#!/usr/bin/env python
# Copyright (C) 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Interface for a USB-connected Monsoon power meter
(http://msoon.com/LabEquipment/PowerMonitor/).
This file requires gflags, which requires setuptools.
To install setuptools: sudo apt-get install python-setuptools
To install gflags, see http://code.google.com/p/python-gflags/
To install pyserial, see http://pyserial.sourceforge.net/
Example usages:
Set the voltage of the device 7536 to 4.0V
python monsoon.py --voltage=4.0 --serialno 7536
Get 5000hz data from device number 7536, with unlimited number of samples
python monsoon.py --samples -1 --hz 5000 --serialno 7536
Get 200Hz data for 5 seconds (1000 events) from default device
python monsoon.py --samples 100 --hz 200
Get unlimited 200Hz data from device attached at /dev/ttyACM0
python monsoon.py --samples -1 --hz 200 --device /dev/ttyACM0
Output columns for collection with --samples, separated by space:
TIMESTAMP OUTPUT OUTPUT_AVG USB USB_AVG
| | | |
| | | ` (if --includeusb and --avg)
| | ` (if --includeusb)
| ` (if --avg)
` (if --timestamp)
"""
import fcntl
import os
import select
import signal
import stat
import struct
import sys
import time
import collections
import gflags as flags # http://code.google.com/p/python-gflags/
import serial # http://pyserial.sourceforge.net/
FLAGS = flags.FLAGS
class Monsoon:
"""
Provides a simple class to use the power meter, e.g.
mon = monsoon.Monsoon()
mon.SetVoltage(3.7)
mon.StartDataCollection()
mydata = []
while len(mydata) < 1000:
mydata.extend(mon.CollectData())
mon.StopDataCollection()
"""
def __init__(self, device=None, serialno=None, wait=1):
"""
Establish a connection to a Monsoon.
By default, opens the first available port, waiting if none are ready.
A particular port can be specified with "device", or a particular Monsoon
can be specified with "serialno" (using the number printed on its back).
With wait=0, IOError is thrown if a device is not immediately available.
"""
self._coarse_ref = self._fine_ref = self._coarse_zero = self._fine_zero = 0
self._coarse_scale = self._fine_scale = 0
self._last_seq = 0
self.start_voltage = 0
if device:
self.ser = serial.Serial(device, timeout=1)
return
while True: # try all /dev/ttyACM* until we find one we can use
for dev in os.listdir("/dev"):
if not dev.startswith("ttyACM"): continue
tmpname = "/tmp/monsoon.%s.%s" % (os.uname()[0], dev)
self._tempfile = open(tmpname, "w")
try:
os.chmod(tmpname, 0666)
except OSError:
pass
try: # use a lockfile to ensure exclusive access
fcntl.lockf(self._tempfile, fcntl.LOCK_EX | fcntl.LOCK_NB)
except IOError as e:
print >>sys.stderr, "device %s is in use" % dev
continue
try: # try to open the device
self.ser = serial.Serial("/dev/%s" % dev, timeout=1)
self.StopDataCollection() # just in case
self._FlushInput() # discard stale input
status = self.GetStatus()
except Exception as e:
print >>sys.stderr, "error opening device %s: %s" % (dev, e)
continue
if not status:
print >>sys.stderr, "no response from device %s" % dev
elif serialno and status["serialNumber"] != serialno:
print >>sys.stderr, ("Note: another device serial #%d seen on %s" %
(status["serialNumber"], dev))
else:
self.start_voltage = status["voltage1"]
return
self._tempfile = None
if not wait: raise IOError("No device found")
print >>sys.stderr, "waiting for device..."
