C++程序  |  731行  |  20.73 KB

/** @file
  Implementation for PlatformBootManagerLib library class interfaces.

  Copyright (C) 2015-2016, Red Hat, Inc.
  Copyright (c) 2014, ARM Ltd. All rights reserved.<BR>
  Copyright (c) 2004 - 2016, Intel Corporation. All rights reserved.<BR>

  This program and the accompanying materials are licensed and made available
  under the terms and conditions of the BSD License which accompanies this
  distribution. The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
  WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include <IndustryStandard/Pci22.h>
#include <Library/BootLogoLib.h>
#include <Library/DevicePathLib.h>
#include <Library/PcdLib.h>
#include <Library/QemuBootOrderLib.h>
#include <Library/UefiBootManagerLib.h>
#include <Protocol/DevicePath.h>
#include <Protocol/FirmwareVolume2.h>
#include <Protocol/GraphicsOutput.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/PciIo.h>
#include <Protocol/PciRootBridgeIo.h>
#include <Guid/EventGroup.h>
#include <Guid/RootBridgesConnectedEventGroup.h>

#include "PlatformBm.h"

#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }


#pragma pack (1)
typedef struct {
  VENDOR_DEVICE_PATH         SerialDxe;
  UART_DEVICE_PATH           Uart;
  VENDOR_DEFINED_DEVICE_PATH TermType;
  EFI_DEVICE_PATH_PROTOCOL   End;
} PLATFORM_SERIAL_CONSOLE;
#pragma pack ()

#define SERIAL_DXE_FILE_GUID { \
          0xD3987D4B, 0x971A, 0x435F, \
          { 0x8C, 0xAF, 0x49, 0x67, 0xEB, 0x62, 0x72, 0x41 } \
          }

STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
  //
  // VENDOR_DEVICE_PATH SerialDxe
  //
  {
    { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
    SERIAL_DXE_FILE_GUID
  },

  //
  // UART_DEVICE_PATH Uart
  //
  {
    { MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
    0,                                      // Reserved
    FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
    FixedPcdGet8 (PcdUartDefaultDataBits),  // DataBits
    FixedPcdGet8 (PcdUartDefaultParity),    // Parity
    FixedPcdGet8 (PcdUartDefaultStopBits)   // StopBits
  },

  //
  // VENDOR_DEFINED_DEVICE_PATH TermType
  //
  {
    {
      MESSAGING_DEVICE_PATH, MSG_VENDOR_DP,
      DP_NODE_LEN (VENDOR_DEFINED_DEVICE_PATH)
    }
    //
    // Guid to be filled in dynamically
    //
  },

  //
  // EFI_DEVICE_PATH_PROTOCOL End
  //
  {
    END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
    DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
  }
};


#pragma pack (1)
typedef struct {
  USB_CLASS_DEVICE_PATH    Keyboard;
  EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_USB_KEYBOARD;
#pragma pack ()

STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
  //
  // USB_CLASS_DEVICE_PATH Keyboard
  //
  {
    {
      MESSAGING_DEVICE_PATH, MSG_USB_CLASS_DP,
      DP_NODE_LEN (USB_CLASS_DEVICE_PATH)
    },
    0xFFFF, // VendorId: any
    0xFFFF, // ProductId: any
    3,      // DeviceClass: HID
    1,      // DeviceSubClass: boot
    1       // DeviceProtocol: keyboard
  },

  //
  // EFI_DEVICE_PATH_PROTOCOL End
  //
  {
    END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
    DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
  }
};


/**
  Check if the handle satisfies a particular condition.

  @param[in] Handle      The handle to check.
  @param[in] ReportText  A caller-allocated string passed in for reporting
                         purposes. It must never be NULL.

  @retval TRUE   The condition is satisfied.
  @retval FALSE  Otherwise. This includes the case when the condition could not
                 be fully evaluated due to an error.
**/
typedef
BOOLEAN
(EFIAPI *FILTER_FUNCTION) (
  IN EFI_HANDLE   Handle,
  IN CONST CHAR16 *ReportText
  );


/**
  Process a handle.

  @param[in] Handle      The handle to process.
  @param[in] ReportText  A caller-allocated string passed in for reporting
                         purposes. It must never be NULL.
**/
typedef
VOID
(EFIAPI *CALLBACK_FUNCTION)  (
  IN EFI_HANDLE   Handle,
  IN CONST CHAR16 *ReportText
  );

/**
  Locate all handles that carry the specified protocol, filter them with a
  callback function, and pass each handle that passes the filter to another
  callback.

  @param[in] ProtocolGuid  The protocol to look for.

  @param[in] Filter        The filter function to pass each handle to. If this
                           parameter is NULL, then all handles are processed.

