// Copyright 2015 Google Inc. All rights reserved
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build ignore
#include "dep.h"
#include <algorithm>
#include <iterator>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include "eval.h"
#include "fileutil.h"
#include "flags.h"
#include "log.h"
#include "rule.h"
#include "stats.h"
#include "strutil.h"
#include "symtab.h"
#include "timeutil.h"
#include "var.h"
namespace {
static vector<DepNode*>* g_dep_node_pool;
static Symbol ReplaceSuffix(Symbol s, Symbol newsuf) {
string r;
AppendString(StripExt(s.str()), &r);
r += '.';
AppendString(newsuf.str(), &r);
return Intern(r);
}
void ApplyOutputPattern(const Rule& r,
Symbol output,
const vector<Symbol>& inputs,
vector<Symbol>* out_inputs) {
if (inputs.empty())
return;
if (r.is_suffix_rule) {
for (Symbol input : inputs) {
out_inputs->push_back(ReplaceSuffix(output, input));
}
return;
}
if (r.output_patterns.empty()) {
copy(inputs.begin(), inputs.end(), back_inserter(*out_inputs));
return;
}
CHECK(r.output_patterns.size() == 1);
Pattern pat(r.output_patterns[0].str());
for (Symbol input : inputs) {
string buf;
pat.AppendSubst(output.str(), input.str(), &buf);
out_inputs->push_back(Intern(buf));
}
}
class RuleTrie {
struct Entry {
Entry(const Rule* r, StringPiece s) : rule(r), suffix(s) {}
const Rule* rule;
StringPiece suffix;
};
public:
RuleTrie() {}
~RuleTrie() {
for (auto& p : children_)
delete p.second;
}
void Add(StringPiece name, const Rule* rule) {
if (name.empty() || name[0] == '%') {
rules_.push_back(Entry(rule, name));
return;
}
const char c = name[0];
auto p = children_.emplace(c, nullptr);
if (p.second) {
p.first->second = new RuleTrie();
}
p.first->second->Add(name.substr(1), rule);
}
void Get(StringPiece name, vector<const Rule*>* rules) const {
for (const Entry& ent : rules_) {
if ((ent.suffix.empty() && name.empty()) ||
HasSuffix(name, ent.suffix.substr(1))) {
rules->push_back(ent.rule);
}
}
if (name.empty())
return;
auto found = children_.find(name[0]);
if (found != children_.end()) {
found->second->Get(name.substr(1), rules);
}
}
size_t size() const {
size_t r = rules_.size();
for (const auto& c : children_)
r += c.second->size();
return r;
}
private:
vector<Entry> rules_;
unordered_map<char, RuleTrie*> children_;
};
bool IsSuffixRule(Symbol output) {
if (output.empty() || output.str()[0] != '.')
return false;
const StringPiece rest = StringPiece(output.str()).substr(1);
size_t dot_index = rest.find('.');
// If there is only a single dot or the third dot, this is not a
// suffix rule.
if (dot_index == string::npos ||
rest.substr(dot_index + 1).find('.') != string::npos) {
return false;
}
return true;
}
struct RuleMerger {
vector<const Rule*> rules;
vector<pair<Symbol, RuleMerger*>> implicit_outputs;
const Rule* primary_rule;
const RuleMerger* parent;
Symbol parent_sym;
bool is_double_colon;
RuleMerger()
: primary_rule(nullptr),
parent(nullptr),
parent_sym(Symbol::IsUninitialized()),
is_double_colon(false) {}
void AddImplicitOutput(Symbol output, RuleMerger* merger) {
implicit_outputs.push_back(make_pair(output, merger));
}
void SetImplicitOutput(Symbol output, Symbol p, const RuleMerger* merger) {
if (!merger->primary_rule) {
ERROR("*** implicit output `%s' on phony target `%s'", output.c_str(),
p.c_str());
}
if (parent) {
ERROR_LOC(merger->primary_rule->cmd_loc(),
"*** implicit output `%s' of `%s' was already defined by `%s' "
"at %s:%d",
output.c_str(), p.c_str(), parent_sym.c_str(),
parent->primary_rule->cmd_loc());
}
if (primary_rule) {
ERROR_LOC(primary_rule->cmd_loc(),
"*** implicit output `%s' may not have commands",
output.c_str());
}
parent = merger;
