethod gMethods[] = {
FAST_NATIVE_METHOD(VMRuntime, addressOf, "(Ljava/lang/Object;)J"),
NATIVE_METHOD(VMRuntime, bootClassPath, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, clampGrowthLimit, "()V"),
NATIVE_METHOD(VMRuntime, classPath, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, clearGrowthLimit, "()V"),
NATIVE_METHOD(VMRuntime, concurrentGC, "()V"),
NATIVE_METHOD(VMRuntime, disableJitCompilation, "()V"),
NATIVE_METHOD(VMRuntime, hasUsedHiddenApi, "()Z"),
NATIVE_METHOD(VMRuntime, setHiddenApiExemptions, "([Ljava/lang/String;)V"),
NATIVE_METHOD(VMRuntime, setHiddenApiAccessLogSamplingRate, "(I)V"),
NATIVE_METHOD(VMRuntime, getTargetHeapUtilization, "()F"),
FAST_NATIVE_METHOD(VMRuntime, isDebuggerActive, "()Z"),
FAST_NATIVE_METHOD(VMRuntime, isNativeDebuggable, "()Z"),
NATIVE_METHOD(VMRuntime, isJavaDebuggable, "()Z"),
NATIVE_METHOD(VMRuntime, nativeSetTargetHeapUtilization, "(F)V"),
FAST_NATIVE_METHOD(VMRuntime, newNonMovableArray, "(Ljava/lang/Class;I)Ljava/lang/Object;"),
FAST_NATIVE_METHOD(VMRuntime, newUnpaddedArray, "(Ljava/lang/Class;I)Ljava/lang/Object;"),
NATIVE_METHOD(VMRuntime, properties, "()[Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, setTargetSdkVersionNative, "(I)V"),
NATIVE_METHOD(VMRuntime, registerNativeAllocation, "(I)V"),
NATIVE_METHOD(VMRuntime, registerSensitiveThread, "()V"),
NATIVE_METHOD(VMRuntime, registerNativeFree, "(I)V"),
NATIVE_METHOD(VMRuntime, requestConcurrentGC, "()V"),
NATIVE_METHOD(VMRuntime, requestHeapTrim, "()V"),
NATIVE_METHOD(VMRuntime, runHeapTasks, "()V"),
NATIVE_METHOD(VMRuntime, updateProcessState, "(I)V"),
NATIVE_METHOD(VMRuntime, startHeapTaskProcessor, "()V"),
NATIVE_METHOD(VMRuntime, startJitCompilation, "()V"),
NATIVE_METHOD(VMRuntime, stopHeapTaskProcessor, "()V"),
NATIVE_METHOD(VMRuntime, trimHeap, "()V"),
NATIVE_METHOD(VMRuntime, vmVersion, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, vmLibrary, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, vmInstructionSet, "()Ljava/lang/String;"),
FAST_NATIVE_METHOD(VMRuntime, is64Bit, "()Z"),
FAST_NATIVE_METHOD(VMRuntime, isCheckJniEnabled, "()Z"),
NATIVE_METHOD(VMRuntime, preloadDexCaches, "()V"),
NATIVE_METHOD(VMRuntime, registerAppInfo, "(Ljava/lang/String;[Ljava/lang/String;)V"),
NATIVE_METHOD(VMRuntime, isBootClassPathOnDisk, "(Ljava/lang/String;)Z"),
NATIVE_METHOD(VMRuntime, getCurrentInstructionSet, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, didPruneDalvikCache, "()Z"),
NATIVE_METHOD(VMRuntime, setSystemDaemonThreadPriority, "()V"),
NATIVE_METHOD(VMRuntime, setDedupeHiddenApiWarnings, "(Z)V"),
NATIVE_METHOD(VMRuntime, setProcessPackageName, "(Ljava/lang/String;)V"),
};
void register_dalvik_system_VMRuntime(JNIEnv* env) {
REGISTER_NATIVE_METHODS("dalvik/system/VMRuntime");
}
} // namespace art