普通文本  |  5140行  |  223.74 KB

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "method_verifier-inl.h"

#include <iostream>

#include "android-base/stringprintf.h"

#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/aborting.h"
#include "base/enums.h"
#include "base/leb128.h"
#include "base/logging.h"  // For VLOG.
#include "base/mutex-inl.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_linker.h"
#include "compiler_callbacks.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_exception_helpers.h"
#include "dex/dex_instruction-inl.h"
#include "dex/dex_instruction_utils.h"
#include "experimental_flags.h"
#include "gc/accounting/card_table-inl.h"
#include "handle_scope-inl.h"
#include "indenter.h"
#include "intern_table.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/method_handle_impl.h"
#include "mirror/method_type.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/var_handle.h"
#include "reg_type-inl.h"
#include "register_line-inl.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "vdex_file.h"
#include "verifier_compiler_binding.h"
#include "verifier_deps.h"

namespace art {
namespace verifier {

using android::base::StringPrintf;

static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;

// On VLOG(verifier), should we dump the whole state when we run into a hard failure?
static constexpr bool kDumpRegLinesOnHardFailureIfVLOG = true;

// We print a warning blurb about "dx --no-optimize" when we find monitor-locking issues. Make
// sure we only print this once.
static bool gPrintedDxMonitorText = false;

PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
    : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}

void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
                                 uint32_t insns_size, uint16_t registers_size,
                                 MethodVerifier* verifier) {
  DCHECK_GT(insns_size, 0U);
  register_lines_.resize(insns_size);
  for (uint32_t i = 0; i < insns_size; i++) {
    bool interesting = false;
    switch (mode) {
      case kTrackRegsAll:
        interesting = flags[i].IsOpcode();
        break;
      case kTrackCompilerInterestPoints:
        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
        break;
      case kTrackRegsBranches:
        interesting = flags[i].IsBranchTarget();
        break;
      default:
        break;
    }
    if (interesting) {
      register_lines_[i].reset(RegisterLine::Create(registers_size, verifier));
    }
  }
}

PcToRegisterLineTable::~PcToRegisterLineTable() {}

// Note: returns true on failure.
inline bool MethodVerifier::FailOrAbort(bool condition,
                                        const char* error_msg,
                                        uint32_t work_insn_idx) {
  if (kIsDebugBuild) {
    // In a debug build, abort if the error condition is wrong. Only warn if
    // we are already aborting (as this verification is likely run to print
    // lock information).
    if (LIKELY(gAborting == 0)) {
      DCHECK(condition) << error_msg << work_insn_idx << " "
                        << dex_file_->PrettyMethod(dex_method_idx_);
    } else {
      if (!condition) {
        LOG(ERROR) << error_msg << work_insn_idx;
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
        return true;
      }
    }
  } else {
    // In a non-debug build, just fail the class.
    if (!condition) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
      return true;
    }
  }

  return false;
}

static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
  if (verifier->IsInstanceConstructor()) {
    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
    reg_line->CheckConstructorReturn(verifier);
  }
  reg_line->MarkAllRegistersAsConflicts(verifier);
}

FailureKind MethodVerifier::VerifyClass(Thread* self,
                                        mirror::Class* klass,
                                        CompilerCallbacks* callbacks,
                                        bool allow_soft_failures,
                                        HardFailLogMode log_level,
                                        std::string* error) {
  if (klass->IsVerified()) {
    return FailureKind::kNoFailure;
  }
  bool early_failure = false;
  std::string failure_message;
  const DexFile& dex_file = klass->GetDexFile();
  const DexFile::ClassDef* class_def = klass->GetClassDef();
  mirror::Class* super = klass->GetSuperClass();
  std::string temp;
  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
    early_failure = true;
    failure_message = " that has no super class";
  } else if (super != nullptr && super->IsFinal()) {
    early_failure = true;
    failure_message = " that attempts to sub-class final class " + super->PrettyDescriptor();
  } else if (class_def == nullptr) {
    early_failure = true;
    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
  }
  if (early_failure) {
    *error = "Verifier rejected class " + klass->PrettyDescriptor() + failure_message;
    if (callbacks != nullptr) {
      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
      callbacks->ClassRejected(ref);
    }
    return FailureKind::kHardFailure;
  }
  StackHandleScope<2> hs(self);
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
  return VerifyClass(self,
                     &dex_file,
                     dex_cache,
                     class_loader,
                     *class_def,
                     callbacks,
                     allow_soft_failures,
                     log_level,
                     error);
}

template <bool kDirect>
static bool HasNextMethod(ClassDataItemIterator* it) {
  return kDirect ? it->HasNextDirectMethod() : it->HasNextVirtualMethod();
}

static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
  static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
                    && FailureKind::kSoftFailure < FailureKind::kHardFailure,
                "Unexpected FailureKind order");
  return std::max(fk1, fk2);
}

void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
  kind = FailureKindMax(kind, fd.kind);
  types |= fd.types;
}

template <bool kDirect>
MethodVerifier::FailureData MethodVerifier::VerifyMethods(Thread* self,
                                                          ClassLinker* linker,
                                                          const DexFile* dex_file,
                                                          const DexFile::ClassDef& class_def,
                                                          ClassDataItemIterator* it,
                                                          Handle<mirror::DexCache> dex_cache,
                                                          Handle<mirror::ClassLoader> class_loader,
                                                          CompilerCallbacks* callbacks,
                                                          bool allow_soft_failures,
                                                          HardFailLogMode log_level,
                                                          bool need_precise_constants,
                                                          std::string* error_string) {
  DCHECK(it != nullptr);

  MethodVerifier::FailureData failure_data;

  int64_t previous_method_idx = -1;
  while (HasNextMethod<kDirect>(it)) {
    self->AllowThreadSuspension();
    uint32_t method_idx = it->GetMemberIndex();
    if (method_idx == previous_method_idx) {
      // smali can create dex files with two encoded_methods sharing the same method_idx
      // http://code.google.com/p/smali/issues/detail?id=119
      it->Next();
      continue;
    }
    previous_method_idx = method_idx;
    InvokeType type = it->GetMethodInvokeType(class_def);
    ArtMethod* method = linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
        method_idx, dex_cache, class_loader, /* referrer */ nullptr, type);
    if (method == nullptr) {
      DCHECK(self->IsExceptionPending());
      // We couldn't resolve the method, but continue regardless.
      self->ClearException();
    } else {
      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
    }
    StackHandleScope<1> hs(self);
    std::string hard_failure_msg;
    MethodVerifier::FailureData result = VerifyMethod(self,
                                                      method_idx,
                                                      dex_file,
                                                      dex_cache,
                                                      class_loader,
                                                      class_def,
                                                      it->GetMethodCodeItem(),
                                                      method,
                                                      it->GetMethodAccessFlags(),
                                                      callbacks,
                                                      allow_soft_failures,
                                                      log_level,
                                                      need_precise_constants,
                                                      &hard_failure_msg);
    if (result.kind == FailureKind::kHardFailure) {
      if (failure_data.kind == FailureKind::kHardFailure) {
        // If we logged an error before, we need a newline.
        *error_string += "\n";
      } else {
        // If we didn't log a hard failure before, print the header of the message.
        *error_string += "Verifier rejected class ";
        *error_string += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
        *error_string += ":";
      }
      *error_string += " ";
      *error_string += hard_failure_msg;
    }
    failure_data.Merge(result);
    it->Next();
  }

  return failure_data;
}

FailureKind MethodVerifier::VerifyClass(Thread* self,
                                        const DexFile* dex_file,
                                        Handle<mirror::DexCache> dex_cache,
                                        Handle<mirror::ClassLoader> class_loader,
                                        const DexFile::ClassDef& class_def,
                                        CompilerCallbacks* callbacks,
                                        bool allow_soft_failures,
                                        HardFailLogMode log_level,
                                        std::string* error) {
  SCOPED_TRACE << "VerifyClass " << PrettyDescriptor(dex_file->GetClassDescriptor(class_def));

  // A class must not be abstract and final.
  if ((class_def.access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
    *error = "Verifier rejected class ";
    *error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
    *error += ": class is abstract and final.";
    return FailureKind::kHardFailure;
  }

  const uint8_t* class_data = dex_file->GetClassData(class_def);
  if (class_data == nullptr) {
    // empty class, probably a marker interface
    return FailureKind::kNoFailure;
  }
  ClassDataItemIterator it(*dex_file, class_data);
  it.SkipAllFields();
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  // Direct methods.
  MethodVerifier::FailureData data1 = VerifyMethods<true>(self,
                                                          linker,
                                                          dex_file,
                                                          class_def,
                                                          &it,
                                                          dex_cache,
                                                          class_loader,
                                                          callbacks,
                                                          allow_soft_failures,
                                                          log_level,
                                                          false /* need precise constants */,
                                                          error);
  // Virtual methods.
  MethodVerifier::FailureData data2 = VerifyMethods<false>(self,
                                                           linker,
                                                           dex_file,
                                                           class_def,
                                                           &it,
                                                           dex_cache,
                                                           class_loader,
                                                           callbacks,
                                                           allow_soft_failures,
                                                           log_level,
                                                           false /* need precise constants */,
                                                           error);

  data1.Merge(data2);

  if (data1.kind == FailureKind::kNoFailure) {
    return FailureKind::kNoFailure;
  } else {
    if ((data1.types & VERIFY_ERROR_LOCKING) != 0) {
      // Print a warning about expected slow-down. Use a string temporary to print one contiguous
      // warning.
      std::string tmp =
          StringPrintf("Class %s failed lock verification and will run slower.",
                       PrettyDescriptor(dex_file->GetClassDescriptor(class_def)).c_str());
      if (!gPrintedDxMonitorText) {
        tmp = tmp + "\nCommon causes for lock verification issues are non-optimized dex code\n"
                    "and incorrect proguard optimizations.";
        gPrintedDxMonitorText = true;
      }
      LOG(WARNING) << tmp;
    }
    return data1.kind;
  }
}

static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
  if (!accessor.HasCodeItem()) {
    return false;
  }

  uint16_t registers_size = accessor.RegistersSize();
  uint32_t insns_size = accessor.InsnsSizeInCodeUnits();

  return registers_size * insns_size > 4*1024*1024;
}

MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
                                                         uint32_t method_idx,
                                                         const DexFile* dex_file,
                                                         Handle<mirror::DexCache> dex_cache,
                                                         Handle<mirror::ClassLoader> class_loader,
                                                         const DexFile::ClassDef& class_def,
                                                         const DexFile::CodeItem* code_item,
                                                         ArtMethod* method,
                                                         uint32_t method_access_flags,
                                                         CompilerCallbacks* callbacks,
                                                         bool allow_soft_failures,
                                                         HardFailLogMode log_level,
                                                         bool need_precise_constants,
                                                         std::string* hard_failure_msg) {
  MethodVerifier::FailureData result;
  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;

  MethodVerifier verifier(self,
                          dex_file,
                          dex_cache,
                          class_loader,
                          class_def,
                          code_item,
                          method_idx,
                          method,
                          method_access_flags,
                          true /* can_load_classes */,
                          allow_soft_failures,
                          need_precise_constants,
                          false /* verify to dump */,
                          true /* allow_thread_suspension */);
  if (verifier.Verify()) {
    // Verification completed, however failures may be pending that didn't cause the verification
    // to hard fail.
    CHECK(!verifier.have_pending_hard_failure_);

    if (code_item != nullptr && callbacks != nullptr) {
      // Let the interested party know that the method was verified.
      callbacks->MethodVerified(&verifier);
    }

    if (verifier.failures_.size() != 0) {
      if (VLOG_IS_ON(verifier)) {
        verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
                                                    << dex_file->PrettyMethod(method_idx) << "\n");
      }
      if (VLOG_IS_ON(verifier_debug)) {
        std::cout << "\n" << verifier.info_messages_.str();
        verifier.Dump(std::cout);
      }
      result.kind = FailureKind::kSoftFailure;
      if (method != nullptr &&
          !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
        method->SetDontCompile();
      }
    }
    if (method != nullptr) {
      if (verifier.HasInstructionThatWillThrow()) {
        method->SetDontCompile();
        if (Runtime::Current()->IsAotCompiler() &&
            (callbacks != nullptr) && !callbacks->IsBootImage()) {
          // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger
          // re-verification at runtime.
          // The dead code after the throw is not verified and might be invalid. This may cause
          // the JIT compiler to crash since it assumes that all the code is valid.
          //
          // There's a strong assumption that the entire boot image is verified and all its dex
          // code is valid (even the dead and unverified one). As such this is done only for apps.
          // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are
          // fully verified).
          result.kind = FailureKind::kSoftFailure;
        }
      }
      if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
        method->SetMustCountLocks();
      }
    }
  } else {
    // Bad method data.
    CHECK_NE(verifier.failures_.size(), 0U);

    if (UNLIKELY(verifier.have_pending_experimental_failure_)) {
      // Failed due to being forced into interpreter. This is ok because
      // we just want to skip verification.
      result.kind = FailureKind::kSoftFailure;
    } else {
      CHECK(verifier.have_pending_hard_failure_);
      if (VLOG_IS_ON(verifier)) {
        log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
      }
      if (log_level >= HardFailLogMode::kLogVerbose) {
        LogSeverity severity;
        switch (log_level) {
          case HardFailLogMode::kLogVerbose:
            severity = LogSeverity::VERBOSE;
            break;
          case HardFailLogMode::kLogWarning:
            severity = LogSeverity::WARNING;
            break;
          case HardFailLogMode::kLogInternalFatal:
            severity = LogSeverity::FATAL_WITHOUT_ABORT;
            break;
          default:
            LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
            UNREACHABLE();
        }
        verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
                                                   << dex_file->PrettyMethod(method_idx)
                                                   << "\n");
      }
      if (hard_failure_msg != nullptr) {
        CHECK(!verifier.failure_messages_.empty());
        *hard_failure_msg =
            verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
      }
      result.kind = FailureKind::kHardFailure;

      if (callbacks != nullptr) {
        // Let the interested party know that we failed the class.
        ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
        callbacks->ClassRejected(ref);
      }
    }
    if (VLOG_IS_ON(verifier) || VLOG_IS_ON(verifier_debug)) {
      std::cout << "\n" << verifier.info_messages_.str();
      verifier.Dump(std::cout);
    }
  }
  if (kTimeVerifyMethod) {
    uint64_t duration_ns = NanoTime() - start_ns;
    if (duration_ns > MsToNs(100)) {
      LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
                   << " took " << PrettyDuration(duration_ns)
                   << (IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "");
    }
  }
  result.types = verifier.encountered_failure_types_;
  return result;
}

MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
                                                    VariableIndentationOutputStream* vios,
                                                    uint32_t dex_method_idx,
                                                    const DexFile* dex_file,
                                                    Handle<mirror::DexCache> dex_cache,
                                                    Handle<mirror::ClassLoader> class_loader,
                                                    const DexFile::ClassDef& class_def,
                                                    const DexFile::CodeItem* code_item,
                                                    ArtMethod* method,
                                                    uint32_t method_access_flags) {
  MethodVerifier* verifier = new MethodVerifier(self,
                                                dex_file,
                                                dex_cache,
                                                class_loader,
                                                class_def,
                                                code_item,
                                                dex_method_idx,
                                                method,
                                                method_access_flags,
                                                true /* can_load_classes */,
                                                true /* allow_soft_failures */,
                                                true /* need_precise_constants */,
                                                true /* verify_to_dump */,
                                                true /* allow_thread_suspension */);
  verifier->Verify();
  verifier->DumpFailures(vios->Stream());
  vios->Stream() << verifier->info_messages_.str();
  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
  // and querying any info is dangerous/can abort.
  if (verifier->have_pending_hard_failure_) {
    delete verifier;
    return nullptr;
  } else {
    verifier->Dump(vios);
    return verifier;
  }
}

MethodVerifier::MethodVerifier(Thread* self,
                               const DexFile* dex_file,
                               Handle<mirror::DexCache> dex_cache,
                               Handle<mirror::ClassLoader> class_loader,
                               const DexFile::ClassDef& class_def,
                               const DexFile::CodeItem* code_item,
                               uint32_t dex_method_idx,
                               ArtMethod* method,
                               uint32_t method_access_flags,
                               bool can_load_classes,
                               bool allow_soft_failures,
                               bool need_precise_constants,
                               bool verify_to_dump,
                               bool allow_thread_suspension)
    : self_(self),
      arena_stack_(Runtime::Current()->GetArenaPool()),
      allocator_(&arena_stack_),
      reg_types_(can_load_classes, allocator_, allow_thread_suspension),
      reg_table_(allocator_),
      work_insn_idx_(dex::kDexNoIndex),
      dex_method_idx_(dex_method_idx),
      method_being_verified_(method),
      method_access_flags_(method_access_flags),
      return_type_(nullptr),
      dex_file_(dex_file),
      dex_cache_(dex_cache),
      class_loader_(class_loader),
      class_def_(class_def),
      code_item_accessor_(*dex_file, code_item),
      declaring_class_(nullptr),
      interesting_dex_pc_(-1),
      monitor_enter_dex_pcs_(nullptr),
      have_pending_hard_failure_(false),
      have_pending_runtime_throw_failure_(false),
      have_pending_experimental_failure_(false),
      have_any_pending_runtime_throw_failure_(false),
      new_instance_count_(0),
      monitor_enter_count_(0),
      encountered_failure_types_(0),
      can_load_classes_(can_load_classes),
      allow_soft_failures_(allow_soft_failures),
      need_precise_constants_(need_precise_constants),
      has_check_casts_(false),
      has_virtual_or_interface_invokes_(false),
      verify_to_dump_(verify_to_dump),
      allow_thread_suspension_(allow_thread_suspension),
      is_constructor_(false),
      link_(nullptr) {
  self->PushVerifier(this);
}

MethodVerifier::~MethodVerifier() {
  Thread::Current()->PopVerifier(this);
  STLDeleteElements(&failure_messages_);
}

void MethodVerifier::FindLocksAtDexPc(
    ArtMethod* m,
    uint32_t dex_pc,
    std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs) {
  StackHandleScope<2> hs(Thread::Current());
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
  MethodVerifier verifier(hs.Self(),
                          m->GetDexFile(),
                          dex_cache,
                          class_loader,
                          m->GetClassDef(),
                          m->GetCodeItem(),
                          m->GetDexMethodIndex(),
                          m,
                          m->GetAccessFlags(),
                          false /* can_load_classes */,
                          true  /* allow_soft_failures */,
                          false /* need_precise_constants */,
                          false /* verify_to_dump */,
                          false /* allow_thread_suspension */);
  verifier.interesting_dex_pc_ = dex_pc;
  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
  verifier.FindLocksAtDexPc();
}

void MethodVerifier::FindLocksAtDexPc() {
  CHECK(monitor_enter_dex_pcs_ != nullptr);
  CHECK(code_item_accessor_.HasCodeItem());  // This only makes sense for methods with code.