parent_sym = p;
}
void AddRule(Symbol output, const Rule* r) {
if (rules.empty()) {
is_double_colon = r->is_double_colon;
} else if (is_double_colon != r->is_double_colon) {
ERROR_LOC(r->loc, "*** target file `%s' has both : and :: entries.",
output.c_str());
}
if (primary_rule && !r->cmds.empty() && !IsSuffixRule(output) &&
!r->is_double_colon) {
if (g_flags.werror_overriding_commands) {
ERROR_LOC(r->cmd_loc(),
"*** overriding commands for target `%s', previously defined "
"at %s:%d",
output.c_str(), LOCF(primary_rule->cmd_loc()));
} else {
WARN_LOC(r->cmd_loc(), "warning: overriding commands for target `%s'",
output.c_str());
WARN_LOC(primary_rule->cmd_loc(),
"warning: ignoring old commands for target `%s'",
output.c_str());
}
primary_rule = r;
}
if (!primary_rule && !r->cmds.empty()) {
primary_rule = r;
}
rules.push_back(r);
}
void FillDepNodeFromRule(Symbol output, const Rule* r, DepNode* n) const {
if (is_double_colon)
copy(r->cmds.begin(), r->cmds.end(), back_inserter(n->cmds));
ApplyOutputPattern(*r, output, r->inputs, &n->actual_inputs);
ApplyOutputPattern(*r, output, r->order_only_inputs,
&n->actual_order_only_inputs);
if (r->output_patterns.size() >= 1) {
CHECK(r->output_patterns.size() == 1);
n->output_pattern = r->output_patterns[0];
}
}
void FillDepNodeLoc(const Rule* r, DepNode* n) const {
n->loc = r->loc;
if (!r->cmds.empty() && r->cmd_lineno)
n->loc.lineno = r->cmd_lineno;
}
void FillDepNode(Symbol output, const Rule* pattern_rule, DepNode* n) const {
if (primary_rule) {
CHECK(!pattern_rule);
FillDepNodeFromRule(output, primary_rule, n);
FillDepNodeLoc(primary_rule, n);
n->cmds = primary_rule->cmds;
} else if (pattern_rule) {
FillDepNodeFromRule(output, pattern_rule, n);
FillDepNodeLoc(pattern_rule, n);
n->cmds = pattern_rule->cmds;
}
for (const Rule* r : rules) {
if (r == primary_rule)
continue;
FillDepNodeFromRule(output, r, n);
if (n->loc.filename == NULL)
n->loc = r->loc;
}
for (auto& implicit_output : implicit_outputs) {
n->implicit_outputs.push_back(implicit_output.first);
for (const Rule* r : implicit_output.second->rules) {
FillDepNodeFromRule(output, r, n);
}
}
}
};
} // namespace
DepNode::DepNode(Symbol o, bool p, bool r)
: output(o),
has_rule(false),
is_default_target(false),
is_phony(p),
is_restat(r),
rule_vars(NULL),
depfile_var(NULL),
ninja_pool_var(NULL),
output_pattern(Symbol::IsUninitialized()) {
g_dep_node_pool->push_back(this);
}
class DepBuilder {
public:
DepBuilder(Evaluator* ev,
const vector<const Rule*>& rules,
const unordered_map<Symbol, Vars*>& rule_vars)
: ev_(ev),
rule_vars_(rule_vars),
implicit_rules_(new RuleTrie()),
first_rule_(Symbol::IsUninitialized{}),
depfile_var_name_(Intern(".KATI_DEPFILE")),
implicit_outputs_var_name_(Intern(".KATI_IMPLICIT_OUTPUTS")),
ninja_pool_var_name_(Intern(".KATI_NINJA_POOL")) {
ScopedTimeReporter tr("make dep (populate)");
PopulateRules(rules);
// TODO?
// LOG_STAT("%zu variables", ev->mutable_vars()->size());
LOG_STAT("%zu explicit rules", rules_.size());
LOG_STAT("%zu implicit rules", implicit_rules_->size());
LOG_STAT("%zu suffix rules", suffix_rules_.size());
HandleSpecialTargets();
}
void HandleSpecialTargets() {
Loc loc;
vector<Symbol> targets;
if (GetRuleInputs(Intern(".PHONY"), &targets, &loc)) {
for (Symbol t : targets)
phony_.insert(t);
}
if (GetRuleInputs(Intern(".KATI_RESTAT"), &targets, &loc)) {
for (Symbol t : targets)
restat_.insert(t);
}
if (GetRuleInputs(Intern(".SUFFIXES"), &targets, &loc)) {
if (targets.empty()) {
suffix_rules_.clear();
} else {
WARN_LOC(loc, "kati doesn't support .SUFFIXES with prerequisites");
}
}
// Note we can safely ignore .DELETE_ON_ERROR for --ninja mode.