  @param[in] Process       The callback function to pass each handle to that
                           clears the filter.
**/
STATIC
VOID
FilterAndProcess (
  IN EFI_GUID          *ProtocolGuid,
  IN FILTER_FUNCTION   Filter         OPTIONAL,
  IN CALLBACK_FUNCTION Process
  )
{
  EFI_STATUS Status;
  EFI_HANDLE *Handles;
  UINTN      NoHandles;
  UINTN      Idx;

  Status = gBS->LocateHandleBuffer (ByProtocol, ProtocolGuid,
                  NULL /* SearchKey */, &NoHandles, &Handles);
  if (EFI_ERROR (Status)) {
    //
    // This is not an error, just an informative condition.
    //
    DEBUG ((EFI_D_VERBOSE, "%a: %g: %r\n", __FUNCTION__, ProtocolGuid,
      Status));
    return;
  }

  ASSERT (NoHandles > 0);
  for (Idx = 0; Idx < NoHandles; ++Idx) {
    CHAR16        *DevicePathText;
    STATIC CHAR16 Fallback[] = L"<device path unavailable>";

    //
    // The ConvertDevicePathToText() function handles NULL input transparently.
    //
    DevicePathText = ConvertDevicePathToText (
                       DevicePathFromHandle (Handles[Idx]),
                       FALSE, // DisplayOnly
                       FALSE  // AllowShortcuts
                       );
    if (DevicePathText == NULL) {
      DevicePathText = Fallback;
    }

    if (Filter == NULL || Filter (Handles[Idx], DevicePathText)) {
      Process (Handles[Idx], DevicePathText);
    }

    if (DevicePathText != Fallback) {
      FreePool (DevicePathText);
    }
  }
  gBS->FreePool (Handles);
}


/**
  This FILTER_FUNCTION checks if a handle corresponds to a PCI display device.
**/
STATIC
BOOLEAN
EFIAPI
IsPciDisplay (
  IN EFI_HANDLE   Handle,
  IN CONST CHAR16 *ReportText
  )
{
  EFI_STATUS          Status;
  EFI_PCI_IO_PROTOCOL *PciIo;
  PCI_TYPE00          Pci;

  Status = gBS->HandleProtocol (Handle, &gEfiPciIoProtocolGuid,
                  (VOID**)&PciIo);
  if (EFI_ERROR (Status)) {
    //
    // This is not an error worth reporting.
    //
    return FALSE;
  }

  Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, 0 /* Offset */,
                        sizeof Pci / sizeof (UINT32), &Pci);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "%a: %s: %r\n", __FUNCTION__, ReportText, Status));
    return FALSE;
  }

  return IS_PCI_DISPLAY (&Pci);
}


/**
  This CALLBACK_FUNCTION attempts to connect a handle non-recursively, asking
  the matching driver to produce all first-level child handles.
**/
STATIC
VOID
EFIAPI
Connect (
  IN EFI_HANDLE   Handle,
  IN CONST CHAR16 *ReportText
  )
{
  EFI_STATUS Status;

  Status = gBS->ConnectController (
                  Handle, // ControllerHandle
                  NULL,   // DriverImageHandle
                  NULL,   // RemainingDevicePath -- produce all children
                  FALSE   // Recursive
                  );
  DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE, "%a: %s: %r\n",
    __FUNCTION__, ReportText, Status));
}


/**
  This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the
  handle, and adds it to ConOut and ErrOut.
**/
STATIC
VOID
EFIAPI
AddOutput (
  IN EFI_HANDLE   Handle,
  IN CONST CHAR16 *ReportText
  )
{
  EFI_STATUS               Status;
  EFI_DEVICE_PATH_PROTOCOL *DevicePath;

  DevicePath = DevicePathFromHandle (Handle);
  if (DevicePath == NULL) {
    DEBUG ((EFI_D_ERROR, "%a: %s: handle %p: device path not found\n",
      __FUNCTION__, ReportText, Handle));
    return;
  }

  Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "%a: %s: adding to ConOut: %r\n", __FUNCTION__,
      ReportText, Status));
    return;
  }

  Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "%a: %s: adding to ErrOut: %r\n", __FUNCTION__,
      ReportText, Status));
    return;
  }

  DEBUG ((EFI_D_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__,
    ReportText));
}

STATIC
VOID
PlatformRegisterFvBootOption (
  EFI_GUID                         *FileGuid,
  CHAR16                           *Description,
  UINT32                           Attributes
  )
{
  EFI_STATUS                        Status;
  INTN                              OptionIndex;
  EFI_BOOT_MANAGER_LOAD_OPTION      NewOption;
  EFI_BOOT_MANAGER_LOAD_OPTION      *BootOptions;
  UINTN                             BootOptionCount;
  MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
  EFI_LOADED_IMAGE_PROTOCOL         *LoadedImage;
  EFI_DEVICE_PATH_PROTOCOL          *DevicePath;