  // Quick check whether there are any monitor_enter instructions before verifying.
  for (const DexInstructionPcPair& inst : code_item_accessor_) {
    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
      // Strictly speaking, we ought to be able to get away with doing a subset of the full method
      // verification. In practice, the phase we want relies on data structures set up by all the
      // earlier passes, so we just run the full method verification and bail out early when we've
      // got what we wanted.
      Verify();
      return;
    }
  }
}

bool MethodVerifier::Verify() {
  // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
  // the name.
  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
  const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
  bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
  bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
  bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
  // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
  if ((method_access_flags_ & kAccConstructor) != 0) {
    if (!constructor_by_name) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "method is marked as constructor, but not named accordingly";
      return false;
    }
    is_constructor_ = true;
  } else if (constructor_by_name) {
    LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
                 << " not marked as constructor.";
    is_constructor_ = true;
  }
  // If it's a constructor, check whether IsStatic() matches the name.
  // This should have been rejected by the dex file verifier. Only do in debug build.
  if (kIsDebugBuild) {
    if (IsConstructor()) {
      if (IsStatic() ^ static_constructor_by_name) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
              << "constructor name doesn't match static flag";
        return false;
      }
    }
  }

  // Methods may only have one of public/protected/private.
  // This should have been rejected by the dex file verifier. Only do in debug build.
  if (kIsDebugBuild) {
    size_t access_mod_count =
        (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
        (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
        (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
    if (access_mod_count > 1) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
      return false;
    }
  }

  // If there aren't any instructions, make sure that's expected, then exit successfully.
  if (!code_item_accessor_.HasCodeItem()) {
    // Only native or abstract methods may not have code.
    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
      return false;
    }

    // This should have been rejected by the dex file verifier. Only do in debug build.
    // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
    if (kIsDebugBuild) {
      if ((method_access_flags_ & kAccAbstract) != 0) {
        // Abstract methods are not allowed to have the following flags.
        static constexpr uint32_t kForbidden =
            kAccPrivate |
            kAccStatic |
            kAccFinal |
            kAccNative |
            kAccStrict |
            kAccSynchronized;
        if ((method_access_flags_ & kForbidden) != 0) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD)
                << "method can't be abstract and private/static/final/native/strict/synchronized";
          return false;
        }
      }
      if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
        // Interface methods must be public and abstract (if default methods are disabled).
        uint32_t kRequired = kAccPublic;
        if ((method_access_flags_ & kRequired) != kRequired) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
          return false;
        }
        // In addition to the above, interface methods must not be protected.
        static constexpr uint32_t kForbidden = kAccProtected;
        if ((method_access_flags_ & kForbidden) != 0) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
          return false;
        }
      }
      // We also don't allow constructors to be abstract or native.
      if (IsConstructor()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
        return false;
      }
    }
    return true;
  }

  // This should have been rejected by the dex file verifier. Only do in debug build.
  if (kIsDebugBuild) {
    // When there's code, the method must not be native or abstract.
    if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
      return false;
    }

    if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
      // Interfaces may always have static initializers for their fields. If we are running with
      // default methods enabled we also allow other public, static, non-final methods to have code.
      // Otherwise that is the only type of method allowed.
      if (!(IsConstructor() && IsStatic())) {
        if (IsInstanceConstructor()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
          return false;
        } else if (method_access_flags_ & kAccFinal) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
          return false;
        } else {
          uint32_t access_flag_options = kAccPublic;
          if (dex_file_->SupportsDefaultMethods()) {
            access_flag_options |= kAccPrivate;
          }
          if (!(method_access_flags_ & access_flag_options)) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD)
                << "interfaces may not have protected or package-private members";
            return false;
          }
        }
      }
    }

    // Instance constructors must not be synchronized.
    if (IsInstanceConstructor()) {
      static constexpr uint32_t kForbidden = kAccSynchronized;
      if ((method_access_flags_ & kForbidden) != 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
        return false;
      }
    }
  }

  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
  if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
                                      << code_item_accessor_.InsSize()
                                      << " regs=" << code_item_accessor_.RegistersSize();
    return false;
  }

  // Allocate and initialize an array to hold instruction data.
  insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
      code_item_accessor_.InsnsSizeInCodeUnits()));
  DCHECK(insn_flags_ != nullptr);
  std::uninitialized_fill_n(insn_flags_.get(),
                            code_item_accessor_.InsnsSizeInCodeUnits(),
                            InstructionFlags());
  // Run through the instructions and see if the width checks out.
  bool result = ComputeWidthsAndCountOps();
  bool allow_runtime_only_instructions = !Runtime::Current()->IsAotCompiler() || verify_to_dump_;
  // Flag instructions guarded by a "try" block and check exception handlers.
  result = result && ScanTryCatchBlocks();
  // Perform static instruction verification.
  result = result && (allow_runtime_only_instructions
                          ? VerifyInstructions<true>()
                          : VerifyInstructions<false>());
  // Perform code-flow analysis and return.
  result = result && VerifyCodeFlow();

  return result;
}

std::ostream& MethodVerifier::Fail(VerifyError error) {
  // Mark the error type as encountered.
  encountered_failure_types_ |= static_cast<uint32_t>(error);

  switch (error) {
    case VERIFY_ERROR_NO_CLASS:
    case VERIFY_ERROR_NO_FIELD:
    case VERIFY_ERROR_NO_METHOD:
    case VERIFY_ERROR_ACCESS_CLASS:
    case VERIFY_ERROR_ACCESS_FIELD:
    case VERIFY_ERROR_ACCESS_METHOD:
    case VERIFY_ERROR_INSTANTIATION:
    case VERIFY_ERROR_CLASS_CHANGE:
    case VERIFY_ERROR_FORCE_INTERPRETER:
    case VERIFY_ERROR_LOCKING:
      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
        // class change and instantiation errors into soft verification errors so that we re-verify
        // at runtime. We may fail to find or to agree on access because of not yet available class
        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
        // paths" that dynamically perform the verification and cause the behavior to be that akin
        // to an interpreter.
        error = VERIFY_ERROR_BAD_CLASS_SOFT;
      } else {
        // If we fail again at runtime, mark that this instruction would throw and force this
        // method to be executed using the interpreter with checks.
        have_pending_runtime_throw_failure_ = true;

        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
        // try to merge garbage.
        // Note: this assumes that Fail is called before we do any work_line modifications.
        // Note: this can fail before we touch any instruction, for the signature of a method. So
        //       add a check.
        if (work_insn_idx_ < dex::kDexNoIndex) {
          const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
          int opcode_flags = Instruction::FlagsOf(inst.Opcode());

          if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
            saved_line_->CopyFromLine(work_line_.get());
          }
        }
      }
      break;

      // Indication that verification should be retried at runtime.
    case VERIFY_ERROR_BAD_CLASS_SOFT:
      if (!allow_soft_failures_) {
        have_pending_hard_failure_ = true;
      }
      break;

      // Hard verification failures at compile time will still fail at runtime, so the class is
      // marked as rejected to prevent it from being compiled.
    case VERIFY_ERROR_BAD_CLASS_HARD: {
      have_pending_hard_failure_ = true;
      if (VLOG_IS_ON(verifier) && kDumpRegLinesOnHardFailureIfVLOG) {
        ScopedObjectAccess soa(Thread::Current());
        std::ostringstream oss;
        Dump(oss);
        LOG(ERROR) << oss.str();
      }
      break;
    }
  }
  failures_.push_back(error);
  std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
                                    work_insn_idx_));
  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
  failure_messages_.push_back(failure_message);
  return *failure_message;
}

std::ostream& MethodVerifier::LogVerifyInfo() {
  return info_messages_ << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
}

void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
  size_t failure_num = failure_messages_.size();
  DCHECK_NE(failure_num, 0U);
  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
  prepend += last_fail_message->str();
  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
  delete last_fail_message;
}

void MethodVerifier::AppendToLastFailMessage(const std::string& append) {
  size_t failure_num = failure_messages_.size();
  DCHECK_NE(failure_num, 0U);
  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
  (*last_fail_message) << append;
}

bool MethodVerifier::ComputeWidthsAndCountOps() {
  size_t new_instance_count = 0;
  size_t monitor_enter_count = 0;

  // We can't assume the instruction is well formed, handle the case where calculating the size
  // goes past the end of the code item.
  SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
  for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
    // In case the instruction goes past the end of the code item, make sure to not process it.
    SafeDexInstructionIterator next = it;
    ++next;
    if (next.IsErrorState()) {
      break;
    }
    Instruction::Code opcode = it->Opcode();
    switch (opcode) {
      case Instruction::APUT_OBJECT:
      case Instruction::CHECK_CAST:
        has_check_casts_ = true;
        break;
      case Instruction::INVOKE_VIRTUAL:
      case Instruction::INVOKE_VIRTUAL_RANGE:
      case Instruction::INVOKE_INTERFACE:
      case Instruction::INVOKE_INTERFACE_RANGE:
        has_virtual_or_interface_invokes_ = true;
        break;
      case Instruction::MONITOR_ENTER:
        monitor_enter_count++;
        break;
      case Instruction::NEW_INSTANCE:
        new_instance_count++;
        break;
      default:
        break;
    }
    GetInstructionFlags(it.DexPc()).SetIsOpcode();
  }

  if (it != code_item_accessor_.end()) {
    const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
                                      << it.DexPc() << " vs. " << insns_size << ")";
    return false;
  }

  new_instance_count_ = new_instance_count;
  monitor_enter_count_ = monitor_enter_count;
  return true;
}

bool MethodVerifier::ScanTryCatchBlocks() {
  const uint32_t tries_size = code_item_accessor_.TriesSize();
  if (tries_size == 0) {
    return true;
  }
  const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
  for (const DexFile::TryItem& try_item : code_item_accessor_.TryItems()) {
    const uint32_t start = try_item.start_addr_;
    const uint32_t end = start + try_item.insn_count_;
    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
                                        << " endAddr=" << end << " (size=" << insns_size << ")";
      return false;
    }
    if (!GetInstructionFlags(start).IsOpcode()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
          << "'try' block starts inside an instruction (" << start << ")";
      return false;
    }
    DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
    for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
      GetInstructionFlags(it.DexPc()).SetInTry();
    }
  }
  // Iterate over each of the handlers to verify target addresses.
  const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
  const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  for (uint32_t idx = 0; idx < handlers_size; idx++) {
    CatchHandlerIterator iterator(handlers_ptr);
    for (; iterator.HasNext(); iterator.Next()) {
      uint32_t dex_pc = iterator.GetHandlerAddress();
      if (!GetInstructionFlags(dex_pc).IsOpcode()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "exception handler starts at bad address (" << dex_pc << ")";
        return false;
      }
      if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "exception handler begins with move-result* (" << dex_pc << ")";
        return false;
      }
      GetInstructionFlags(dex_pc).SetBranchTarget();
      // Ensure exception types are resolved so that they don't need resolution to be delivered,
      // unresolved exception types will be ignored by exception delivery
      if (iterator.GetHandlerTypeIndex().IsValid()) {
        ObjPtr<mirror::Class> exception_type =
            linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
        if (exception_type == nullptr) {
          DCHECK(self_->IsExceptionPending());
          self_->ClearException();
        }
      }
    }
    handlers_ptr = iterator.EndDataPointer();
  }
  return true;
}

template <bool kAllowRuntimeOnlyInstructions>
bool MethodVerifier::VerifyInstructions() {
  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
  GetInstructionFlags(0).SetBranchTarget();
  GetInstructionFlags(0).SetCompileTimeInfoPoint();
  for (const DexInstructionPcPair& inst : code_item_accessor_) {
    const uint32_t dex_pc = inst.DexPc();
    if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
      DCHECK_NE(failures_.size(), 0U);
      return false;
    }
    /* Flag instructions that are garbage collection points */
    // All invoke points are marked as "Throw" points already.
    // We are relying on this to also count all the invokes as interesting.
    if (inst->IsBranch()) {
      GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
      // The compiler also needs safepoints for fall-through to loop heads.
      // Such a loop head must be a target of a branch.
      int32_t offset = 0;
      bool cond, self_ok;
      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
      DCHECK(target_ok);
      GetInstructionFlags(dex_pc + offset).SetCompileTimeInfoPoint();
    } else if (inst->IsSwitch() || inst->IsThrow()) {
      GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
    } else if (inst->IsReturn()) {
      GetInstructionFlags(dex_pc).SetCompileTimeInfoPointAndReturn();
    }
  }
  return true;
}

template <bool kAllowRuntimeOnlyInstructions>
bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
  if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) {
    // Experimental instructions don't yet have verifier support implementation.
    // While it is possible to use them by themselves, when we try to use stable instructions
    // with a virtual register that was created by an experimental instruction,
    // the data flow analysis will fail.
    Fail(VERIFY_ERROR_FORCE_INTERPRETER)
        << "experimental instruction is not supported by verifier; skipping verification";
    have_pending_experimental_failure_ = true;
    return false;
  }

  bool result = true;
  switch (inst->GetVerifyTypeArgumentA()) {
    case Instruction::kVerifyRegA:
      result = result && CheckRegisterIndex(inst->VRegA());
      break;
    case Instruction::kVerifyRegAWide:
      result = result && CheckWideRegisterIndex(inst->VRegA());
      break;
  }
  switch (inst->GetVerifyTypeArgumentB()) {
    case Instruction::kVerifyRegB:
      result = result && CheckRegisterIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBField:
      result = result && CheckFieldIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBMethod:
      result = result && CheckMethodIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBNewInstance:
      result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
      break;
    case Instruction::kVerifyRegBString:
      result = result && CheckStringIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBType:
      result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
      break;
    case Instruction::kVerifyRegBWide:
      result = result && CheckWideRegisterIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBCallSite:
      result = result && CheckCallSiteIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBMethodHandle:
      result = result && CheckMethodHandleIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBPrototype:
      result = result && CheckPrototypeIndex(inst->VRegB());
      break;
  }
  switch (inst->GetVerifyTypeArgumentC()) {
    case Instruction::kVerifyRegC:
      result = result && CheckRegisterIndex(inst->VRegC());
      break;
    case Instruction::kVerifyRegCField:
      result = result && CheckFieldIndex(inst->VRegC());
      break;
    case Instruction::kVerifyRegCNewArray:
      result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
      break;
    case Instruction::kVerifyRegCType:
      result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
      break;
    case Instruction::kVerifyRegCWide:
      result = result && CheckWideRegisterIndex(inst->VRegC());
      break;
  }
  switch (inst->GetVerifyTypeArgumentH()) {
    case Instruction::kVerifyRegHPrototype:
      result = result && CheckPrototypeIndex(inst->VRegH());
      break;
  }
  switch (inst->GetVerifyExtraFlags()) {
    case Instruction::kVerifyArrayData:
      result = result && CheckArrayData(code_offset);
      break;
    case Instruction::kVerifyBranchTarget:
      result = result && CheckBranchTarget(code_offset);
      break;
    case Instruction::kVerifySwitchTargets:
      result = result && CheckSwitchTargets(code_offset);
      break;
    case Instruction::kVerifyVarArgNonZero:
      // Fall-through.
    case Instruction::kVerifyVarArg: {
      // Instructions that can actually return a negative value shouldn't have this flag.
      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
          v_a > Instruction::kMaxVarArgRegs) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
                                             "non-range invoke";
        return false;
      }

      uint32_t args[Instruction::kMaxVarArgRegs];
      inst->GetVarArgs(args);
      result = result && CheckVarArgRegs(v_a, args);
      break;
    }
    case Instruction::kVerifyVarArgRangeNonZero:
      // Fall-through.
    case Instruction::kVerifyVarArgRange:
      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
          inst->VRegA() <= 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
                                             "range invoke";
        return false;
      }
      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
      break;
    case Instruction::kVerifyError:
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
      result = false;
      break;
  }
  if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
    result = false;
  }
  return result;
}

inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
  if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
                                      << code_item_accessor_.RegistersSize() << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
  if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
                                      << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckCallSiteIndex(uint32_t idx) {
  uint32_t limit = dex_file_->NumCallSiteIds();
  if (UNLIKELY(idx >= limit)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
                                      << limit << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
  if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
                                      << dex_file_->GetHeader().field_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
  if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
                                      << dex_file_->GetHeader().method_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckMethodHandleIndex(uint32_t idx) {
  uint32_t limit = dex_file_->NumMethodHandles();
  if (UNLIKELY(idx >= limit)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
                                      << limit << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckNewInstance(dex::TypeIndex idx) {
  if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  // We don't need the actual class, just a pointer to the class name.
  const char* descriptor = dex_file_->StringByTypeIdx(idx);
  if (UNLIKELY(descriptor[0] != 'L')) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
    return false;
  } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
    // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
    // exception is thrown when this statement is executed (compiled code would not do that).
    Fail(VERIFY_ERROR_INSTANTIATION);
  }
  return true;
}

inline bool MethodVerifier::CheckPrototypeIndex(uint32_t idx) {
  if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
                                      << dex_file_->GetHeader().proto_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
  if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
                                      << dex_file_->GetHeader().string_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckTypeIndex(dex::TypeIndex idx) {
  if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNewArray(dex::TypeIndex idx) {
  if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  int bracket_count = 0;
  const char* descriptor = dex_file_->StringByTypeIdx(idx);
  const char* cp = descriptor;
  while (*cp++ == '[') {
    bracket_count++;
  }
  if (UNLIKELY(bracket_count == 0)) {
    /* The given class must be an array type. */
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "can't new-array class '" << descriptor << "' (not an array)";
    return false;
  } else if (UNLIKELY(bracket_count > 255)) {
    /* It is illegal to create an array of more than 255 dimensions. */
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "can't new-array class '" << descriptor << "' (exceeds limit)";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
  const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
  const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
  const uint16_t* array_data;
  int32_t array_data_offset;