time.sleep(1)
def GetStatus(self):
""" Requests and waits for status. Returns status dictionary. """
# status packet format
STATUS_FORMAT = ">BBBhhhHhhhHBBBxBbHBHHHHBbbHHBBBbbbbbbbbbBH"
STATUS_FIELDS = [
"packetType", "firmwareVersion", "protocolVersion",
"mainFineCurrent", "usbFineCurrent", "auxFineCurrent", "voltage1",
"mainCoarseCurrent", "usbCoarseCurrent", "auxCoarseCurrent", "voltage2",
"outputVoltageSetting", "temperature", "status", "leds",
"mainFineResistor", "serialNumber", "sampleRate",
"dacCalLow", "dacCalHigh",
"powerUpCurrentLimit", "runTimeCurrentLimit", "powerUpTime",
"usbFineResistor", "auxFineResistor",
"initialUsbVoltage", "initialAuxVoltage",
"hardwareRevision", "temperatureLimit", "usbPassthroughMode",
"mainCoarseResistor", "usbCoarseResistor", "auxCoarseResistor",
"defMainFineResistor", "defUsbFineResistor", "defAuxFineResistor",
"defMainCoarseResistor", "defUsbCoarseResistor", "defAuxCoarseResistor",
"eventCode", "eventData", ]
self._SendStruct("BBB", 0x01, 0x00, 0x00)
while True: # Keep reading, discarding non-status packets
bytes = self._ReadPacket()
if not bytes: return None
if len(bytes) != struct.calcsize(STATUS_FORMAT) or bytes[0] != "\x10":
print >>sys.stderr, "wanted status, dropped type=0x%02x, len=%d" % (
ord(bytes[0]), len(bytes))
continue
status = dict(zip(STATUS_FIELDS, struct.unpack(STATUS_FORMAT, bytes)))
assert status["packetType"] == 0x10
for k in status.keys():
if k.endswith("VoltageSetting"):
status[k] = 2.0 + status[k] * 0.01
elif k.endswith("FineCurrent"):
pass # needs calibration data
elif k.endswith("CoarseCurrent"):
pass # needs calibration data
elif k.startswith("voltage") or k.endswith("Voltage"):
status[k] = status[k] * 0.000125
elif k.endswith("Resistor"):
status[k] = 0.05 + status[k] * 0.0001
if k.startswith("aux") or k.startswith("defAux"): status[k] += 0.05
elif k.endswith("CurrentLimit"):
status[k] = 8 * (1023 - status[k]) / 1023.0
return status
def RampVoltage(self, start, end):
v = start
if v < 3.0: v = 3.0 # protocol doesn't support lower than this
while (v < end):
self.SetVoltage(v)
v += .1
time.sleep(.1)
self.SetVoltage(end)
def SetVoltage(self, v):
""" Set the output voltage, 0 to disable. """
if v == 0:
self._SendStruct("BBB", 0x01, 0x01, 0x00)
else:
self._SendStruct("BBB", 0x01, 0x01, int((v - 2.0) * 100))
def SetMaxCurrent(self, i):
"""Set the max output current."""
assert i >= 0 and i <= 8
val = 1023 - int((i/8)*1023)
self._SendStruct("BBB", 0x01, 0x0a, val & 0xff)
self._SendStruct("BBB", 0x01, 0x0b, val >> 8)
def SetUsbPassthrough(self, val):
""" Set the USB passthrough mode: 0 = off, 1 = on, 2 = auto. """
self._SendStruct("BBB", 0x01, 0x10, val)
def StartDataCollection(self):
""" Tell the device to start collecting and sending measurement data. """
self._SendStruct("BBB", 0x01, 0x1b, 0x01) # Mystery command
self._SendStruct("BBBBBBB", 0x02, 0xff, 0xff, 0xff, 0xff, 0x03, 0xe8)
def StopDataCollection(self):
""" Tell the device to stop collecting measurement data. """
self._SendStruct("BB", 0x03, 0x00) # stop
def CollectData(self):
""" Return some current samples. Call StartDataCollection() first. """
while True: # loop until we get data or a timeout
bytes = self._ReadPacket()
if not bytes: return None
if len(bytes) < 4 + 8 + 1 or bytes[0] < "\x20" or bytes[0] > "\x2F":
print >>sys.stderr, "wanted data, dropped type=0x%02x, len=%d" % (
ord(bytes[0]), len(bytes))
continue
seq, type, x, y = struct.unpack("BBBB", bytes[:4])
data = [struct.unpack(">hhhh", bytes[x:x+8])
for x in range(4, len(bytes) - 8, 8)]
if self._last_seq and seq & 0xF != (self._last_seq + 1) & 0xF:
print >>sys.stderr, "data sequence skipped, lost packet?"