  Status = gBS->HandleProtocol (
                  gImageHandle,
                  &gEfiLoadedImageProtocolGuid,
                  (VOID **) &LoadedImage
                  );
  ASSERT_EFI_ERROR (Status);

  EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid);
  DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle);
  ASSERT (DevicePath != NULL);
  DevicePath = AppendDevicePathNode (
                 DevicePath,
                 (EFI_DEVICE_PATH_PROTOCOL *) &FileNode
                 );
  ASSERT (DevicePath != NULL);

  Status = EfiBootManagerInitializeLoadOption (
             &NewOption,
             LoadOptionNumberUnassigned,
             LoadOptionTypeBoot,
             Attributes,
             Description,
             DevicePath,
             NULL,
             0
             );
  ASSERT_EFI_ERROR (Status);
  FreePool (DevicePath);

  BootOptions = EfiBootManagerGetLoadOptions (
                  &BootOptionCount, LoadOptionTypeBoot
                  );

  OptionIndex = EfiBootManagerFindLoadOption (
                  &NewOption, BootOptions, BootOptionCount
                  );

  if (OptionIndex == -1) {
    Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
    ASSERT_EFI_ERROR (Status);
  }
  EfiBootManagerFreeLoadOption (&NewOption);
  EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}


/**
  Remove all MemoryMapped(...)/FvFile(...) and Fv(...)/FvFile(...) boot options
  whose device paths do not resolve exactly to an FvFile in the system.

  This removes any boot options that point to binaries built into the firmware
  and have become stale due to any of the following:
  - FvMain's base address or size changed (historical),
  - FvMain's FvNameGuid changed,
  - the FILE_GUID of the pointed-to binary changed,
  - the referenced binary is no longer built into the firmware.

  EfiBootManagerFindLoadOption() used in PlatformRegisterFvBootOption() only
  avoids exact duplicates.
**/
STATIC
VOID
RemoveStaleFvFileOptions (
  VOID
  )
{
  EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
  UINTN                        BootOptionCount;
  UINTN                        Index;

  BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount,
                  LoadOptionTypeBoot);

  for (Index = 0; Index < BootOptionCount; ++Index) {
    EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode;
    EFI_STATUS               Status;
    EFI_HANDLE               FvHandle;

    //
    // If the device path starts with neither MemoryMapped(...) nor Fv(...),
    // then keep the boot option.
    //
    Node1 = BootOptions[Index].FilePath;
    if (!(DevicePathType (Node1) == HARDWARE_DEVICE_PATH &&
          DevicePathSubType (Node1) == HW_MEMMAP_DP) &&
        !(DevicePathType (Node1) == MEDIA_DEVICE_PATH &&
          DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP)) {
      continue;
    }

    //
    // If the second device path node is not FvFile(...), then keep the boot
    // option.
    //
    Node2 = NextDevicePathNode (Node1);
    if (DevicePathType (Node2) != MEDIA_DEVICE_PATH ||
        DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP) {
      continue;
    }

    //
    // Locate the Firmware Volume2 protocol instance that is denoted by the
    // boot option. If this lookup fails (i.e., the boot option references a
    // firmware volume that doesn't exist), then we'll proceed to delete the
    // boot option.
    //
    SearchNode = Node1;
    Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid,
                    &SearchNode, &FvHandle);

    if (!EFI_ERROR (Status)) {
      //
      // The firmware volume was found; now let's see if it contains the FvFile
      // identified by GUID.
      //
      EFI_FIRMWARE_VOLUME2_PROTOCOL     *FvProtocol;
      MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode;
      UINTN                             BufferSize;
      EFI_FV_FILETYPE                   FoundType;
      EFI_FV_FILE_ATTRIBUTES            FileAttributes;
      UINT32                            AuthenticationStatus;

      Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid,
                      (VOID **)&FvProtocol);
      ASSERT_EFI_ERROR (Status);

      FvFileNode = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)Node2;
      //
      // Buffer==NULL means we request metadata only: BufferSize, FoundType,
      // FileAttributes.
      //
      Status = FvProtocol->ReadFile (
                             FvProtocol,
                             &FvFileNode->FvFileName, // NameGuid
                             NULL,                    // Buffer
                             &BufferSize,
                             &FoundType,
                             &FileAttributes,
                             &AuthenticationStatus
                             );
      if (!EFI_ERROR (Status)) {
        //
        // The FvFile was found. Keep the boot option.
        //
        continue;
      }
    }