  DCHECK_LT(cur_offset, insn_count);
  /* make sure the start of the array data table is in range */
  array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
  if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
               cur_offset + array_data_offset + 2 >= insn_count)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
                                      << ", data offset " << array_data_offset
                                      << ", count " << insn_count;
    return false;
  }
  /* offset to array data table is a relative branch-style offset */
  array_data = insns + array_data_offset;
  // Make sure the table is at an even dex pc, that is, 32-bit aligned.
  if (UNLIKELY(!IsAligned<4>(array_data))) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
                                      << ", data offset " << array_data_offset;
    return false;
  }
  // Make sure the array-data is marked as an opcode. This ensures that it was reached when
  // traversing the code item linearly. It is an approximation for a by-spec padding value.
  if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
                                      << ", data offset " << array_data_offset
                                      << " not correctly visited, probably bad padding.";
    return false;
  }

  uint32_t value_width = array_data[1];
  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
  /* make sure the end of the switch is in range */
  if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
                                      << ", data offset " << array_data_offset << ", end "
                                      << cur_offset + array_data_offset + table_size
                                      << ", count " << insn_count;
    return false;
  }
  return true;
}

bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
  int32_t offset;
  bool isConditional, selfOkay;
  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
    return false;
  }
  if (UNLIKELY(!selfOkay && offset == 0)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
                                      << reinterpret_cast<void*>(cur_offset);
    return false;
  }
  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
  if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
    return false;
  }
  int32_t abs_offset = cur_offset + offset;
  if (UNLIKELY(abs_offset < 0 ||
               (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits()  ||
               !GetInstructionFlags(abs_offset).IsOpcode())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
                                      << reinterpret_cast<void*>(abs_offset) << ") at "
                                      << reinterpret_cast<void*>(cur_offset);
    return false;
  }
  GetInstructionFlags(abs_offset).SetBranchTarget();
  return true;
}

bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
                                  bool* selfOkay) {
  const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
  *pConditional = false;
  *selfOkay = false;
  switch (*insns & 0xff) {
    case Instruction::GOTO:
      *pOffset = ((int16_t) *insns) >> 8;
      break;
    case Instruction::GOTO_32:
      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
      *selfOkay = true;
      break;
    case Instruction::GOTO_16:
      *pOffset = (int16_t) insns[1];
      break;
    case Instruction::IF_EQ:
    case Instruction::IF_NE:
    case Instruction::IF_LT:
    case Instruction::IF_GE:
    case Instruction::IF_GT:
    case Instruction::IF_LE:
    case Instruction::IF_EQZ:
    case Instruction::IF_NEZ:
    case Instruction::IF_LTZ:
    case Instruction::IF_GEZ:
    case Instruction::IF_GTZ:
    case Instruction::IF_LEZ:
      *pOffset = (int16_t) insns[1];
      *pConditional = true;
      break;
    default:
      return false;
  }
  return true;
}

bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
  const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
  DCHECK_LT(cur_offset, insn_count);
  const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
  /* make sure the start of the switch is in range */
  int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
  if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
               cur_offset + switch_offset + 2 > insn_count)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
                                      << ", switch offset " << switch_offset
                                      << ", count " << insn_count;
    return false;
  }
  /* offset to switch table is a relative branch-style offset */
  const uint16_t* switch_insns = insns + switch_offset;
  // Make sure the table is at an even dex pc, that is, 32-bit aligned.
  if (UNLIKELY(!IsAligned<4>(switch_insns))) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
                                      << ", switch offset " << switch_offset;
    return false;
  }
  // Make sure the switch data is marked as an opcode. This ensures that it was reached when
  // traversing the code item linearly. It is an approximation for a by-spec padding value.
  if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
                                      << ", switch offset " << switch_offset
                                      << " not correctly visited, probably bad padding.";
    return false;
  }

  bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;

  uint32_t switch_count = switch_insns[1];
  int32_t targets_offset;
  uint16_t expected_signature;
  if (is_packed_switch) {
    /* 0=sig, 1=count, 2/3=firstKey */
    targets_offset = 4;
    expected_signature = Instruction::kPackedSwitchSignature;
  } else {
    /* 0=sig, 1=count, 2..count*2 = keys */
    targets_offset = 2 + 2 * switch_count;
    expected_signature = Instruction::kSparseSwitchSignature;
  }
  uint32_t table_size = targets_offset + switch_count * 2;
  if (UNLIKELY(switch_insns[0] != expected_signature)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
                        switch_insns[0], expected_signature);
    return false;
  }
  /* make sure the end of the switch is in range */
  if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
                                      << ", switch offset " << switch_offset
                                      << ", end " << (cur_offset + switch_offset + table_size)
                                      << ", count " << insn_count;
    return false;
  }

  constexpr int32_t keys_offset = 2;
  if (switch_count > 1) {
    if (is_packed_switch) {
      /* for a packed switch, verify that keys do not overflow int32 */
      int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
      int32_t max_first_key =
          std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
      if (UNLIKELY(first_key > max_first_key)) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
                                          << ", switch_count=" << switch_count;
        return false;
      }
    } else {
      /* for a sparse switch, verify the keys are in ascending order */
      int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
      for (uint32_t targ = 1; targ < switch_count; targ++) {
        int32_t key =
            static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
            static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
        if (UNLIKELY(key <= last_key)) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
                                            << ", this=" << key;
          return false;
        }
        last_key = key;
      }
    }
  }
  /* verify each switch target */
  for (uint32_t targ = 0; targ < switch_count; targ++) {
    int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
                     static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
    int32_t abs_offset = cur_offset + offset;
    if (UNLIKELY(abs_offset < 0 ||
                 abs_offset >= static_cast<int32_t>(insn_count) ||
                 !GetInstructionFlags(abs_offset).IsOpcode())) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
                                        << reinterpret_cast<void*>(cur_offset)
                                        << "[" << targ << "]";
      return false;
    }
    GetInstructionFlags(abs_offset).SetBranchTarget();
  }
  return true;
}

bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
  uint16_t registers_size = code_item_accessor_.RegistersSize();
  for (uint32_t idx = 0; idx < vA; idx++) {
    if (UNLIKELY(arg[idx] >= registers_size)) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
                                        << ") in non-range invoke (>= " << registers_size << ")";
      return false;
    }
  }

  return true;
}

bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
  uint16_t registers_size = code_item_accessor_.RegistersSize();
  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
  // integer overflow when adding them here.
  if (UNLIKELY(vA + vC > registers_size)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
                                      << " in range invoke (> " << registers_size << ")";
    return false;
  }
  return true;
}

bool MethodVerifier::VerifyCodeFlow() {
  const uint16_t registers_size = code_item_accessor_.RegistersSize();

  /* Create and initialize table holding register status */
  reg_table_.Init(kTrackCompilerInterestPoints,
                  insn_flags_.get(),
                  code_item_accessor_.InsnsSizeInCodeUnits(),
                  registers_size,
                  this);

  work_line_.reset(RegisterLine::Create(registers_size, this));
  saved_line_.reset(RegisterLine::Create(registers_size, this));

  /* Initialize register types of method arguments. */
  if (!SetTypesFromSignature()) {
    DCHECK_NE(failures_.size(), 0U);
    std::string prepend("Bad signature in ");
    prepend += dex_file_->PrettyMethod(dex_method_idx_);
    PrependToLastFailMessage(prepend);
    return false;
  }
  // We may have a runtime failure here, clear.
  have_pending_runtime_throw_failure_ = false;

  /* Perform code flow verification. */
  if (!CodeFlowVerifyMethod()) {
    DCHECK_NE(failures_.size(), 0U);
    return false;
  }
  return true;
}

std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
  DCHECK_EQ(failures_.size(), failure_messages_.size());
  for (size_t i = 0; i < failures_.size(); ++i) {
      os << failure_messages_[i]->str() << "\n";
  }
  return os;
}

void MethodVerifier::Dump(std::ostream& os) {
  VariableIndentationOutputStream vios(&os);
  Dump(&vios);
}

void MethodVerifier::Dump(VariableIndentationOutputStream* vios) {
  if (!code_item_accessor_.HasCodeItem()) {
    vios->Stream() << "Native method\n";
    return;
  }
  {
    vios->Stream() << "Register Types:\n";
    ScopedIndentation indent1(vios);
    reg_types_.Dump(vios->Stream());
  }
  vios->Stream() << "Dumping instructions and register lines:\n";
  ScopedIndentation indent1(vios);

  for (const DexInstructionPcPair& inst : code_item_accessor_) {
    const size_t dex_pc = inst.DexPc();

    // Might be asked to dump before the table is initialized.
    if (reg_table_.IsInitialized()) {
      RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
      if (reg_line != nullptr) {
        vios->Stream() << reg_line->Dump(this) << "\n";
      }
    }

    vios->Stream()
        << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
    const bool kDumpHexOfInstruction = false;
    if (kDumpHexOfInstruction) {
      vios->Stream() << inst->DumpHex(5) << " ";
    }
    vios->Stream() << inst->DumpString(dex_file_) << "\n";
  }
}

static bool IsPrimitiveDescriptor(char descriptor) {
  switch (descriptor) {
    case 'I':
    case 'C':
    case 'S':
    case 'B':
    case 'Z':
    case 'F':
    case 'D':
    case 'J':
      return true;
    default:
      return false;
  }
}

bool MethodVerifier::SetTypesFromSignature() {
  RegisterLine* reg_line = reg_table_.GetLine(0);

  // Should have been verified earlier.
  DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());

  uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
  size_t expected_args = code_item_accessor_.InsSize();   /* long/double count as two */

  // Include the "this" pointer.
  size_t cur_arg = 0;
  if (!IsStatic()) {
    if (expected_args == 0) {
      // Expect at least a receiver.
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
      return false;
    }

    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
    // argument as uninitialized. This restricts field access until the superclass constructor is
    // called.
    const RegType& declaring_class = GetDeclaringClass();
    if (IsConstructor()) {
      if (declaring_class.IsJavaLangObject()) {
        // "this" is implicitly initialized.
        reg_line->SetThisInitialized();
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
      } else {
        reg_line->SetRegisterType<LockOp::kClear>(
            this,
            arg_start + cur_arg,
            reg_types_.UninitializedThisArgument(declaring_class));
      }
    } else {
      reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
    }
    cur_arg++;
  }

  const DexFile::ProtoId& proto_id =
      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
  DexFileParameterIterator iterator(*dex_file_, proto_id);

  for (; iterator.HasNext(); iterator.Next()) {
    const char* descriptor = iterator.GetDescriptor();
    if (descriptor == nullptr) {
      LOG(FATAL) << "Null descriptor";
    }
    if (cur_arg >= expected_args) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
                                        << " args, found more (" << descriptor << ")";
      return false;
    }
    switch (descriptor[0]) {
      case 'L':
      case '[':
        // We assume that reference arguments are initialized. The only way it could be otherwise
        // (assuming the caller was verified) is if the current method is <init>, but in that case
        // it's effectively considered initialized the instant we reach here (in the sense that we
        // can return without doing anything or call virtual methods).
        {
          // Note: don't check access. No error would be thrown for declaring or passing an
          //       inaccessible class. Only actual accesses to fields or methods will.
          const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
          if (!reg_type.IsNonZeroReferenceTypes()) {
            DCHECK(HasFailures());
            return false;
          }
          reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
        }
        break;
      case 'Z':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
        break;
      case 'C':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
        break;
      case 'B':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
        break;
      case 'I':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
        break;
      case 'S':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
        break;
      case 'F':
        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
        break;
      case 'J':
      case 'D': {
        if (cur_arg + 1 >= expected_args) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
              << " args, found more (" << descriptor << ")";
          return false;
        }

        const RegType* lo_half;
        const RegType* hi_half;
        if (descriptor[0] == 'J') {
          lo_half = &reg_types_.LongLo();
          hi_half = &reg_types_.LongHi();
        } else {
          lo_half = &reg_types_.DoubleLo();
          hi_half = &reg_types_.DoubleHi();
        }
        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
        cur_arg++;
        break;
      }
      default:
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
                                          << descriptor << "'";
        return false;
    }
    cur_arg++;
  }
  if (cur_arg != expected_args) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
                                      << " arguments, found " << cur_arg;
    return false;
  }
  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
  // format. Only major difference from the method argument format is that 'V' is supported.
  bool result;
  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
    result = descriptor[1] == '\0';
  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
    size_t i = 0;
    do {
      i++;
    } while (descriptor[i] == '[');  // process leading [
    if (descriptor[i] == 'L') {  // object array
      do {
        i++;  // find closing ;
      } while (descriptor[i] != ';' && descriptor[i] != '\0');
      result = descriptor[i] == ';';
    } else {  // primitive array
      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
    }
  } else if (descriptor[0] == 'L') {
    // could be more thorough here, but shouldn't be required
    size_t i = 0;
    do {
      i++;
    } while (descriptor[i] != ';' && descriptor[i] != '\0');
    result = descriptor[i] == ';';
  } else {
    result = false;
  }
  if (!result) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
                                      << descriptor << "'";
  }
  return result;
}

bool MethodVerifier::CodeFlowVerifyMethod() {
  const uint16_t* insns = code_item_accessor_.Insns();
  const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();

  /* Begin by marking the first instruction as "changed". */
  GetInstructionFlags(0).SetChanged();
  uint32_t start_guess = 0;

  /* Continue until no instructions are marked "changed". */
  while (true) {
    if (allow_thread_suspension_) {
      self_->AllowThreadSuspension();
    }
    // Find the first marked one. Use "start_guess" as a way to find one quickly.
    uint32_t insn_idx = start_guess;
    for (; insn_idx < insns_size; insn_idx++) {
      if (GetInstructionFlags(insn_idx).IsChanged())
        break;
    }
    if (insn_idx == insns_size) {
      if (start_guess != 0) {
        /* try again, starting from the top */
        start_guess = 0;
        continue;
      } else {
        /* all flags are clear */
        break;
      }
    }
    // We carry the working set of registers from instruction to instruction. If this address can
    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
    // "changed" flags, we need to load the set of registers from the table.
    // Because we always prefer to continue on to the next instruction, we should never have a
    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
    // target.
    work_insn_idx_ = insn_idx;
    if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
    } else if (kIsDebugBuild) {
      /*
       * Sanity check: retrieve the stored register line (assuming
       * a full table) and make sure it actually matches.
       */
      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
      if (register_line != nullptr) {
        if (work_line_->CompareLine(register_line) != 0) {
          Dump(std::cout);
          std::cout << info_messages_.str();
          LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
                     << " work_line=" << work_line_->Dump(this) << "\n"
                     << "  expected=" << register_line->Dump(this);
        }
      }
    }
    if (!CodeFlowVerifyInstruction(&start_guess)) {
      std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
      prepend += " failed to verify: ";
      PrependToLastFailMessage(prepend);
      return false;
    }
    /* Clear "changed" and mark as visited. */
    GetInstructionFlags(insn_idx).SetVisited();
    GetInstructionFlags(insn_idx).ClearChanged();
  }

  if (UNLIKELY(VLOG_IS_ON(verifier_debug))) {
    /*
     * Scan for dead code. There's nothing "evil" about dead code
     * (besides the wasted space), but it indicates a flaw somewhere
     * down the line, possibly in the verifier.
     *
     * If we've substituted "always throw" instructions into the stream,
     * we are almost certainly going to have some dead code.
     */
    int dead_start = -1;

    for (const DexInstructionPcPair& inst : code_item_accessor_) {
      const uint32_t insn_idx = inst.DexPc();
      /*
       * Switch-statement data doesn't get "visited" by scanner. It
       * may or may not be preceded by a padding NOP (for alignment).
       */
      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
          insns[insn_idx] == Instruction::kArrayDataSignature ||
          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
        GetInstructionFlags(insn_idx).SetVisited();
      }

      if (!GetInstructionFlags(insn_idx).IsVisited()) {
        if (dead_start < 0) {
          dead_start = insn_idx;
        }
      } else if (dead_start >= 0) {
        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
        dead_start = -1;
      }
    }
    if (dead_start >= 0) {
      LogVerifyInfo()
          << "dead code " << reinterpret_cast<void*>(dead_start)
          << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
    }
    // To dump the state of the verify after a method, do something like:
    // if (dex_file_->PrettyMethod(dex_method_idx_) ==
    //     "boolean java.lang.String.equals(java.lang.Object)") {
    //   LOG(INFO) << info_messages_.str();
    // }
  }
  return true;
}

// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
// is no such field.
static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) {
  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
  DCHECK(class_def != nullptr);
  const uint8_t* class_data = dex_file.GetClassData(*class_def);
  DCHECK(class_data != nullptr);
  ClassDataItemIterator it(dex_file, class_data);
  it.SkipStaticFields();
  while (it.HasNextInstanceField()) {
    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
      return it.GetMemberIndex();
    }
    it.Next();
  }
  return dex::kDexNoIndex;
}

// Setup a register line for the given return instruction.
static void AdjustReturnLine(MethodVerifier* verifier,
                             const Instruction* ret_inst,
                             RegisterLine* line) {
  Instruction::Code opcode = ret_inst->Opcode();

  switch (opcode) {
    case Instruction::RETURN_VOID:
    case Instruction::RETURN_VOID_NO_BARRIER:
      SafelyMarkAllRegistersAsConflicts(verifier, line);
      break;

    case Instruction::RETURN:
    case Instruction::RETURN_OBJECT:
      line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
      break;

    case Instruction::RETURN_WIDE:
      line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
      break;

    default:
      LOG(FATAL) << "Unknown return opcode " << opcode;
      UNREACHABLE();
  }
}

bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
  // We want the state _before_ the instruction, for the case where the dex pc we're
  // interested in is itself a monitor-enter instruction (which is a likely place
  // for a thread to be suspended).
  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.

    std::map<uint32_t, DexLockInfo> depth_to_lock_info;
    auto collector = [&](uint32_t dex_reg, uint32_t depth) {
      auto insert_pair = depth_to_lock_info.emplace(depth, DexLockInfo(depth));
      auto it = insert_pair.first;
      auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
      DCHECK(set_insert_pair.second);
    };
    work_line_->IterateRegToLockDepths(collector);
    for (auto& pair : depth_to_lock_info) {
      monitor_enter_dex_pcs_->push_back(pair.second);
      // Map depth to dex PC.
      (*monitor_enter_dex_pcs_)[monitor_enter_dex_pcs_->size() - 1].dex_pc =
          work_line_->GetMonitorEnterDexPc(pair.second.dex_pc);
    }
  }

  /*
   * Once we finish decoding the instruction, we need to figure out where
   * we can go from here. There are three possible ways to transfer
   * control to another statement:
   *
   * (1) Continue to the next instruction. Applies to all but
   *     unconditional branches, method returns, and exception throws.
   * (2) Branch to one or more possible locations. Applies to branches
   *     and switch statements.
   * (3) Exception handlers. Applies to any instruction that can
   *     throw an exception that is handled by an encompassing "try"
   *     block.
   *
   * We can also return, in which case there is no successor instruction
   * from this point.
   *
   * The behavior can be determined from the opcode flags.
   */
  const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
  const Instruction* inst = Instruction::At(insns);
  int opcode_flags = Instruction::FlagsOf(inst->Opcode());

  int32_t branch_target = 0;
  bool just_set_result = false;
  if (UNLIKELY(VLOG_IS_ON(verifier_debug))) {
    // Generate processing back trace to debug verifier
    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
                    << work_line_->Dump(this) << "\n";
  }

  /*
   * Make a copy of the previous register state. If the instruction
   * can throw an exception, we will copy/merge this into the "catch"
   * address rather than work_line, because we don't want the result
   * from the "successful" code path (e.g. a check-cast that "improves"
   * a type) to be visible to the exception handler.
   */
  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
    saved_line_->CopyFromLine(work_line_.get());
  } else if (kIsDebugBuild) {
    saved_line_->FillWithGarbage();
  }
  DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.


  // We need to ensure the work line is consistent while performing validation. When we spot a
  // peephole pattern we compute a new line for either the fallthrough instruction or the
  // branch target.
  RegisterLineArenaUniquePtr branch_line;
  RegisterLineArenaUniquePtr fallthrough_line;

  switch (inst->Opcode()) {
    case Instruction::NOP:
      /*
       * A "pure" NOP has no effect on anything. Data tables start with
       * a signature that looks like a NOP; if we see one of these in
       * the course of executing code then we have a problem.
       */
      if (inst->VRegA_10x() != 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
      }
      break;

    case Instruction::MOVE:
      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_FROM16:
      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_16:
      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_WIDE:
      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
      break;
    case Instruction::MOVE_WIDE_FROM16:
      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
      break;
    case Instruction::MOVE_WIDE_16:
      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
      break;
    case Instruction::MOVE_OBJECT:
      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
      break;
    case Instruction::MOVE_OBJECT_FROM16:
      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
      break;
    case Instruction::MOVE_OBJECT_16:
      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
      break;

    /*
     * The move-result instructions copy data out of a "pseudo-register"
     * with the results from the last method invocation. In practice we
     * might want to hold the result in an actual CPU register, so the
     * Dalvik spec requires that these only appear immediately after an
     * invoke or filled-new-array.
     *
     * These calls invalidate the "result" register. (This is now
     * redundant with the reset done below, but it can make the debug info
     * easier to read in some cases.)
     */
    case Instruction::MOVE_RESULT:
      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
      break;
    case Instruction::MOVE_RESULT_WIDE:
      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
      break;
    case Instruction::MOVE_RESULT_OBJECT:
      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
      break;

    case Instruction::MOVE_EXCEPTION: {
      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
      // where one entrypoint to the catch block is not actually an exception path.
      if (work_insn_idx_ == 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
        break;
      }
      /*
       * This statement can only appear as the first instruction in an exception handler. We verify
       * that as part of extracting the exception type from the catch block list.
       */
      const RegType& res_type = GetCaughtExceptionType();
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), res_type);
      break;
    }
    case Instruction::RETURN_VOID:
      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
        if (!GetMethodReturnType().IsConflict()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
        }
      }
      break;
    case Instruction::RETURN:
      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
        /* check the method signature */
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsCategory1Types()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
                                            << return_type;
        } else {
          // Compilers may generate synthetic functions that write byte values into boolean fields.
          // Also, it may use integer values for boolean, byte, short, and character return types.
          const uint32_t vregA = inst->VRegA_11x();
          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
                          ((return_type.IsBoolean() || return_type.IsByte() ||
                           return_type.IsShort() || return_type.IsChar()) &&
                           src_type.IsInteger()));
          /* check the register contents */
          bool success =
              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
          if (!success) {
            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
          }
        }
      }
      break;
    case Instruction::RETURN_WIDE:
      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
        /* check the method signature */
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsCategory2Types()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
        } else {
          /* check the register contents */
          const uint32_t vregA = inst->VRegA_11x();
          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
          if (!success) {
            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
          }
        }
      }
      break;
    case Instruction::RETURN_OBJECT:
      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsReferenceTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
        } else {
          /* return_type is the *expected* return type, not register value */
          DCHECK(!return_type.IsZeroOrNull());
          DCHECK(!return_type.IsUninitializedReference());
          const uint32_t vregA = inst->VRegA_11x();
          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
          // Disallow returning undefined, conflict & uninitialized values and verify that the
          // reference in vAA is an instance of the "return_type."
          if (reg_type.IsUndefined()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
          } else if (reg_type.IsConflict()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
          } else if (reg_type.IsUninitializedTypes()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
                                              << reg_type << "'";
          } else if (!reg_type.IsReferenceTypes()) {
            // We really do expect a reference here.
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
                                              << reg_type;
          } else if (!return_type.IsAssignableFrom(reg_type, this)) {
            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
                  << "' or '" << reg_type << "'";
            } else {
              bool soft_error = false;
              // Check whether arrays are involved. They will show a valid class status, even
              // if their components are erroneous.
              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
                if (soft_error) {
                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
                        << reg_type << " vs " << return_type;
                }
              }

              if (!soft_error) {
                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
                    << "', but expected from declaration '" << return_type << "'";
              }
            }
          }
        }
      }
      break;

      /* could be boolean, int, float, or a null reference */
    case Instruction::CONST_4: {
      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST_16: {
      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST: {
      int32_t val = inst->VRegB_31i();
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST_HIGH16: {
      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
      /* could be long or double; resolved upon use */
    case Instruction::CONST_WIDE_16: {
      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE_32: {
      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE: {
      int64_t val = inst->VRegB_51l();
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE_HIGH16: {
      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
      break;
    }
    case Instruction::CONST_STRING:
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21c(), reg_types_.JavaLangString());
      break;
    case Instruction::CONST_STRING_JUMBO:
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_31c(), reg_types_.JavaLangString());
      break;
    case Instruction::CONST_CLASS: {
      // Get type from instruction if unresolved then we need an access check
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
      // Register holds class, ie its type is class, on error it will hold Conflict.
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
                                                         : reg_types_.JavaLangClass());
      break;
    }
    case Instruction::CONST_METHOD_HANDLE:
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
      // TODO: add compiler support for const-method-{handle,type} (b/66890674)
      Fail(VERIFY_ERROR_FORCE_INTERPRETER);
      break;
    case Instruction::CONST_METHOD_TYPE:
      work_line_->SetRegisterType<LockOp::kClear>(
          this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
      // TODO: add compiler support for const-method-{handle,type} (b/66890674)
      Fail(VERIFY_ERROR_FORCE_INTERPRETER);
      break;
    case Instruction::MONITOR_ENTER:
      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
      // Check whether the previous instruction is a move-object with vAA as a source, creating
      // untracked lock aliasing.
      if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
        uint32_t prev_idx = work_insn_idx_ - 1;
        while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
          prev_idx--;
        }
        const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
        switch (prev_inst.Opcode()) {
          case Instruction::MOVE_OBJECT:
          case Instruction::MOVE_OBJECT_16:
          case Instruction::MOVE_OBJECT_FROM16:
            if (prev_inst.VRegB() == inst->VRegA_11x()) {
              // Redo the copy. This won't change the register types, but update the lock status
              // for the aliased register.
              work_line_->CopyRegister1(this,
                                        prev_inst.VRegA(),
                                        prev_inst.VRegB(),
                                        kTypeCategoryRef);
            }
            break;

          default:  // Other instruction types ignored.
            break;
        }
      }
      break;
    case Instruction::MONITOR_EXIT:
      /*
       * monitor-exit instructions are odd. They can throw exceptions,
       * but when they do they act as if they succeeded and the PC is
       * pointing to the following instruction. (This behavior goes back
       * to the need to handle asynchronous exceptions, a now-deprecated
       * feature that Dalvik doesn't support.)
       *
       * In practice we don't need to worry about this. The only
       * exceptions that can be thrown from monitor-exit are for a
       * null reference and -exit without a matching -enter. If the
       * structured locking checks are working, the former would have
       * failed on the -enter instruction, and the latter is impossible.
       *
       * This is fortunate, because issue 3221411 prevents us from
       * chasing the "can throw" path when monitor verification is
       * enabled. If we can fully verify the locking we can ignore
       * some catch blocks (which will show up as "dead" code when
       * we skip them here); if we can't, then the code path could be
       * "live" so we still need to check it.
       */
      opcode_flags &= ~Instruction::kThrow;
      work_line_->PopMonitor(this, inst->VRegA_11x());
      break;
    case Instruction::CHECK_CAST:
    case Instruction::INSTANCE_OF: {
      /*
       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
       * could be a "upcast" -- not expected, so we don't try to address it.)
       *
       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
       * dec_insn.vA when branching to a handler.
       */
      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
      const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
      const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
      if (res_type.IsConflict()) {
        // If this is a primitive type, fail HARD.
        ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
            type_idx, dex_cache_.Get(), class_loader_.Get());
        if (klass != nullptr && klass->IsPrimitive()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
              << GetDeclaringClass();
          break;
        }

        DCHECK_NE(failures_.size(), 0U);
        if (!is_checkcast) {
          work_line_->SetRegisterType<LockOp::kClear>(this,
                                                      inst->VRegA_22c(),
                                                      reg_types_.Boolean());
        }
        break;  // bad class
      }
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
      if (!res_type.IsNonZeroReferenceTypes()) {
        if (is_checkcast) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
        }
      } else if (!orig_type.IsReferenceTypes()) {
        if (is_checkcast) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
        }
      } else if (orig_type.IsUninitializedTypes()) {
        if (is_checkcast) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
                                            << orig_type_reg;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
                                            << orig_type_reg;
        }
      } else {
        if (is_checkcast) {
          work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
        } else {
          work_line_->SetRegisterType<LockOp::kClear>(this,
                                                      inst->VRegA_22c(),
                                                      reg_types_.Boolean());
        }
      }
      break;
    }
    case Instruction::ARRAY_LENGTH: {
      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
      if (res_type.IsReferenceTypes()) {
        if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
          // ie not an array or null
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
        } else {
          work_line_->SetRegisterType<LockOp::kClear>(this,
                                                      inst->VRegA_12x(),
                                                      reg_types_.Integer());
        }
      } else {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
      }
      break;
    }
    case Instruction::NEW_INSTANCE: {
      const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
      if (res_type.IsConflict()) {
        DCHECK_NE(failures_.size(), 0U);
        break;  // bad class
      }
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      // can't create an instance of an interface or abstract class */
      if (!res_type.IsInstantiableTypes()) {
        Fail(VERIFY_ERROR_INSTANTIATION)
            << "new-instance on primitive, interface or abstract class" << res_type;
        // Soft failure so carry on to set register type.
      }
      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
      // Any registers holding previous allocations from this address that have not yet been
      // initialized must be marked invalid.
      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
      // add the new uninitialized reference to the register state
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
      break;
    }
    case Instruction::NEW_ARRAY:
      VerifyNewArray(inst, false, false);
      break;
    case Instruction::FILLED_NEW_ARRAY:
      VerifyNewArray(inst, true, false);
      just_set_result = true;  // Filled new array sets result register
      break;
    case Instruction::FILLED_NEW_ARRAY_RANGE:
      VerifyNewArray(inst, true, true);
      just_set_result = true;  // Filled new array range sets result register
      break;
    case Instruction::CMPL_FLOAT:
    case Instruction::CMPG_FLOAT:
      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
        break;
      }
      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
        break;
      }
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::CMPL_DOUBLE:
    case Instruction::CMPG_DOUBLE:
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
                                              reg_types_.DoubleHi())) {
        break;
      }
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
                                              reg_types_.DoubleHi())) {
        break;
      }
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::CMP_LONG:
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
                                              reg_types_.LongHi())) {
        break;
      }
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
                                              reg_types_.LongHi())) {
        break;
      }
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::THROW: {
      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
        if (res_type.IsUninitializedTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
        } else if (!res_type.IsReferenceTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
        } else {
          Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
                << "thrown class " << res_type << " not instanceof Throwable";
        }
      }
      break;
    }
    case Instruction::GOTO:
    case Instruction::GOTO_16:
    case Instruction::GOTO_32:
      /* no effect on or use of registers */
      break;

    case Instruction::PACKED_SWITCH:
    case Instruction::SPARSE_SWITCH:
      /* verify that vAA is an integer, or can be converted to one */
      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
      break;

    case Instruction::FILL_ARRAY_DATA: {
      /* Similar to the verification done for APUT */
      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
      /* array_type can be null if the reg type is Zero */
      if (!array_type.IsZeroOrNull()) {
        if (!array_type.IsArrayTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
                                            << array_type;
        } else if (array_type.IsUnresolvedTypes()) {
          // If it's an unresolved array type, it must be non-primitive.
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
                                            << array_type;
        } else {
          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
          DCHECK(!component_type.IsConflict());
          if (component_type.IsNonZeroReferenceTypes()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
                                              << component_type;
          } else {
            // Now verify if the element width in the table matches the element width declared in
            // the array
            const uint16_t* array_data =
                insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
            if (array_data[0] != Instruction::kArrayDataSignature) {
              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
            } else {
              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
              // Since we don't compress the data in Dex, expect to see equal width of data stored
              // in the table and expected from the array class.
              if (array_data[1] != elem_width) {
                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
                                                  << " vs " << elem_width << ")";
              }
            }
          }
        }
      }
      break;
    }
    case Instruction::IF_EQ:
    case Instruction::IF_NE: {
      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
      bool mismatch = false;
      if (reg_type1.IsZeroOrNull()) {  // zero then integral or reference expected
        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
      } else if (reg_type1.IsReferenceTypes()) {  // both references?
        mismatch = !reg_type2.IsReferenceTypes();
      } else {  // both integral?
        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
      }
      if (mismatch) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
                                          << reg_type2 << ") must both be references or integral";
      }
      break;
    }
    case Instruction::IF_LT:
    case Instruction::IF_GE:
    case Instruction::IF_GT:
    case Instruction::IF_LE: {
      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
                                          << reg_type2 << ") must be integral";
      }
      break;
    }
    case Instruction::IF_EQZ:
    case Instruction::IF_NEZ: {
      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
                                          << " unexpected as arg to if-eqz/if-nez";
      }