static const char* kUnsupportedBuiltinTargets[] = {".DEFAULT",
".PRECIOUS",
".INTERMEDIATE",
".SECONDARY",
".SECONDEXPANSION",
".IGNORE",
".LOW_RESOLUTION_TIME",
".SILENT",
".EXPORT_ALL_VARIABLES",
".NOTPARALLEL",
".ONESHELL",
NULL};
for (const char** p = kUnsupportedBuiltinTargets; *p; p++) {
if (GetRuleInputs(Intern(*p), &targets, &loc)) {
WARN_LOC(loc, "kati doesn't support %s", *p);
}
}
}
~DepBuilder() {}
void Build(vector<Symbol> targets, vector<DepNode*>* nodes) {
if (!first_rule_.IsValid()) {
ERROR("*** No targets.");
}
if (!g_flags.gen_all_targets && targets.empty()) {
targets.push_back(first_rule_);
}
if (g_flags.gen_all_targets) {
unordered_set<Symbol> non_root_targets;
for (const auto& p : rules_) {
for (const Rule* r : p.second.rules) {
for (Symbol t : r->inputs)
non_root_targets.insert(t);
for (Symbol t : r->order_only_inputs)
non_root_targets.insert(t);
}
}
for (const auto& p : rules_) {
Symbol t = p.first;
if (!non_root_targets.count(t)) {
targets.push_back(p.first);
}
}
}
// TODO: LogStats?
for (Symbol target : targets) {
cur_rule_vars_.reset(new Vars);
ev_->set_current_scope(cur_rule_vars_.get());
DepNode* n = BuildPlan(target, Intern(""));
nodes->push_back(n);
ev_->set_current_scope(NULL);
cur_rule_vars_.reset(NULL);
}
}
private:
bool Exists(Symbol target) {
auto found = rules_.find(target);
if (found != rules_.end())
return true;
if (phony_.count(target))
return true;
return ::Exists(target.str());
}
bool GetRuleInputs(Symbol s, vector<Symbol>* o, Loc* l) {
auto found = rules_.find(s);
if (found == rules_.end())
return false;
o->clear();
CHECK(!found->second.rules.empty());
*l = found->second.rules.front()->loc;
for (const Rule* r : found->second.rules) {
for (Symbol i : r->inputs)
o->push_back(i);
}
return true;
}
void PopulateRules(const vector<const Rule*>& rules) {
for (const Rule* rule : rules) {
if (rule->outputs.empty()) {
PopulateImplicitRule(rule);
} else {
PopulateExplicitRule(rule);
}
}
for (auto& p : suffix_rules_) {
reverse(p.second.begin(), p.second.end());
}
for (auto& p : rules_) {
auto vars = LookupRuleVars(p.first);
if (!vars) {
continue;
}
auto var = vars->Lookup(implicit_outputs_var_name_);
if (!var->IsDefined()) {
continue;
}
string implicit_outputs;
var->Eval(ev_, &implicit_outputs);
for (StringPiece output : WordScanner(implicit_outputs)) {
Symbol sym = Intern(TrimLeadingCurdir(output));
rules_[sym].SetImplicitOutput(sym, p.first, &p.second);
p.second.AddImplicitOutput(sym, &rules_[sym]);
}
}
}
bool PopulateSuffixRule(const Rule* rule, Symbol output) {
if (!IsSuffixRule(output))
return false;
const StringPiece rest = StringPiece(output.str()).substr(1);
size_t dot_index = rest.find('.');
StringPiece input_suffix = rest.substr(0, dot_index);
StringPiece output_suffix = rest.substr(dot_index + 1);
shared_ptr<Rule> r = make_shared<Rule>(*rule);
r->inputs.clear();
r->inputs.push_back(Intern(input_suffix));
r->is_suffix_rule = true;
suffix_rules_[output_suffix].push_back(r);
return true;
}
void PopulateExplicitRule(const Rule* rule) {
for (Symbol output : rule->outputs) {
if (!first_rule_.IsValid() && output.get(0) != '.') {
first_rule_ = output;
}
rules_[output].AddRule(output, rule);
PopulateSuffixRule(rule, output);
}
}
static bool IsIgnorableImplicitRule(const Rule* rule) {
// As kati doesn't have RCS/SCCS related default rules, we can
// safely ignore suppression for them.