self._last_seq = seq
if type == 0:
if not self._coarse_scale or not self._fine_scale:
print >>sys.stderr, "waiting for calibration, dropped data packet"
continue
def scale(val):
if val & 1:
return ((val & ~1) - self._coarse_zero) * self._coarse_scale
else:
return (val - self._fine_zero) * self._fine_scale
out_main = []
out_usb = []
for main, usb, aux, voltage in data:
out_main.append(scale(main))
out_usb.append(scale(usb))
return (out_main, out_usb)
elif type == 1:
self._fine_zero = data[0][0]
self._coarse_zero = data[1][0]
# print >>sys.stderr, "zero calibration: fine 0x%04x, coarse 0x%04x" % (
# self._fine_zero, self._coarse_zero)
elif type == 2:
self._fine_ref = data[0][0]
self._coarse_ref = data[1][0]
# print >>sys.stderr, "ref calibration: fine 0x%04x, coarse 0x%04x" % (
# self._fine_ref, self._coarse_ref)
else:
print >>sys.stderr, "discarding data packet type=0x%02x" % type
continue
if self._coarse_ref != self._coarse_zero:
self._coarse_scale = 2.88 / (self._coarse_ref - self._coarse_zero)
if self._fine_ref != self._fine_zero:
self._fine_scale = 0.0332 / (self._fine_ref - self._fine_zero)
def _SendStruct(self, fmt, *args):
""" Pack a struct (without length or checksum) and send it. """
data = struct.pack(fmt, *args)
data_len = len(data) + 1
checksum = (data_len + sum(struct.unpack("B" * len(data), data))) % 256
out = struct.pack("B", data_len) + data + struct.pack("B", checksum)
self.ser.write(out)
def _ReadPacket(self):
""" Read a single data record as a string (without length or checksum). """
len_char = self.ser.read(1)
if not len_char:
print >>sys.stderr, "timeout reading from serial port"
return None
data_len = struct.unpack("B", len_char)
data_len = ord(len_char)
if not data_len: return ""
result = self.ser.read(data_len)
if len(result) != data_len: return None
body = result[:-1]
checksum = (data_len + sum(struct.unpack("B" * len(body), body))) % 256
if result[-1] != struct.pack("B", checksum):
print >>sys.stderr, "invalid checksum from serial port"
return None
return result[:-1]
def _FlushInput(self):
""" Flush all read data until no more available. """
self.ser.flush()
flushed = 0
while True:
ready_r, ready_w, ready_x = select.select([self.ser], [], [self.ser], 0)
if len(ready_x) > 0:
print >>sys.stderr, "exception from serial port"
return None
elif len(ready_r) > 0:
flushed += 1
self.ser.read(1) # This may cause underlying buffering.
self.ser.flush() # Flush the underlying buffer too.
else:
break
if flushed > 0:
print >>sys.stderr, "dropped >%d bytes" % flushed
def main(argv):
""" Simple command-line interface for Monsoon."""