      // Find previous instruction - its existence is a precondition to peephole optimization.
      uint32_t instance_of_idx = 0;
      if (0 != work_insn_idx_) {
        instance_of_idx = work_insn_idx_ - 1;
        while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
          instance_of_idx--;
        }
        if (FailOrAbort(GetInstructionFlags(instance_of_idx).IsOpcode(),
                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
                        work_insn_idx_)) {
          break;
        }
      } else {
        break;
      }

      const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);

      /* Check for peep-hole pattern of:
       *    ...;
       *    instance-of vX, vY, T;
       *    ifXXX vX, label ;
       *    ...;
       * label:
       *    ...;
       * and sharpen the type of vY to be type T.
       * Note, this pattern can't be if:
       *  - if there are other branches to this branch,
       *  - when vX == vY.
       */
      if (!CurrentInsnFlags()->IsBranchTarget() &&
          (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
          (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
          (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
        // Check the type of the instance-of is different than that of registers type, as if they
        // are the same there is no work to be done here. Check that the conversion is not to or
        // from an unresolved type as type information is imprecise. If the instance-of is to an
        // interface then ignore the type information as interfaces can only be treated as Objects
        // and we don't want to disallow field and other operations on the object. If the value
        // being instance-of checked against is known null (zero) then allow the optimization as
        // we didn't have type information. If the merge of the instance-of type with the original
        // type is assignable to the original then allow optimization. This check is performed to
        // ensure that subsequent merges don't lose type information - such as becoming an
        // interface from a class that would lose information relevant to field checks.
        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
        const RegType& cast_type = ResolveClass<CheckAccess::kYes>(
            dex::TypeIndex(instance_of_inst.VRegC_22c()));

        if (!orig_type.Equals(cast_type) &&
            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
            !cast_type.GetClass()->IsInterface() &&
            (orig_type.IsZeroOrNull() ||
                orig_type.IsStrictlyAssignableFrom(
                    cast_type.Merge(orig_type, &reg_types_, this), this))) {
          RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
                                                           this);
          if (inst->Opcode() == Instruction::IF_EQZ) {
            fallthrough_line.reset(update_line);
          } else {
            branch_line.reset(update_line);
          }
          update_line->CopyFromLine(work_line_.get());
          update_line->SetRegisterType<LockOp::kKeep>(this,
                                                      instance_of_inst.VRegB_22c(),
                                                      cast_type);
          if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
            // See if instance-of was preceded by a move-object operation, common due to the small
            // register encoding space of instance-of, and propagate type information to the source
            // of the move-object.
            uint32_t move_idx = instance_of_idx - 1;
            while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
              move_idx--;
            }
            if (FailOrAbort(GetInstructionFlags(move_idx).IsOpcode(),
                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
                            work_insn_idx_)) {
              break;
            }
            const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
            switch (move_inst.Opcode()) {
              case Instruction::MOVE_OBJECT:
                if (move_inst.VRegA_12x() == instance_of_inst.VRegB_22c()) {
                  update_line->SetRegisterType<LockOp::kKeep>(this,
                                                              move_inst.VRegB_12x(),
                                                              cast_type);
                }
                break;
              case Instruction::MOVE_OBJECT_FROM16:
                if (move_inst.VRegA_22x() == instance_of_inst.VRegB_22c()) {
                  update_line->SetRegisterType<LockOp::kKeep>(this,
                                                              move_inst.VRegB_22x(),
                                                              cast_type);
                }
                break;
              case Instruction::MOVE_OBJECT_16:
                if (move_inst.VRegA_32x() == instance_of_inst.VRegB_22c()) {
                  update_line->SetRegisterType<LockOp::kKeep>(this,
                                                              move_inst.VRegB_32x(),
                                                              cast_type);
                }
                break;
              default:
                break;
            }
          }
        }
      }

      break;
    }
    case Instruction::IF_LTZ:
    case Instruction::IF_GEZ:
    case Instruction::IF_GTZ:
    case Instruction::IF_LEZ: {
      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
      if (!reg_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
      }
      break;
    }
    case Instruction::AGET_BOOLEAN:
      VerifyAGet(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::AGET_BYTE:
      VerifyAGet(inst, reg_types_.Byte(), true);
      break;
    case Instruction::AGET_CHAR:
      VerifyAGet(inst, reg_types_.Char(), true);
      break;
    case Instruction::AGET_SHORT:
      VerifyAGet(inst, reg_types_.Short(), true);
      break;
    case Instruction::AGET:
      VerifyAGet(inst, reg_types_.Integer(), true);
      break;
    case Instruction::AGET_WIDE:
      VerifyAGet(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::AGET_OBJECT:
      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
      break;

    case Instruction::APUT_BOOLEAN:
      VerifyAPut(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::APUT_BYTE:
      VerifyAPut(inst, reg_types_.Byte(), true);
      break;
    case Instruction::APUT_CHAR:
      VerifyAPut(inst, reg_types_.Char(), true);
      break;
    case Instruction::APUT_SHORT:
      VerifyAPut(inst, reg_types_.Short(), true);
      break;
    case Instruction::APUT:
      VerifyAPut(inst, reg_types_.Integer(), true);
      break;
    case Instruction::APUT_WIDE:
      VerifyAPut(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::APUT_OBJECT:
      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
      break;

    case Instruction::IGET_BOOLEAN:
    case Instruction::IGET_BOOLEAN_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
      break;
    case Instruction::IGET_BYTE:
    case Instruction::IGET_BYTE_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
      break;
    case Instruction::IGET_CHAR:
    case Instruction::IGET_CHAR_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
      break;
    case Instruction::IGET_SHORT:
    case Instruction::IGET_SHORT_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
      break;
    case Instruction::IGET:
    case Instruction::IGET_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
      break;
    case Instruction::IGET_WIDE:
    case Instruction::IGET_WIDE_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
      break;
    case Instruction::IGET_OBJECT:
    case Instruction::IGET_OBJECT_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
                                                    false);
      break;

    case Instruction::IPUT_BOOLEAN:
    case Instruction::IPUT_BOOLEAN_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
      break;
    case Instruction::IPUT_BYTE:
    case Instruction::IPUT_BYTE_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
      break;
    case Instruction::IPUT_CHAR:
    case Instruction::IPUT_CHAR_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
      break;
    case Instruction::IPUT_SHORT:
    case Instruction::IPUT_SHORT_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
      break;
    case Instruction::IPUT:
    case Instruction::IPUT_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
      break;
    case Instruction::IPUT_WIDE:
    case Instruction::IPUT_WIDE_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
      break;
    case Instruction::IPUT_OBJECT:
    case Instruction::IPUT_OBJECT_QUICK:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
                                                    false);
      break;

    case Instruction::SGET_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
      break;
    case Instruction::SGET_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
      break;
    case Instruction::SGET_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
      break;
    case Instruction::SGET_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
      break;
    case Instruction::SGET:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
      break;
    case Instruction::SGET_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
      break;
    case Instruction::SGET_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
                                                    true);
      break;

    case Instruction::SPUT_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
      break;
    case Instruction::SPUT_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
      break;
    case Instruction::SPUT_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
      break;
    case Instruction::SPUT_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
      break;
    case Instruction::SPUT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
      break;
    case Instruction::SPUT_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
      break;
    case Instruction::SPUT_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
                                                    true);
      break;

    case Instruction::INVOKE_VIRTUAL:
    case Instruction::INVOKE_VIRTUAL_RANGE:
    case Instruction::INVOKE_SUPER:
    case Instruction::INVOKE_SUPER_RANGE:
    case Instruction::INVOKE_VIRTUAL_QUICK:
    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE ||
                       inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
      MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
      ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
      const RegType* return_type = nullptr;
      if (called_method != nullptr) {
        ObjPtr<mirror::Class> return_type_class = can_load_classes_
            ? called_method->ResolveReturnType()
            : called_method->LookupResolvedReturnType();
        if (return_type_class != nullptr) {
          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
                                   return_type_class.Ptr(),
                                   return_type_class->CannotBeAssignedFromOtherTypes());
        } else {
          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      if (return_type == nullptr) {
        uint32_t method_idx = GetMethodIdxOfInvoke(inst);
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        dex::TypeIndex return_type_idx =
            dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
      }
      if (!return_type->IsLowHalf()) {
        work_line_->SetResultRegisterType(this, *return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_DIRECT:
    case Instruction::INVOKE_DIRECT_RANGE: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
      const char* return_type_descriptor;
      bool is_constructor;
      const RegType* return_type = nullptr;
      if (called_method == nullptr) {
        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
        dex::TypeIndex return_type_idx =
            dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
      } else {
        is_constructor = called_method->IsConstructor();
        return_type_descriptor = called_method->GetReturnTypeDescriptor();
        ObjPtr<mirror::Class> return_type_class = can_load_classes_
            ? called_method->ResolveReturnType()
            : called_method->LookupResolvedReturnType();
        if (return_type_class != nullptr) {
          return_type = &FromClass(return_type_descriptor,
                                   return_type_class.Ptr(),
                                   return_type_class->CannotBeAssignedFromOtherTypes());
        } else {
          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      if (is_constructor) {
        /*
         * Some additional checks when calling a constructor. We know from the invocation arg check
         * that the "this" argument is an instance of called_method->klass. Now we further restrict
         * that to require that called_method->klass is the same as this->klass or this->super,
         * allowing the latter only if the "this" argument is the same as the "this" argument to
         * this method (which implies that we're in a constructor ourselves).
         */
        const RegType& this_type = work_line_->GetInvocationThis(this, inst);
        if (this_type.IsConflict())  // failure.
          break;

        /* no null refs allowed (?) */
        if (this_type.IsZeroOrNull()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
          break;
        }

        /* must be in same class or in superclass */
        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
        // TODO: re-enable constructor type verification
        // if (this_super_klass.IsConflict()) {
          // Unknown super class, fail so we re-check at runtime.
          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
          // break;
        // }

        /* arg must be an uninitialized reference */
        if (!this_type.IsUninitializedTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
              << this_type;
          break;
        }

        /*
         * Replace the uninitialized reference with an initialized one. We need to do this for all
         * registers that have the same object instance in them, not just the "this" register.
         */
        work_line_->MarkRefsAsInitialized(this, this_type);
      }
      if (return_type == nullptr) {
        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor, false);
      }
      if (!return_type->IsLowHalf()) {
        work_line_->SetResultRegisterType(this, *return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_STATIC:
    case Instruction::INVOKE_STATIC_RANGE: {
        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
        ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
        const char* descriptor;
        if (called_method == nullptr) {
          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
          dex::TypeIndex return_type_idx =
              dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
        } else {
          descriptor = called_method->GetReturnTypeDescriptor();
        }
        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
        if (!return_type.IsLowHalf()) {
          work_line_->SetResultRegisterType(this, return_type);
        } else {
          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
        }
        just_set_result = true;
      }
      break;
    case Instruction::INVOKE_INTERFACE:
    case Instruction::INVOKE_INTERFACE_RANGE: {
      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
      ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
      if (abs_method != nullptr) {
        mirror::Class* called_interface = abs_method->GetDeclaringClass();
        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
              << abs_method->PrettyMethod() << "'";
          break;
        }
      }
      /* Get the type of the "this" arg, which should either be a sub-interface of called
       * interface or Object (see comments in RegType::JoinClass).
       */
      const RegType& this_type = work_line_->GetInvocationThis(this, inst);
      if (this_type.IsZeroOrNull()) {
        /* null pointer always passes (and always fails at runtime) */
      } else {
        if (this_type.IsUninitializedTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
              << this_type;
          break;
        }
        // In the past we have tried to assert that "called_interface" is assignable
        // from "this_type.GetClass()", however, as we do an imprecise Join
        // (RegType::JoinClass) we don't have full information on what interfaces are
        // implemented by "this_type". For example, two classes may implement the same
        // interfaces and have a common parent that doesn't implement the interface. The
        // join will set "this_type" to the parent class and a test that this implements
        // the interface will incorrectly fail.
      }
      /*
       * We don't have an object instance, so we can't find the concrete method. However, all of
       * the type information is in the abstract method, so we're good.
       */
      const char* descriptor;
      if (abs_method == nullptr) {
        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        dex::TypeIndex return_type_idx =
            dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        descriptor = dex_file_->StringByTypeIdx(return_type_idx);
      } else {
        descriptor = abs_method->GetReturnTypeDescriptor();
      }
      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
      if (!return_type.IsLowHalf()) {
        work_line_->SetResultRegisterType(this, return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_POLYMORPHIC:
    case Instruction::INVOKE_POLYMORPHIC_RANGE: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
      if (called_method == nullptr) {
        // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
        if (failure_messages_.size() > 0) {
          std::string message = failure_messages_.back()->str();
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
        }
        break;
      }
      if (!CheckSignaturePolymorphicMethod(called_method) ||
          !CheckSignaturePolymorphicReceiver(inst)) {
        DCHECK(HasFailures());
        break;
      }
      const uint32_t proto_idx = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
      const char* return_descriptor =
          dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
      const RegType& return_type =
          reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false);
      if (!return_type.IsLowHalf()) {
        work_line_->SetResultRegisterType(this, return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_CUSTOM:
    case Instruction::INVOKE_CUSTOM_RANGE: {
      // Verify registers based on method_type in the call site.
      bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);

      // Step 1. Check the call site that produces the method handle for invocation
      const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
      if (!CheckCallSite(call_site_idx)) {
        DCHECK(HasFailures());
        break;
      }

      // Step 2. Check the register arguments correspond to the expected arguments for the
      // method handle produced by step 1. The dex file verifier has checked ranges for
      // the first three arguments and CheckCallSite has checked the method handle type.
      CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
      it.Next();  // Skip to name.
      it.Next();  // Skip to method type of the method handle
      const uint32_t proto_idx = static_cast<uint32_t>(it.GetJavaValue().i);
      const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
      DexFileParameterIterator param_it(*dex_file_, proto_id);
      // Treat method as static as it has yet to be determined.
      VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
      const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);