if (rule->inputs.size() != 1)
return false;
if (!rule->order_only_inputs.empty())
return false;
if (!rule->cmds.empty())
return false;
const string& i = rule->inputs[0].str();
return (i == "RCS/%,v" || i == "RCS/%" || i == "%,v" || i == "s.%" ||
i == "SCCS/s.%");
}
void PopulateImplicitRule(const Rule* rule) {
for (Symbol output_pattern : rule->output_patterns) {
if (output_pattern.str() != "%" || !IsIgnorableImplicitRule(rule))
implicit_rules_->Add(output_pattern.str(), rule);
}
}
const RuleMerger* LookupRuleMerger(Symbol o) {
auto found = rules_.find(o);
if (found != rules_.end()) {
return &found->second;
}
return nullptr;
}
Vars* LookupRuleVars(Symbol o) {
auto found = rule_vars_.find(o);
if (found != rule_vars_.end())
return found->second;
return nullptr;
}
bool CanPickImplicitRule(const Rule* rule,
Symbol output,
DepNode* n,
shared_ptr<Rule>* out_rule) {
Symbol matched(Symbol::IsUninitialized{});
for (Symbol output_pattern : rule->output_patterns) {
Pattern pat(output_pattern.str());
if (pat.Match(output.str())) {
bool ok = true;
for (Symbol input : rule->inputs) {
string buf;
pat.AppendSubst(output.str(), input.str(), &buf);
if (!Exists(Intern(buf))) {
ok = false;
break;
}
}
if (ok) {
matched = output_pattern;
break;
}
}
}
if (!matched.IsValid())
return false;
*out_rule = make_shared<Rule>(*rule);
if ((*out_rule)->output_patterns.size() > 1) {
// We should mark all other output patterns as used.
Pattern pat(matched.str());
for (Symbol output_pattern : rule->output_patterns) {
if (output_pattern == matched)
continue;
string buf;
pat.AppendSubst(output.str(), output_pattern.str(), &buf);
done_[Intern(buf)] = n;
}
(*out_rule)->output_patterns.clear();
(*out_rule)->output_patterns.push_back(matched);
}
return true;
}
Vars* MergeImplicitRuleVars(Symbol output, Vars* vars) {
auto found = rule_vars_.find(output);
if (found == rule_vars_.end())
return vars;
if (vars == NULL)
return found->second;
// TODO: leak.
Vars* r = new Vars(*found->second);
for (auto p : *vars) {
(*r)[p.first] = p.second;
}
return r;
}
bool PickRule(Symbol output,
DepNode* n,
const RuleMerger** out_rule_merger,
shared_ptr<Rule>* pattern_rule,
Vars** out_var) {
const RuleMerger* rule_merger = LookupRuleMerger(output);
Vars* vars = LookupRuleVars(output);
*out_rule_merger = rule_merger;
*out_var = vars;
if (rule_merger && rule_merger->primary_rule) {
for (auto implicit_output : rule_merger->implicit_outputs) {
vars = MergeImplicitRuleVars(implicit_output.first, vars);
}
*out_var = vars;
return true;
}
vector<const Rule*> irules;
implicit_rules_->Get(output.str(), &irules);
for (auto iter = irules.rbegin(); iter != irules.rend(); ++iter) {
if (!CanPickImplicitRule(*iter, output, n, pattern_rule))
continue;
if (rule_merger) {
return true;
}
CHECK((*pattern_rule)->output_patterns.size() == 1);
vars = MergeImplicitRuleVars((*pattern_rule)->output_patterns[0], vars);
*out_var = vars;
return true;
}
StringPiece output_suffix = GetExt(output.str());
if (output_suffix.get(0) != '.')