useful_flags = ["voltage", "status", "usbpassthrough", "samples", "current"]
if not [f for f in useful_flags if FLAGS.get(f, None) is not None]:
print __doc__.strip()
print FLAGS.MainModuleHelp()
return
if FLAGS.includeusb:
num_channels = 2
else:
num_channels = 1
if FLAGS.avg and FLAGS.avg < 0:
print "--avg must be greater than 0"
return
mon = Monsoon(device=FLAGS.device, serialno=FLAGS.serialno)
if FLAGS.voltage is not None:
if FLAGS.ramp is not None:
mon.RampVoltage(mon.start_voltage, FLAGS.voltage)
else:
mon.SetVoltage(FLAGS.voltage)
if FLAGS.current is not None:
mon.SetMaxCurrent(FLAGS.current)
if FLAGS.status:
items = sorted(mon.GetStatus().items())
print "\n".join(["%s: %s" % item for item in items])
if FLAGS.usbpassthrough:
if FLAGS.usbpassthrough == 'off':
mon.SetUsbPassthrough(0)
elif FLAGS.usbpassthrough == 'on':
mon.SetUsbPassthrough(1)
elif FLAGS.usbpassthrough == 'auto':
mon.SetUsbPassthrough(2)
else:
sys.exit('bad passthrough flag: %s' % FLAGS.usbpassthrough)
if FLAGS.samples:
# Make sure state is normal
mon.StopDataCollection()
status = mon.GetStatus()
native_hz = status["sampleRate"] * 1000
# Collect and average samples as specified
mon.StartDataCollection()
# In case FLAGS.hz doesn't divide native_hz exactly, use this invariant:
# 'offset' = (consumed samples) * FLAGS.hz - (emitted samples) * native_hz
# This is the error accumulator in a variation of Bresenham's algorithm.
emitted = offset = 0
chan_buffers = tuple([] for _ in range(num_channels))
# past n samples for rolling average
history_deques = tuple(collections.deque() for _ in range(num_channels))
try:
last_flush = time.time()
while emitted < FLAGS.samples or FLAGS.samples == -1:
# The number of raw samples to consume before emitting the next output
need = (native_hz - offset + FLAGS.hz - 1) / FLAGS.hz
if need > len(chan_buffers[0]): # still need more input samples
chans_samples = mon.CollectData()
if not all(chans_samples): break
for chan_buffer, chan_samples in zip(chan_buffers, chans_samples):
chan_buffer.extend(chan_samples)
else:
# Have enough data, generate output samples.
# Adjust for consuming 'need' input samples.
offset += need * FLAGS.hz
while offset >= native_hz: # maybe multiple, if FLAGS.hz > native_hz
this_sample = [sum(chan[:need]) / need for chan in chan_buffers]
if FLAGS.timestamp: print int(time.time()),
if FLAGS.avg:
chan_avgs = []
for chan_deque, chan_sample in zip(history_deques, this_sample):
chan_deque.appendleft(chan_sample)
if len(chan_deque) > FLAGS.avg: chan_deque.pop()
chan_avgs.append(sum(chan_deque) / len(chan_deque))
# Interleave channel rolling avgs with latest channel data
data_to_print = [datum
for pair in zip(this_sample, chan_avgs)
for datum in pair]
else:
data_to_print = this_sample
fmt = ' '.join('%f' for _ in data_to_print)
print fmt % tuple(data_to_print)
sys.stdout.flush()
offset -= native_hz
emitted += 1 # adjust for emitting 1 output sample
chan_buffers = tuple(c[need:] for c in chan_buffers)
now = time.time()
if now - last_flush >= 0.99: # flush every second
sys.stdout.flush()
last_flush = now
except KeyboardInterrupt:
print >>sys.stderr, "interrupted"
mon.StopDataCollection()
if __name__ == '__main__':
# Define flags here to avoid conflicts with people who use us as a library
flags.DEFINE_boolean("status", None, "Print power meter status")
flags.DEFINE_integer("avg", None,
"Also report average over last n data points")
flags.DEFINE_float("voltage", None, "Set output voltage (0 for off)")
flags.DEFINE_float("current", None, "Set max output current")
flags.DEFINE_string("usbpassthrough", None, "USB control (on, off, auto)")
flags.DEFINE_integer("samples", None,
"Collect and print this many samples. "
"-1 means collect indefinitely.")
flags.DEFINE_integer("hz", 5000, "Print this many samples/sec")
flags.DEFINE_string("device", None,
"Path to the device in /dev/... (ex:/dev/ttyACM1)")
flags.DEFINE_integer("serialno", None, "Look for a device with this serial number")
flags.DEFINE_boolean("timestamp", None,
"Also print integer (seconds) timestamp on each line")
flags.DEFINE_boolean("ramp", True, "Gradually increase voltage")
flags.DEFINE_boolean("includeusb", False, "Include measurements from USB channel")
main(FLAGS(sys.argv))