      // Step 3. Propagate return type information
      const RegType& return_type =
          reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false);
      if (!return_type.IsLowHalf()) {
        work_line_->SetResultRegisterType(this, return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
      }
      just_set_result = true;
      // TODO: Add compiler support for invoke-custom (b/35337872).
      Fail(VERIFY_ERROR_FORCE_INTERPRETER);
      break;
    }
    case Instruction::NEG_INT:
    case Instruction::NOT_INT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
      break;
    case Instruction::NEG_LONG:
    case Instruction::NOT_LONG:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                   reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::NEG_FLOAT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
      break;
    case Instruction::NEG_DOUBLE:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::INT_TO_LONG:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                     reg_types_.Integer());
      break;
    case Instruction::INT_TO_FLOAT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_DOUBLE:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                     reg_types_.Integer());
      break;
    case Instruction::LONG_TO_INT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
                                       reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::LONG_TO_FLOAT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
                                       reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::LONG_TO_DOUBLE:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                   reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::FLOAT_TO_INT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
      break;
    case Instruction::FLOAT_TO_LONG:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                     reg_types_.Float());
      break;
    case Instruction::FLOAT_TO_DOUBLE:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                     reg_types_.Float());
      break;
    case Instruction::DOUBLE_TO_INT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::DOUBLE_TO_LONG:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::DOUBLE_TO_FLOAT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::INT_TO_BYTE:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_CHAR:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_SHORT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
      break;

    case Instruction::ADD_INT:
    case Instruction::SUB_INT:
    case Instruction::MUL_INT:
    case Instruction::REM_INT:
    case Instruction::DIV_INT:
    case Instruction::SHL_INT:
    case Instruction::SHR_INT:
    case Instruction::USHR_INT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                reg_types_.Integer(), false);
      break;
    case Instruction::AND_INT:
    case Instruction::OR_INT:
    case Instruction::XOR_INT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                reg_types_.Integer(), true);
      break;
    case Instruction::ADD_LONG:
    case Instruction::SUB_LONG:
    case Instruction::MUL_LONG:
    case Instruction::DIV_LONG:
    case Instruction::REM_LONG:
    case Instruction::AND_LONG:
    case Instruction::OR_LONG:
    case Instruction::XOR_LONG:
      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                    reg_types_.LongLo(), reg_types_.LongHi(),
                                    reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::SHL_LONG:
    case Instruction::SHR_LONG:
    case Instruction::USHR_LONG:
      /* shift distance is Int, making these different from other binary operations */
      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.Integer());
      break;
    case Instruction::ADD_FLOAT:
    case Instruction::SUB_FLOAT:
    case Instruction::MUL_FLOAT:
    case Instruction::DIV_FLOAT:
    case Instruction::REM_FLOAT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
                                reg_types_.Float(), false);
      break;
    case Instruction::ADD_DOUBLE:
    case Instruction::SUB_DOUBLE:
    case Instruction::MUL_DOUBLE:
    case Instruction::DIV_DOUBLE:
    case Instruction::REM_DOUBLE:
      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::ADD_INT_2ADDR:
    case Instruction::SUB_INT_2ADDR:
    case Instruction::MUL_INT_2ADDR:
    case Instruction::REM_INT_2ADDR:
    case Instruction::SHL_INT_2ADDR:
    case Instruction::SHR_INT_2ADDR:
    case Instruction::USHR_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), false);
      break;
    case Instruction::AND_INT_2ADDR:
    case Instruction::OR_INT_2ADDR:
    case Instruction::XOR_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), true);
      break;
    case Instruction::DIV_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), false);
      break;
    case Instruction::ADD_LONG_2ADDR:
    case Instruction::SUB_LONG_2ADDR:
    case Instruction::MUL_LONG_2ADDR:
    case Instruction::DIV_LONG_2ADDR:
    case Instruction::REM_LONG_2ADDR:
    case Instruction::AND_LONG_2ADDR:
    case Instruction::OR_LONG_2ADDR:
    case Instruction::XOR_LONG_2ADDR:
      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::SHL_LONG_2ADDR:
    case Instruction::SHR_LONG_2ADDR:
    case Instruction::USHR_LONG_2ADDR:
      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                              reg_types_.Integer());
      break;
    case Instruction::ADD_FLOAT_2ADDR:
    case Instruction::SUB_FLOAT_2ADDR:
    case Instruction::MUL_FLOAT_2ADDR:
    case Instruction::DIV_FLOAT_2ADDR:
    case Instruction::REM_FLOAT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
                                     reg_types_.Float(), false);
      break;
    case Instruction::ADD_DOUBLE_2ADDR:
    case Instruction::SUB_DOUBLE_2ADDR:
    case Instruction::MUL_DOUBLE_2ADDR:
    case Instruction::DIV_DOUBLE_2ADDR:
    case Instruction::REM_DOUBLE_2ADDR:
      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::ADD_INT_LIT16:
    case Instruction::RSUB_INT_LIT16:
    case Instruction::MUL_INT_LIT16:
    case Instruction::DIV_INT_LIT16:
    case Instruction::REM_INT_LIT16:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
                                 true);
      break;
    case Instruction::AND_INT_LIT16:
    case Instruction::OR_INT_LIT16:
    case Instruction::XOR_INT_LIT16:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
                                 true);
      break;
    case Instruction::ADD_INT_LIT8:
    case Instruction::RSUB_INT_LIT8:
    case Instruction::MUL_INT_LIT8:
    case Instruction::DIV_INT_LIT8:
    case Instruction::REM_INT_LIT8:
    case Instruction::SHL_INT_LIT8:
    case Instruction::SHR_INT_LIT8:
    case Instruction::USHR_INT_LIT8:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
                                 false);
      break;
    case Instruction::AND_INT_LIT8:
    case Instruction::OR_INT_LIT8:
    case Instruction::XOR_INT_LIT8:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
                                 false);
      break;

    // Special instructions.
    case Instruction::RETURN_VOID_NO_BARRIER:
      if (IsConstructor() && !IsStatic()) {
        auto& declaring_class = GetDeclaringClass();
        if (declaring_class.IsUnresolvedReference()) {
          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
          // manually over the underlying dex file.
          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
          if (first_index != dex::kDexNoIndex) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
                              << first_index;
          }
          break;
        }
        auto* klass = declaring_class.GetClass();
        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
          if (klass->GetInstanceField(i)->IsFinal()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
                << klass->GetInstanceField(i)->PrettyField();
            break;
          }
        }
      }
      // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
      // quickened opcodes (otherwise this could be a fall-through).
      if (!IsConstructor()) {
        if (!GetMethodReturnType().IsConflict()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
        }
      }
      break;

    /* These should never appear during verification. */
    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
    case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9:
    case Instruction::UNUSED_79:
    case Instruction::UNUSED_7A:
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
      break;

    /*
     * DO NOT add a "default" clause here. Without it the compiler will
     * complain if an instruction is missing (which is desirable).
     */
  }  // end - switch (dec_insn.opcode)

  if (have_pending_hard_failure_) {
    if (Runtime::Current()->IsAotCompiler()) {
      /* When AOT compiling, check that the last failure is a hard failure */
      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
        LOG(ERROR) << "Pending failures:";
        for (auto& error : failures_) {
          LOG(ERROR) << error;
        }
        for (auto& error_msg : failure_messages_) {
          LOG(ERROR) << error_msg->str();
        }
        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
      }
    }
    /* immediate failure, reject class */
    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
    return false;
  } else if (have_pending_runtime_throw_failure_) {
    /* checking interpreter will throw, mark following code as unreachable */
    opcode_flags = Instruction::kThrow;
    // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
    //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
    //       very end.
  }
  /*
   * If we didn't just set the result register, clear it out. This ensures that you can only use
   * "move-result" immediately after the result is set. (We could check this statically, but it's
   * not expensive and it makes our debugging output cleaner.)
   */
  if (!just_set_result) {
    work_line_->SetResultTypeToUnknown(this);
  }

  /*
   * Handle "branch". Tag the branch target.
   *
   * NOTE: instructions like Instruction::EQZ provide information about the
   * state of the register when the branch is taken or not taken. For example,
   * somebody could get a reference field, check it for zero, and if the
   * branch is taken immediately store that register in a boolean field
   * since the value is known to be zero. We do not currently account for
   * that, and will reject the code.
   *
   * TODO: avoid re-fetching the branch target
   */
  if ((opcode_flags & Instruction::kBranch) != 0) {
    bool isConditional, selfOkay;
    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
      /* should never happen after static verification */
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
      return false;
    }
    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
    if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
                                           work_insn_idx_ + branch_target)) {
      return false;
    }
    /* update branch target, set "changed" if appropriate */
    if (nullptr != branch_line) {
      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
        return false;
      }
    } else {
      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
        return false;
      }
    }
  }

  /*
   * Handle "switch". Tag all possible branch targets.
   *
   * We've already verified that the table is structurally sound, so we
   * just need to walk through and tag the targets.
   */
  if ((opcode_flags & Instruction::kSwitch) != 0) {
    int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
    const uint16_t* switch_insns = insns + offset_to_switch;
    int switch_count = switch_insns[1];
    int offset_to_targets, targ;

    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
      /* 0 = sig, 1 = count, 2/3 = first key */
      offset_to_targets = 4;
    } else {
      /* 0 = sig, 1 = count, 2..count * 2 = keys */
      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
      offset_to_targets = 2 + 2 * switch_count;
    }

    /* verify each switch target */
    for (targ = 0; targ < switch_count; targ++) {
      int offset;
      uint32_t abs_offset;

      /* offsets are 32-bit, and only partly endian-swapped */
      offset = switch_insns[offset_to_targets + targ * 2] |
         (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
      abs_offset = work_insn_idx_ + offset;
      DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
      if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
        return false;
      }
      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
        return false;
      }
    }
  }

  /*
   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
   * "try" block when they throw, control transfers out of the method.)
   */
  if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
    bool has_catch_all_handler = false;
    const DexFile::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
    CHECK(try_item != nullptr);
    CatchHandlerIterator iterator(code_item_accessor_, *try_item);

    // Need the linker to try and resolve the handled class to check if it's Throwable.
    ClassLinker* linker = Runtime::Current()->GetClassLinker();

    for (; iterator.HasNext(); iterator.Next()) {
      dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
      if (!handler_type_idx.IsValid()) {
        has_catch_all_handler = true;
      } else {
        // It is also a catch-all if it is java.lang.Throwable.
        ObjPtr<mirror::Class> klass =
            linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
        if (klass != nullptr) {
          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
            has_catch_all_handler = true;
          }
        } else {
          // Clear exception.
          DCHECK(self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      /*
       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
       * "work_regs", because at runtime the exception will be thrown before the instruction
       * modifies any registers.
       */
      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
        return false;
      }
    }

    /*
     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
     * instruction. This does apply to monitor-exit because of async exception handling.
     */
    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
      /*
       * The state in work_line reflects the post-execution state. If the current instruction is a
       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
       * it will do so before grabbing the lock).
       */
      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "expected to be within a catch-all for an instruction where a monitor is held";
        return false;
      }
    }
  }

  /* Handle "continue". Tag the next consecutive instruction.
   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
   *        because it changes work_line_ when performing peephole optimization
   *        and this change should not be used in those cases.
   */
  if ((opcode_flags & Instruction::kContinue) != 0) {
    DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
    if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
      return false;
    }
    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
    // next instruction isn't one.
    if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
      return false;
    }
    if (nullptr != fallthrough_line) {
      // Make workline consistent with fallthrough computed from peephole optimization.
      work_line_->CopyFromLine(fallthrough_line.get());
    }
    if (GetInstructionFlags(next_insn_idx).IsReturn()) {
      // For returns we only care about the operand to the return, all other registers are dead.
      const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
      AdjustReturnLine(this, ret_inst, work_line_.get());
    }
    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
    if (next_line != nullptr) {
      // Merge registers into what we have for the next instruction, and set the "changed" flag if
      // needed. If the merge changes the state of the registers then the work line will be
      // updated.
      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
        return false;
      }
    } else {
      /*
       * We're not recording register data for the next instruction, so we don't know what the
       * prior state was. We have to assume that something has changed and re-evaluate it.
       */
      GetInstructionFlags(next_insn_idx).SetChanged();
    }
  }

  /* If we're returning from the method, make sure monitor stack is empty. */
  if ((opcode_flags & Instruction::kReturn) != 0) {
    work_line_->VerifyMonitorStackEmpty(this);
  }

  /*
   * Update start_guess. Advance to the next instruction of that's
   * possible, otherwise use the branch target if one was found. If
   * neither of those exists we're in a return or throw; leave start_guess
   * alone and let the caller sort it out.
   */
  if ((opcode_flags & Instruction::kContinue) != 0) {
    DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
  } else if ((opcode_flags & Instruction::kBranch) != 0) {
    /* we're still okay if branch_target is zero */
    *start_guess = work_insn_idx_ + branch_target;
  }

  DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
  DCHECK(GetInstructionFlags(*start_guess).IsOpcode());

  if (have_pending_runtime_throw_failure_) {
    have_any_pending_runtime_throw_failure_ = true;
    // Reset the pending_runtime_throw flag now.
    have_pending_runtime_throw_failure_ = false;
  }

  return true;
}  // NOLINT(readability/fn_size)

void MethodVerifier::UninstantiableError(const char* descriptor) {
  Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
                                           << "non-instantiable klass " << descriptor;
}

inline bool MethodVerifier::IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass) {
  return klass->IsInstantiable() || klass->IsPrimitive();
}

template <MethodVerifier::CheckAccess C>
const RegType& MethodVerifier::ResolveClass(dex::TypeIndex class_idx) {
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  ObjPtr<mirror::Class> klass = can_load_classes_
      ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
      : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
  if (can_load_classes_ && klass == nullptr) {
    DCHECK(self_->IsExceptionPending());
    self_->ClearException();
  }
  const RegType* result = nullptr;
  if (klass != nullptr) {
    bool precise = klass->CannotBeAssignedFromOtherTypes();
    if (precise && !IsInstantiableOrPrimitive(klass)) {
      const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
      UninstantiableError(descriptor);
      precise = false;
    }
    result = reg_types_.FindClass(klass.Ptr(), precise);
    if (result == nullptr) {
      const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
      result = reg_types_.InsertClass(descriptor, klass.Ptr(), precise);
    }
  } else {
    const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
    result = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
  }
  DCHECK(result != nullptr);
  if (result->IsConflict()) {
    const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
        << "' in " << GetDeclaringClass();
    return *result;
  }

  // Record result of class resolution attempt.
  VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass.Ptr());

  // If requested, check if access is allowed. Unresolved types are included in this check, as the
  // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
  // the access-checks interpreter. If result is primitive, skip the access check.
  //
  // Note: we do this for unresolved classes to trigger re-verification at runtime.
  if (C == CheckAccess::kYes && result->IsNonZeroReferenceTypes()) {
    const RegType& referrer = GetDeclaringClass();
    if (!referrer.CanAccess(*result)) {
      Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '"
                                      << referrer << "' -> '" << *result << "'";
    }
  }
  return *result;
}

// Instantiate ResolveClass variants. This is required as the -inl file has a function with a call
// to ResolveClass, and compilers may decide to inline, requiring a symbol.
template const RegType& MethodVerifier::ResolveClass<MethodVerifier::CheckAccess::kNo>(
    dex::TypeIndex class_idx);
template const RegType& MethodVerifier::ResolveClass<MethodVerifier::CheckAccess::kYes>(
    dex::TypeIndex class_idx);

const RegType& MethodVerifier::GetCaughtExceptionType() {
  const RegType* common_super = nullptr;
  if (code_item_accessor_.TriesSize() != 0) {
    const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    for (uint32_t i = 0; i < handlers_size; i++) {
      CatchHandlerIterator iterator(handlers_ptr);
      for (; iterator.HasNext(); iterator.Next()) {
        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
          if (!iterator.GetHandlerTypeIndex().IsValid()) {
            common_super = &reg_types_.JavaLangThrowable(false);
          } else {
            const RegType& exception =
                ResolveClass<CheckAccess::kYes>(iterator.GetHandlerTypeIndex());
            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
              DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
              if (exception.IsUnresolvedTypes()) {
                // We don't know enough about the type. Fail here and let runtime handle it.
                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
                return exception;
              } else {
                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
                return reg_types_.Conflict();
              }
            } else if (common_super == nullptr) {
              common_super = &exception;
            } else if (common_super->Equals(exception)) {
              // odd case, but nothing to do
            } else {
              common_super = &common_super->Merge(exception, &reg_types_, this);
              if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
                                  *common_super, this),
                              "java.lang.Throwable is not assignable-from common_super at ",
                              work_insn_idx_)) {
                break;
              }
            }
          }
        }
      }
      handlers_ptr = iterator.EndDataPointer();
    }
  }
  if (common_super == nullptr) {
    /* no catch blocks, or no catches with classes we can find */
    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
    return reg_types_.Conflict();
  }
  return *common_super;
}

ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
    uint32_t dex_method_idx, MethodType method_type) {
  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
  const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
  if (klass_type.IsConflict()) {
    std::string append(" in attempt to access method ");
    append += dex_file_->GetMethodName(method_id);
    AppendToLastFailMessage(append);
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    return nullptr;  // Can't resolve Class so no more to do here
  }
  ObjPtr<mirror::Class> klass = klass_type.GetClass();
  const RegType& referrer = GetDeclaringClass();
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  PointerSize pointer_size = class_linker->GetImagePointerSize();

  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
  if (res_method == nullptr) {
    res_method = class_linker->FindResolvedMethod(
        klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
  }

  // Record result of method resolution attempt. The klass resolution has recorded whether
  // the class is an interface or not and therefore the type of the lookup performed above.
  // TODO: Maybe we should not record dependency if the invoke type does not match the lookup type.
  VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_method);

  bool must_fail = false;
  // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
  // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
  // hard to see the differences.
  // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
  // DCHECK.
  if (res_method == nullptr) {
    must_fail = true;
    // Try to find the method also with the other type for better error reporting below
    // but do not store such bogus lookup result in the DexCache or VerifierDeps.
    res_method = class_linker->FindIncompatibleMethod(
        klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
  }

  if (res_method == nullptr) {
    Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
                                 << klass->PrettyDescriptor() << "."
                                 << dex_file_->GetMethodName(method_id) << " "
                                 << dex_file_->GetMethodSignature(method_id);
    return nullptr;
  }

  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
  // enforce them here.
  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
                                      << res_method->PrettyMethod();
    return nullptr;
  }
  // Disallow any calls to class initializers.
  if (res_method->IsClassInitializer()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
                                      << res_method->PrettyMethod();
    return nullptr;
  }

  // Check that interface methods are static or match interface classes.
  // We only allow statics if we don't have default methods enabled.
  //
  // Note: this check must be after the initializer check, as those are required to fail a class,
  //       while this check implies an IncompatibleClassChangeError.
  if (klass->IsInterface()) {
    // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
    // default methods are supported for the dex file), or invoke-static.
    if (method_type != METHOD_INTERFACE &&
        method_type != METHOD_STATIC &&
        (!dex_file_->SupportsDefaultMethods() ||
         method_type != METHOD_DIRECT) &&
        method_type != METHOD_SUPER) {
      Fail(VERIFY_ERROR_CLASS_CHANGE)
          << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
          << " is in an interface class " << klass->PrettyClass();
      return nullptr;
    }
  } else {
    if (method_type == METHOD_INTERFACE) {
      Fail(VERIFY_ERROR_CLASS_CHANGE)
          << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
          << " is in a non-interface class " << klass->PrettyClass();
      return nullptr;
    }
  }