return rule_merger;
output_suffix = output_suffix.substr(1);
SuffixRuleMap::const_iterator found = suffix_rules_.find(output_suffix);
if (found == suffix_rules_.end())
return rule_merger;
for (const shared_ptr<Rule>& irule : found->second) {
CHECK(irule->inputs.size() == 1);
Symbol input = ReplaceSuffix(output, irule->inputs[0]);
if (!Exists(input))
continue;
*pattern_rule = irule;
if (rule_merger)
return true;
if (vars) {
CHECK(irule->outputs.size() == 1);
vars = MergeImplicitRuleVars(irule->outputs[0], vars);
*out_var = vars;
}
return true;
}
return rule_merger;
}
DepNode* BuildPlan(Symbol output, Symbol needed_by UNUSED) {
LOG("BuildPlan: %s for %s", output.c_str(), needed_by.c_str());
auto found = done_.find(output);
if (found != done_.end()) {
return found->second;
}
DepNode* n =
new DepNode(output, phony_.count(output), restat_.count(output));
done_[output] = n;
const RuleMerger* rule_merger = nullptr;
shared_ptr<Rule> pattern_rule;
Vars* vars;
if (!PickRule(output, n, &rule_merger, &pattern_rule, &vars)) {
return n;
}
if (rule_merger && rule_merger->parent) {
output = rule_merger->parent_sym;
done_[output] = n;
n->output = output;
if (!PickRule(output, n, &rule_merger, &pattern_rule, &vars)) {
return n;
}
}
if (rule_merger)
rule_merger->FillDepNode(output, pattern_rule.get(), n);
else
RuleMerger().FillDepNode(output, pattern_rule.get(), n);
vector<unique_ptr<ScopedVar>> sv;
if (vars) {
for (const auto& p : *vars) {
Symbol name = p.first;
RuleVar* var = reinterpret_cast<RuleVar*>(p.second);
CHECK(var);
Var* new_var = var->v();
if (var->op() == AssignOp::PLUS_EQ) {
Var* old_var = ev_->LookupVar(name);
if (old_var->IsDefined()) {
// TODO: This would be incorrect and has a leak.
shared_ptr<string> s = make_shared<string>();
old_var->Eval(ev_, s.get());
if (!s->empty())
*s += ' ';
new_var->Eval(ev_, s.get());
new_var = new SimpleVar(*s, old_var->Origin());
}
} else if (var->op() == AssignOp::QUESTION_EQ) {
Var* old_var = ev_->LookupVar(name);
if (old_var->IsDefined()) {
continue;
}
}
if (name == depfile_var_name_) {
n->depfile_var = new_var;
} else if (name == implicit_outputs_var_name_) {
} else if (name == ninja_pool_var_name_) {
n->ninja_pool_var = new_var;
} else {
sv.emplace_back(new ScopedVar(cur_rule_vars_.get(), name, new_var));
}
}
}
for (Symbol output : n->implicit_outputs) {
done_[output] = n;
}
for (Symbol input : n->actual_inputs) {
DepNode* c = BuildPlan(input, output);
n->deps.push_back(c);
}
for (Symbol input : n->actual_order_only_inputs) {
DepNode* c = BuildPlan(input, output);
n->order_onlys.push_back(c);
}
n->has_rule = true;
n->is_default_target = first_rule_ == output;
if (cur_rule_vars_->empty()) {
n->rule_vars = NULL;
} else {
n->rule_vars = new Vars;
for (auto p : *cur_rule_vars_) {
n->rule_vars->insert(p);
}
}
return n;
}
Evaluator* ev_;
map<Symbol, RuleMerger> rules_;
const unordered_map<Symbol, Vars*>& rule_vars_;
unique_ptr<Vars> cur_rule_vars_;
unique_ptr<RuleTrie> implicit_rules_;
typedef unordered_map<StringPiece, vector<shared_ptr<Rule>>> SuffixRuleMap;
SuffixRuleMap suffix_rules_;
Symbol first_rule_;
unordered_map<Symbol, DepNode*> done_;
unordered_set<Symbol> phony_;
unordered_set<Symbol> restat_;
Symbol depfile_var_name_;
Symbol implicit_outputs_var_name_;
Symbol ninja_pool_var_name_;
};
void MakeDep(Evaluator* ev,
const vector<const Rule*>& rules,
const unordered_map<Symbol, Vars*>& rule_vars,
const vector<Symbol>& targets,
vector<DepNode*>* nodes) {
DepBuilder db(ev, rules, rule_vars);
ScopedTimeReporter tr("make dep (build)");
db.Build(targets, nodes);
}
void InitDepNodePool() {
g_dep_node_pool = new vector<DepNode*>;
}
void QuitDepNodePool() {
for (DepNode* n : *g_dep_node_pool)
delete n;
delete g_dep_node_pool;
}