  // Check specifically for non-public object methods being provided for interface dispatch. This
  // can occur if we failed to find a method with FindInterfaceMethod but later find one with
  // FindClassMethod for error message use.
  if (method_type == METHOD_INTERFACE &&
      res_method->GetDeclaringClass()->IsObjectClass() &&
      !res_method->IsPublic()) {
    Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
                                 << dex_file_->GetMethodName(method_id) << " "
                                 << dex_file_->GetMethodSignature(method_id) << " resolved to "
                                 << "non-public object method " << res_method->PrettyMethod() << " "
                                 << "but non-public Object methods are excluded from interface "
                                 << "method resolution.";
    return nullptr;
  }
  // Check if access is allowed.
  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
                                     << res_method->PrettyMethod()
                                     << " from " << referrer << ")";
    return res_method;
  }
  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
  if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
                                      << res_method->PrettyMethod();
    return nullptr;
  }
  // See if the method type implied by the invoke instruction matches the access flags for the
  // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
  // signature polymorphic methods supported by the run-time which are native methods with variable
  // arguments.
  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
      ((method_type == METHOD_SUPER ||
        method_type == METHOD_VIRTUAL ||
        method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
      ((method_type == METHOD_POLYMORPHIC) &&
       (!res_method->IsNative() || !res_method->IsVarargs()))) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
                                       "type of " << res_method->PrettyMethod();
    return nullptr;
  }
  // Make sure we weren't expecting to fail.
  DCHECK(!must_fail) << "invoke type (" << method_type << ")"
                     << klass->PrettyDescriptor() << "."
                     << dex_file_->GetMethodName(method_id) << " "
                     << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
                     << res_method->PrettyMethod() << " without error. Initially this method was "
                     << "not found so we were expecting to fail for some reason.";
  return res_method;
}

template <class T>
ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
  // match the call to the signature. Also, we might be calling through an abstract method
  // definition (which doesn't have register count values).
  const size_t expected_args = inst->VRegA();
  /* caught by static verifier */
  DCHECK(is_range || expected_args <= 5);

  if (expected_args > code_item_accessor_.OutsSize()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
                                      << ") exceeds outsSize ("
                                      << code_item_accessor_.OutsSize() << ")";
    return nullptr;
  }

  /*
   * Check the "this" argument, which must be an instance of the class that declared the method.
   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   * rigorous check here (which is okay since we have to do it at runtime).
   */
  if (method_type != METHOD_STATIC) {
    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
      CHECK(have_pending_hard_failure_);
      return nullptr;
    }
    bool is_init = false;
    if (actual_arg_type.IsUninitializedTypes()) {
      if (res_method) {
        if (!res_method->IsConstructor()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
          return nullptr;
        }
      } else {
        // Check whether the name of the called method is "<init>"
        const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
          return nullptr;
        }
      }
      is_init = true;
    }
    const RegType& adjusted_type = is_init
                                       ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
                                       : actual_arg_type;
    if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
      const RegType* res_method_class;
      // Miranda methods have the declaring interface as their declaring class, not the abstract
      // class. It would be wrong to use this for the type check (interface type checks are
      // postponed to runtime).
      if (res_method != nullptr && !res_method->IsMiranda()) {
        mirror::Class* klass = res_method->GetDeclaringClass();
        std::string temp;
        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
                                      klass->CannotBeAssignedFromOtherTypes());
      } else {
        const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
        const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
        res_method_class = &reg_types_.FromDescriptor(
            GetClassLoader(),
            dex_file_->StringByTypeIdx(class_idx),
            false);
      }
      if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
        Fail(adjusted_type.IsUnresolvedTypes()
                 ? VERIFY_ERROR_NO_CLASS
                 : VERIFY_ERROR_BAD_CLASS_SOFT)
            << "'this' argument '" << actual_arg_type << "' not instance of '"
            << *res_method_class << "'";
        // Continue on soft failures. We need to find possible hard failures to avoid problems in
        // the compiler.
        if (have_pending_hard_failure_) {
          return nullptr;
        }
      }
    }
  }

  uint32_t arg[5];
  if (!is_range) {
    inst->GetVarArgs(arg);
  }
  uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
  for ( ; it->HasNext(); it->Next()) {
    if (sig_registers >= expected_args) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
          " argument registers, method signature has " << sig_registers + 1 << " or more";
      return nullptr;
    }

    const char* param_descriptor = it->GetDescriptor();

    if (param_descriptor == nullptr) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
          "component";
      return nullptr;
    }

    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
    uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
        arg[sig_registers];
    if (reg_type.IsIntegralTypes()) {
      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
      if (!src_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
            << " but expected " << reg_type;
        return nullptr;
      }
    } else {
      if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
        // Continue on soft failures. We need to find possible hard failures to avoid problems in
        // the compiler.
        if (have_pending_hard_failure_) {
          return nullptr;
        }
      } else if (reg_type.IsLongOrDoubleTypes()) {
        // Check that registers are consecutive (for non-range invokes). Invokes are the only
        // instructions not specifying register pairs by the first component, but require them
        // nonetheless. Only check when there's an actual register in the parameters. If there's
        // none, this will fail below.
        if (!is_range && sig_registers + 1 < expected_args) {
          uint32_t second_reg = arg[sig_registers + 1];
          if (second_reg != get_reg + 1) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
                "at index " << sig_registers << " is not a pair: " << get_reg << " + "
                << second_reg << ".";
            return nullptr;
          }
        }
      }
    }
    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
  }
  if (expected_args != sig_registers) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
        " argument registers, method signature has " << sig_registers;
    return nullptr;
  }
  return res_method;
}

void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
                                                          MethodType method_type,
                                                          bool is_range) {
  // As the method may not have been resolved, make this static check against what we expect.
  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
  const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
  DexFileParameterIterator it(*dex_file_,
                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
  VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
}

bool MethodVerifier::CheckCallSite(uint32_t call_site_idx) {
  if (call_site_idx >= dex_file_->NumCallSiteIds()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
                                      << " >= " << dex_file_->NumCallSiteIds();
    return false;
  }

  CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
  // Check essential arguments are provided. The dex file verifier has verified indicies of the
  // main values (method handle, name, method_type).
  if (it.Size() < 3) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                      << " has too few arguments: "
                                      << it.Size() << "< 3";
    return false;
  }

  // Get and check the first argument: the method handle (index range
  // checked by the dex file verifier).
  uint32_t method_handle_idx = static_cast<uint32_t>(it.GetJavaValue().i);
  it.Next();

  const DexFile::MethodHandleItem& mh = dex_file_->GetMethodHandle(method_handle_idx);
  if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                      << " argument 0 method handle type is not InvokeStatic: "
                                      << mh.method_handle_type_;
    return false;
  }

  // Skip the second argument, the name to resolve, as checked by the
  // dex file verifier.
  it.Next();

  // Skip the third argument, the method type expected, as checked by
  // the dex file verifier.
  it.Next();

  // Check the bootstrap method handle and remaining arguments.
  const DexFile::MethodId& method_id = dex_file_->GetMethodId(mh.field_or_method_idx_);
  uint32_t length;
  const char* shorty = dex_file_->GetMethodShorty(method_id, &length);

  if (it.Size() < length - 1) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                      << " too few arguments for bootstrap method: "
                                      << it.Size() << " < " << (length - 1);
    return false;
  }

  // Check the return type and first 3 arguments are references
  // (CallSite, Lookup, String, MethodType). If they are not of the
  // expected types (or subtypes), it will trigger a
  // WrongMethodTypeException during execution.
  if (shorty[0] != 'L') {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                      << " bootstrap return type is not a reference";
    return false;
  }

  for (uint32_t i = 1; i < 4; ++i) {
    if (shorty[i] != 'L') {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                        << " bootstrap method argument " << (i - 1)
                                        << " is not a reference";
      return false;
    }
  }

  // Check the optional arguments.
  for (uint32_t i = 4; i < length; ++i, it.Next()) {
    bool match = false;
    switch (it.GetValueType()) {
      case EncodedArrayValueIterator::ValueType::kBoolean:
      case EncodedArrayValueIterator::ValueType::kByte:
      case EncodedArrayValueIterator::ValueType::kShort:
      case EncodedArrayValueIterator::ValueType::kChar:
      case EncodedArrayValueIterator::ValueType::kInt:
        // These all fit within one register and encoders do not seem
        // too exacting on the encoding type they use (ie using
        // integer for all of these).
        match = (strchr("ZBCSI", shorty[i]) != nullptr);
        break;
      case EncodedArrayValueIterator::ValueType::kLong:
        match = ('J' == shorty[i]);
        break;
      case EncodedArrayValueIterator::ValueType::kFloat:
        match = ('F' == shorty[i]);
        break;
      case EncodedArrayValueIterator::ValueType::kDouble:
        match = ('D' == shorty[i]);
        break;
      case EncodedArrayValueIterator::ValueType::kMethodType:
      case EncodedArrayValueIterator::ValueType::kMethodHandle:
      case EncodedArrayValueIterator::ValueType::kString:
      case EncodedArrayValueIterator::ValueType::kType:
      case EncodedArrayValueIterator::ValueType::kNull:
        match = ('L' == shorty[i]);
        break;
      case EncodedArrayValueIterator::ValueType::kField:
      case EncodedArrayValueIterator::ValueType::kMethod:
      case EncodedArrayValueIterator::ValueType::kEnum:
      case EncodedArrayValueIterator::ValueType::kArray:
      case EncodedArrayValueIterator::ValueType::kAnnotation:
        // Unreachable based on current EncodedArrayValueIterator::Next().
        UNREACHABLE();
    }

    if (!match) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
                                        << " bootstrap method argument " << (i - 1)
                                        << " expected " << shorty[i]
                                        << " got value type: " << it.GetValueType();
      return false;
    }
  }
  return true;
}

class MethodParamListDescriptorIterator {
 public:
  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
      params_size_(params_ == nullptr ? 0 : params_->Size()) {
  }

  bool HasNext() {
    return pos_ < params_size_;
  }

  void Next() {
    ++pos_;
  }

  const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
  }

 private:
  ArtMethod* res_method_;
  size_t pos_;
  const DexFile::TypeList* params_;
  const size_t params_size_;
};

ArtMethod* MethodVerifier::VerifyInvocationArgs(
    const Instruction* inst, MethodType method_type, bool is_range) {
  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
  // we're making.
  const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
  if (res_method == nullptr) {  // error or class is unresolved
    // Check what we can statically.
    if (!have_pending_hard_failure_) {
      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
    }
    return nullptr;
  }

  // If we're using invoke-super(method), make sure that the executing method's class' superclass
  // has a vtable entry for the target method. Or the target is on a interface.
  if (method_type == METHOD_SUPER) {
    dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
    const RegType& reference_type = reg_types_.FromDescriptor(
        GetClassLoader(),
        dex_file_->StringByTypeIdx(class_idx),
        false);
    if (reference_type.IsUnresolvedTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
      return nullptr;
    }
    if (reference_type.GetClass()->IsInterface()) {
      // TODO Can we verify anything else.
      if (class_idx == class_def_.class_idx_) {
        Fail(VERIFY_ERROR_CLASS_CHANGE) << "Cannot invoke-super on self as interface";
        return nullptr;
      }
      // TODO Revisit whether we want to allow invoke-super on direct interfaces only like the JLS
      // does.
      if (!GetDeclaringClass().HasClass()) {
        Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
                                    << "interface invoke-super";
        return nullptr;
      } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
        Fail(VERIFY_ERROR_CLASS_CHANGE)
            << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
            << " in method "
            << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
            << dex_file_->PrettyMethod(method_idx) << " references "
            << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
        return nullptr;
      }
    } else {
      const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
      if (super.IsUnresolvedTypes()) {
        Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
                                    << dex_file_->PrettyMethod(dex_method_idx_)
                                    << " to super " << res_method->PrettyMethod();
        return nullptr;
      }
      if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
          (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
        Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
                                    << dex_file_->PrettyMethod(dex_method_idx_)
                                    << " to super " << super
                                    << "." << res_method->GetName()
                                    << res_method->GetSignature();
        return nullptr;
      }
    }
  }

  if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
    // Process the signature of the calling site that is invoking the method handle.
    DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(inst->VRegH()));
    return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
  } else {
    // Process the target method's signature.
    MethodParamListDescriptorIterator it(res_method);
    return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
  }
}

bool MethodVerifier::CheckSignaturePolymorphicMethod(ArtMethod* method) {
  mirror::Class* klass = method->GetDeclaringClass();
  const char* method_name = method->GetName();

  const char* expected_return_descriptor;
  if (klass == mirror::MethodHandle::StaticClass()) {
    expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
  } else if (klass == mirror::VarHandle::StaticClass()) {
    expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
    // TODO: add compiler support for VarHandle accessor methods (b/71781600)
    Fail(VERIFY_ERROR_FORCE_INTERPRETER);
  } else {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
    return false;
  }

  if (expected_return_descriptor == nullptr) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "Signature polymorphic method name invalid: " << method_name;
    return false;
  }

  const DexFile::TypeList* types = method->GetParameterTypeList();
  if (types->Size() != 1) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
    return false;
  }

  const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
  const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
  if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
    return false;
  }

  const char* return_descriptor = method->GetReturnTypeDescriptor();
  if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "Signature polymorphic method has unexpected return type: " << return_descriptor
        << " != " << expected_return_descriptor;
    return false;
  }

  return true;
}

bool MethodVerifier::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
  const RegType& this_type = work_line_->GetInvocationThis(this, inst);
  if (this_type.IsZeroOrNull()) {
    /* null pointer always passes (and always fails at run time) */
    return true;
  } else if (!this_type.IsNonZeroReferenceTypes()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "invoke-polymorphic receiver is not a reference: "
        << this_type;
    return false;
  } else if (this_type.IsUninitializedReference()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "invoke-polymorphic receiver is uninitialized: "
        << this_type;
    return false;
  } else if (!this_type.HasClass()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "invoke-polymorphic receiver has no class: "
        << this_type;
    return false;
  } else if (!this_type.GetClass()->IsSubClass(mirror::MethodHandle::StaticClass()) &&
             !this_type.GetClass()->IsSubClass(mirror::VarHandle::StaticClass())) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
        << this_type;
    return false;
  }
  return true;
}

uint16_t MethodVerifier::GetMethodIdxOfInvoke(const Instruction* inst) {
  switch (inst->Opcode()) {
    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
    case Instruction::INVOKE_VIRTUAL_QUICK: {
      DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
          << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_;
      DCHECK(method_being_verified_ != nullptr);
      uint16_t method_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
      CHECK_NE(method_idx, DexFile::kDexNoIndex16);
      return method_idx;
    }
    default: {
      return inst->VRegB();
    }
  }
}

uint16_t MethodVerifier::GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static) {
  if (is_static) {
    return inst->VRegB_21c();
  } else if (inst->IsQuickened()) {
    DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
    DCHECK(method_being_verified_ != nullptr);
    uint16_t field_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
    CHECK_NE(field_idx, DexFile::kDexNoIndex16);
    return field_idx;
  } else {
    return inst->VRegC_22c();
  }
}

void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
  dex::TypeIndex type_idx;
  if (!is_filled) {
    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
    type_idx = dex::TypeIndex(inst->VRegC_22c());
  } else if (!is_range) {
    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
    type_idx = dex::TypeIndex(inst->VRegB_35c());
  } else {
    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
    type_idx = dex::TypeIndex(inst->VRegB_3rc());
  }
  const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
  if (res_type.IsConflict()) {  // bad class
    DCHECK_NE(failures_.size(), 0U);
  } else {
    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
    if (!res_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
    } else if (!is_filled) {
      /* make sure "size" register is valid type */
      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
      /* set register type to array class */
      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
    } else {
      DCHECK(!res_type.IsUnresolvedMergedReference());
      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
      // the list and fail. It's legal, if silly, for arg_count to be zero.
      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
      uint32_t arg[5];
      if (!is_range) {
        inst->GetVarArgs(arg);
      }
      for (size_t ui = 0; ui < arg_count; ui++) {
        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
          return;
        }
      }
      // filled-array result goes into "result" register
      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
      work_line_->SetResultRegisterType(this, precise_type);
    }
  }
}

void MethodVerifier::VerifyAGet(const Instruction* inst,
                                const RegType& insn_type, bool is_primitive) {
  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
  if (!index_type.IsArrayIndexTypes()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
  } else {
    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
    if (array_type.IsZeroOrNull()) {
      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
      // instruction type.
      if (!is_primitive) {
        work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null());
      } else if (insn_type.IsInteger()) {
        // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
        // We cannot use 'insn_type' as it could be a float array or an int array.
        work_line_->SetRegisterType<LockOp::kClear>(
            this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_));
      } else if (insn_type.IsCategory1Types()) {
        // Category 1
        // The 'insn_type' is exactly the type we need.
        work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type);
      } else {
        // Category 2
        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
                                        reg_types_.FromCat2ConstLo(0, false),
                                        reg_types_.FromCat2ConstHi(0, false));
      }
    } else if (!array_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
    } else if (array_type.IsUnresolvedMergedReference()) {
      // Unresolved array types must be reference array types.
      if (is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
                    << " source for category 1 aget";
      } else {
        Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
            << " because of missing class";
        // Approximate with java.lang.Object[].
        work_line_->SetRegisterType<LockOp::kClear>(this,
                                                    inst->VRegA_23x(),
                                                    reg_types_.JavaLangObject(false));
      }
    } else {
      /* verify the class */
      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
      if (!component_type.IsReferenceTypes() && !is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
            << " source for aget-object";
      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
            << " source for category 1 aget";
      } else if (is_primitive && !insn_type.Equals(component_type) &&
                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
                 (insn_type.IsLong() && component_type.IsDouble()))) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
            << " incompatible with aget of type " << insn_type;
      } else {
        // Use knowledge of the field type which is stronger than the type inferred from the
        // instruction, which can't differentiate object types and ints from floats, longs from
        // doubles.
        if (!component_type.IsLowHalf()) {
          work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
        } else {
          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
                                          component_type.HighHalf(&reg_types_));
        }
      }
    }
  }
}

void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
                                        const uint32_t vregA) {
  // Primitive assignability rules are weaker than regular assignability rules.
  bool instruction_compatible;
  bool value_compatible;
  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
  if (target_type.IsIntegralTypes()) {
    instruction_compatible = target_type.Equals(insn_type);
    value_compatible = value_type.IsIntegralTypes();
  } else if (target_type.IsFloat()) {
    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
    value_compatible = value_type.IsFloatTypes();
  } else if (target_type.IsLong()) {
    instruction_compatible = insn_type.IsLong();
    // Additional register check: this is not checked statically (as part of VerifyInstructions),
    // as target_type depends on the resolved type of the field.
    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
    } else {
      value_compatible = false;
    }
  } else if (target_type.IsDouble()) {
    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
    // Additional register check: this is not checked statically (as part of VerifyInstructions),
    // as target_type depends on the resolved type of the field.
    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
    } else {
      value_compatible = false;
    }
  } else {
    instruction_compatible = false;  // reference with primitive store
    value_compatible = false;  // unused
  }
  if (!instruction_compatible) {
    // This is a global failure rather than a class change failure as the instructions and
    // the descriptors for the type should have been consistent within the same file at
    // compile time.
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
        << "' but expected type '" << target_type << "'";
    return;
  }
  if (!value_compatible) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
        << " of type " << value_type << " but expected " << target_type << " for put";
    return;
  }
}

void MethodVerifier::VerifyAPut(const Instruction* inst,
                                const RegType& insn_type, bool is_primitive) {
  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
  if (!index_type.IsArrayIndexTypes()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
  } else {
    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
    if (array_type.IsZeroOrNull()) {
      // Null array type; this code path will fail at runtime.
      // Still check that the given value matches the instruction's type.
      // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
      //       and fits multiple register types.
      const RegType* modified_reg_type = &insn_type;
      if ((modified_reg_type == &reg_types_.Integer()) ||
          (modified_reg_type == &reg_types_.LongLo())) {
        // May be integer or float | long or double. Overwrite insn_type accordingly.
        const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
        if (modified_reg_type == &reg_types_.Integer()) {
          if (&value_type == &reg_types_.Float()) {
            modified_reg_type = &value_type;
          }
        } else {
          if (&value_type == &reg_types_.DoubleLo()) {
            modified_reg_type = &value_type;
          }
        }
      }
      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
    } else if (!array_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
    } else if (array_type.IsUnresolvedMergedReference()) {
      // Unresolved array types must be reference array types.
      if (is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
                                          << "' but unresolved type '" << array_type << "'";
      } else {
        Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
                                    << " because of missing class";
      }
    } else {
      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
      const uint32_t vregA = inst->VRegA_23x();
      if (is_primitive) {
        VerifyPrimitivePut(component_type, insn_type, vregA);
      } else {
        if (!component_type.IsReferenceTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
              << " source for aput-object";
        } else {
          // The instruction agrees with the type of array, confirm the value to be stored does too
          // Note: we use the instruction type (rather than the component type) for aput-object as
          // incompatible classes will be caught at runtime as an array store exception
          work_line_->VerifyRegisterType(this, vregA, insn_type);
        }
      }
    }
  }
}

ArtField* MethodVerifier::GetStaticField(int field_idx) {
  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
  // Check access to class
  const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
  if (klass_type.IsConflict()) {  // bad class
    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
                                         field_idx, dex_file_->GetFieldName(field_id),
                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    // Accessibility checks depend on resolved fields.
    DCHECK(klass_type.Equals(GetDeclaringClass()) || !failures_.empty());

    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
  }
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);

  // Record result of the field resolution attempt.
  VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);

  if (field == nullptr) {
    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
              << dex_file_->GetFieldName(field_id) << ") in "
              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
    DCHECK(self_->IsExceptionPending());
    self_->ClearException();
    return nullptr;
  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
                                                  field->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
                                    << " from " << GetDeclaringClass();
    return nullptr;
  } else if (!field->IsStatic()) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
    return nullptr;
  }
  return field;
}

ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
  // Check access to class.
  const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
  if (klass_type.IsConflict()) {
    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
                                         field_idx, dex_file_->GetFieldName(field_id),
                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    // Accessibility checks depend on resolved fields.
    DCHECK(klass_type.Equals(GetDeclaringClass()) || !failures_.empty());

    return nullptr;  // Can't resolve Class so no more to do here
  }
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);

  // Record result of the field resolution attempt.
  VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);

  if (field == nullptr) {
    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
              << dex_file_->GetFieldName(field_id) << ") in "
              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
    DCHECK(self_->IsExceptionPending());
    self_->ClearException();
    return nullptr;
  } else if (obj_type.IsZeroOrNull()) {
    // Cannot infer and check type, however, access will cause null pointer exception.
    // Fall through into a few last soft failure checks below.
  } else if (!obj_type.IsReferenceTypes()) {
    // Trying to read a field from something that isn't a reference.
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
                                      << "non-reference type " << obj_type;
    return nullptr;
  } else {
    std::string temp;
    ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
    const RegType& field_klass =
        FromClass(klass->GetDescriptor(&temp),
                  klass.Ptr(),
                  klass->CannotBeAssignedFromOtherTypes());
    if (obj_type.IsUninitializedTypes()) {
      // Field accesses through uninitialized references are only allowable for constructors where
      // the field is declared in this class.
      // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
      //       appear in constructors.
      if (!obj_type.IsUninitializedThisReference() ||
          !IsConstructor() ||
          !field_klass.Equals(GetDeclaringClass())) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
                                          << " of a not fully initialized object within the context"
                                          << " of " << dex_file_->PrettyMethod(dex_method_idx_);
        return nullptr;
      }
    } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
      // of C1. For resolution to occur the declared class of the field must be compatible with
      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
      VerifyError type;
      bool is_aot = Runtime::Current()->IsAotCompiler();
      if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
        // Compiler & unresolved types involved, retry at runtime.
        type = VerifyError::VERIFY_ERROR_NO_CLASS;
      } else {
        // Classes known (resolved; and thus assignability check is precise), or we are at runtime
        // and still missing classes. This is a hard failure.
        type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
      }
      Fail(type) << "cannot access instance field " << field->PrettyField()
                 << " from object of type " << obj_type;
      return nullptr;
    }
  }

  // Few last soft failure checks.
  if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
                                           field->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
                                    << " from " << GetDeclaringClass();
    return nullptr;
  } else if (field->IsStatic()) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
                                    << " to not be static";
    return nullptr;
  }

  return field;
}

template <MethodVerifier::FieldAccessType kAccType>
void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
                                         bool is_primitive, bool is_static) {
  uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
  ArtField* field;
  if (is_static) {
    field = GetStaticField(field_idx);
  } else {
    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());

    // One is not allowed to access fields on uninitialized references, except to write to
    // fields in the constructor (before calling another constructor).
    // GetInstanceField does an assignability check which will fail for uninitialized types.
    // We thus modify the type if the uninitialized reference is a "this" reference (this also
    // checks at the same time that we're verifying a constructor).
    bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
                         object_type.IsUninitializedThisReference();
    const RegType& adjusted_type = should_adjust
                                       ? GetRegTypeCache()->FromUninitialized(object_type)
                                       : object_type;
    field = GetInstanceField(adjusted_type, field_idx);
    if (UNLIKELY(have_pending_hard_failure_)) {
      return;
    }
    if (should_adjust) {
      if (field == nullptr) {
        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
                                          << "to the superclass being initialized in "
                                          << dex_file_->PrettyMethod(dex_method_idx_);
      } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
                                          << field->PrettyField() << " of a not fully initialized "
                                          << "object within the context of "
                                          << dex_file_->PrettyMethod(dex_method_idx_);
        return;
      }
    }
  }
  const RegType* field_type = nullptr;
  if (field != nullptr) {
    if (kAccType == FieldAccessType::kAccPut) {
      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
                                        << " from other class " << GetDeclaringClass();
        // Keep hunting for possible hard fails.
      }
    }

    ObjPtr<mirror::Class> field_type_class =
        can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
    if (field_type_class != nullptr) {
      field_type = &FromClass(field->GetTypeDescriptor(),
                              field_type_class.Ptr(),
                              field_type_class->CannotBeAssignedFromOtherTypes());
    } else {
      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
      self_->ClearException();
    }
  } else {
    // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
    // redo verification at runtime as the field may be final, unless the field id shows it's in
    // the same class.
    //
    // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
    // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
    // to the access-checks interpreter.
    //
    // Note: see b/34966607. This and above may be changed in the future.
    if (kAccType == FieldAccessType::kAccPut) {
      const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
      const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
      const RegType* field_class_type = &reg_types_.FromDescriptor(GetClassLoader(),
                                                                   field_class_descriptor,
                                                                   false);
      if (!field_class_type->Equals(GetDeclaringClass())) {
        Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
                                        << field_class_descriptor
                                        << "."
                                        << dex_file_->GetFieldName(field_id)
                                        << " from other class "
                                        << GetDeclaringClass();
      }
    }
  }
  if (field_type == nullptr) {
    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
  }
  DCHECK(field_type != nullptr);
  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
                "Unexpected third access type");
  if (kAccType == FieldAccessType::kAccPut) {
    // sput or iput.
    if (is_primitive) {
      VerifyPrimitivePut(*field_type, insn_type, vregA);
    } else {
      if (!insn_type.IsAssignableFrom(*field_type, this)) {
        // If the field type is not a reference, this is a global failure rather than
        // a class change failure as the instructions and the descriptors for the type
        // should have been consistent within the same file at compile time.
        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
        Fail(error) << "expected field " << ArtField::PrettyField(field)
                    << " to be compatible with type '" << insn_type
                    << "' but found type '" << *field_type
                    << "' in put-object";
        return;
      }
      work_line_->VerifyRegisterType(this, vregA, *field_type);
    }
  } else if (kAccType == FieldAccessType::kAccGet) {
    // sget or iget.
    if (is_primitive) {
      if (field_type->Equals(insn_type) ||
          (field_type->IsFloat() && insn_type.IsInteger()) ||
          (field_type->IsDouble() && insn_type.IsLong())) {
        // expected that read is of the correct primitive type or that int reads are reading
        // floats or long reads are reading doubles
      } else {
        // This is a global failure rather than a class change failure as the instructions and
        // the descriptors for the type should have been consistent within the same file at
        // compile time
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
                                          << " to be of type '" << insn_type
                                          << "' but found type '" << *field_type << "' in get";
        return;
      }
    } else {
      if (!insn_type.IsAssignableFrom(*field_type, this)) {
        // If the field type is not a reference, this is a global failure rather than
        // a class change failure as the instructions and the descriptors for the type
        // should have been consistent within the same file at compile time.
        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
        Fail(error) << "expected field " << ArtField::PrettyField(field)
                    << " to be compatible with type '" << insn_type
                    << "' but found type '" << *field_type
                    << "' in get-object";
        if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
          work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
        }
        return;
      }
    }
    if (!field_type->IsLowHalf()) {
      work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
    } else {
      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
    }
  } else {
    LOG(FATAL) << "Unexpected case.";
  }
}

bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
}

bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
                                     bool update_merge_line) {
  bool changed = true;
  RegisterLine* target_line = reg_table_.GetLine(next_insn);
  if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
    /*
     * We haven't processed this instruction before, and we haven't touched the registers here, so
     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
     * only way a register can transition out of "unknown", so this is not just an optimization.)
     */
    target_line->CopyFromLine(merge_line);
    if (GetInstructionFlags(next_insn).IsReturn()) {
      // Verify that the monitor stack is empty on return.
      merge_line->VerifyMonitorStackEmpty(this);

      // For returns we only care about the operand to the return, all other registers are dead.
      // Initialize them as conflicts so they don't add to GC and deoptimization information.
      const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
      AdjustReturnLine(this, ret_inst, target_line);
      // Directly bail if a hard failure was found.
      if (have_pending_hard_failure_) {
        return false;
      }
    }
  } else {
    RegisterLineArenaUniquePtr copy;
    if (UNLIKELY(VLOG_IS_ON(verifier_debug))) {
      copy.reset(RegisterLine::Create(target_line->NumRegs(), this));
      copy->CopyFromLine(target_line);
    }
    changed = target_line->MergeRegisters(this, merge_line);
    if (have_pending_hard_failure_) {
      return false;
    }
    if (UNLIKELY(VLOG_IS_ON(verifier_debug)) && changed) {
      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
                      << copy->Dump(this) << "  MERGE\n"
                      << merge_line->Dump(this) << "  ==\n"
                      << target_line->Dump(this) << "\n";
    }
    if (update_merge_line && changed) {
      merge_line->CopyFromLine(target_line);
    }
  }
  if (changed) {
    GetInstructionFlags(next_insn).SetChanged();
  }
  return true;
}

InstructionFlags* MethodVerifier::CurrentInsnFlags() {
  return &GetInstructionFlags(work_insn_idx_);
}

const RegType& MethodVerifier::GetMethodReturnType() {
  if (return_type_ == nullptr) {
    if (method_being_verified_ != nullptr) {
      ObjPtr<mirror::Class> return_type_class = can_load_classes_
          ? method_being_verified_->ResolveReturnType()
          : method_being_verified_->LookupResolvedReturnType();
      if (return_type_class != nullptr) {
        return_type_ = &FromClass(method_being_verified_->GetReturnTypeDescriptor(),
                                  return_type_class.Ptr(),
                                  return_type_class->CannotBeAssignedFromOtherTypes());
      } else {
        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
        self_->ClearException();
      }
    }
    if (return_type_ == nullptr) {
      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
      dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
    }
  }
  return *return_type_;
}

const RegType& MethodVerifier::GetDeclaringClass() {
  if (declaring_class_ == nullptr) {
    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
    const char* descriptor
        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
    if (method_being_verified_ != nullptr) {
      mirror::Class* klass = method_being_verified_->GetDeclaringClass();
      declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
    } else {
      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
    }
  }
  return *declaring_class_;
}

std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
  RegisterLine* line = reg_table_.GetLine(dex_pc);
  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
  std::vector<int32_t> result;
  for (size_t i = 0; i < line->NumRegs(); ++i) {
    const RegType& type = line->GetRegisterType(this, i);
    if (type.IsConstant()) {
      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValue());
    } else if (type.IsConstantLo()) {
      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValueLo());
    } else if (type.IsConstantHi()) {
      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValueHi());
    } else if (type.IsIntegralTypes()) {
      result.push_back(kIntVReg);
      result.push_back(0);
    } else if (type.IsFloat()) {
      result.push_back(kFloatVReg);
      result.push_back(0);
    } else if (type.IsLong()) {
      result.push_back(kLongLoVReg);
      result.push_back(0);
      result.push_back(kLongHiVReg);
      result.push_back(0);
      ++i;
    } else if (type.IsDouble()) {
      result.push_back(kDoubleLoVReg);
      result.push_back(0);
      result.push_back(kDoubleHiVReg);
      result.push_back(0);
      ++i;
    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
      result.push_back(kUndefined);
      result.push_back(0);
    } else {
      CHECK(type.IsNonZeroReferenceTypes());
      result.push_back(kReferenceVReg);
      result.push_back(0);
    }
  }
  return result;
}

const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
  if (precise) {
    // Precise constant type.
    return reg_types_.FromCat1Const(value, true);
  } else {
    // Imprecise constant type.
    if (value < -32768) {
      return reg_types_.IntConstant();
    } else if (value < -128) {
      return reg_types_.ShortConstant();
    } else if (value < 0) {
      return reg_types_.ByteConstant();
    } else if (value == 0) {
      return reg_types_.Zero();
    } else if (value == 1) {
      return reg_types_.One();
    } else if (value < 128) {
      return reg_types_.PosByteConstant();
    } else if (value < 32768) {
      return reg_types_.PosShortConstant();
    } else if (value < 65536) {
      return reg_types_.CharConstant();
    } else {
      return reg_types_.IntConstant();
    }
  }
}

void MethodVerifier::Init() {
  art::verifier::RegTypeCache::Init();
}

void MethodVerifier::Shutdown() {
  verifier::RegTypeCache::ShutDown();
}

void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
  RegTypeCache::VisitStaticRoots(visitor);
}

void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
  reg_types_.VisitRoots(visitor, root_info);
}

const RegType& MethodVerifier::FromClass(const char* descriptor,
                                         mirror::Class* klass,
                                         bool precise) {
  DCHECK(klass != nullptr);
  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
        << "non-instantiable klass " << descriptor;
    precise = false;
  }
  return reg_types_.FromClass(descriptor, klass, precise);
}

}  // namespace verifier
}  // namespace art