    //
    // Delete the boot option.
    //
    Status = EfiBootManagerDeleteLoadOptionVariable (
               BootOptions[Index].OptionNumber, LoadOptionTypeBoot);
    DEBUG_CODE (
      CHAR16 *DevicePathString;

      DevicePathString = ConvertDevicePathToText(BootOptions[Index].FilePath,
                           FALSE, FALSE);
      DEBUG ((
        EFI_ERROR (Status) ? EFI_D_WARN : EFI_D_VERBOSE,
        "%a: removing stale Boot#%04x %s: %r\n",
        __FUNCTION__,
        (UINT32)BootOptions[Index].OptionNumber,
        DevicePathString == NULL ? L"<unavailable>" : DevicePathString,
        Status
        ));
      if (DevicePathString != NULL) {
        FreePool (DevicePathString);
      }
      );
  }

  EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}


STATIC
VOID
PlatformRegisterOptionsAndKeys (
  VOID
  )
{
  EFI_STATUS                   Status;
  EFI_INPUT_KEY                Enter;
  EFI_INPUT_KEY                F2;
  EFI_INPUT_KEY                Esc;
  EFI_BOOT_MANAGER_LOAD_OPTION BootOption;

  //
  // Register ENTER as CONTINUE key
  //
  Enter.ScanCode    = SCAN_NULL;
  Enter.UnicodeChar = CHAR_CARRIAGE_RETURN;
  Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
  ASSERT_EFI_ERROR (Status);

  //
  // Map F2 and ESC to Boot Manager Menu
  //
  F2.ScanCode     = SCAN_F2;
  F2.UnicodeChar  = CHAR_NULL;
  Esc.ScanCode    = SCAN_ESC;
  Esc.UnicodeChar = CHAR_NULL;
  Status = EfiBootManagerGetBootManagerMenu (&BootOption);
  ASSERT_EFI_ERROR (Status);
  Status = EfiBootManagerAddKeyOptionVariable (
             NULL, (UINT16) BootOption.OptionNumber, 0, &F2, NULL
             );
  ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
  Status = EfiBootManagerAddKeyOptionVariable (
             NULL, (UINT16) BootOption.OptionNumber, 0, &Esc, NULL
             );
  ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}


//
// BDS Platform Functions
//
/**
  Do the platform init, can be customized by OEM/IBV
  Possible things that can be done in PlatformBootManagerBeforeConsole:
  > Update console variable: 1. include hot-plug devices;
  >                          2. Clear ConIn and add SOL for AMT
  > Register new Driver#### or Boot####
  > Register new Key####: e.g.: F12
  > Signal ReadyToLock event
  > Authentication action: 1. connect Auth devices;
  >                        2. Identify auto logon user.
**/
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
  VOID
  )
{
  RETURN_STATUS PcdStatus;

  //
  // Signal EndOfDxe PI Event
  //
  EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid);

  //
  // Dispatch deferred images after EndOfDxe event.
  //
  EfiBootManagerDispatchDeferredImages ();

  //
  // Locate the PCI root bridges and make the PCI bus driver connect each,
  // non-recursively. This will produce a number of child handles with PciIo on
  // them.
  //
  FilterAndProcess (&gEfiPciRootBridgeIoProtocolGuid, NULL, Connect);

  //
  // Signal the ACPI platform driver that it can download QEMU ACPI tables.
  //
  EfiEventGroupSignal (&gRootBridgesConnectedEventGroupGuid);

  //
  // Find all display class PCI devices (using the handles from the previous
  // step), and connect them non-recursively. This should produce a number of
  // child handles with GOPs on them.
  //
  FilterAndProcess (&gEfiPciIoProtocolGuid, IsPciDisplay, Connect);

  //
  // Now add the device path of all handles with GOP on them to ConOut and
  // ErrOut.
  //
  FilterAndProcess (&gEfiGraphicsOutputProtocolGuid, NULL, AddOutput);

  //
  // Add the hardcoded short-form USB keyboard device path to ConIn.
  //
  EfiBootManagerUpdateConsoleVariable (ConIn,
    (EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard, NULL);

  //
  // Add the hardcoded serial console device path to ConIn, ConOut, ErrOut.
  //
  CopyGuid (&mSerialConsole.TermType.Guid,
    PcdGetPtr (PcdTerminalTypeGuidBuffer));
  EfiBootManagerUpdateConsoleVariable (ConIn,
    (EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
  EfiBootManagerUpdateConsoleVariable (ConOut,
    (EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
  EfiBootManagerUpdateConsoleVariable (ErrOut,
    (EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);

  //
  // Set the front page timeout from the QEMU configuration.
  //
  PcdStatus = PcdSet16S (PcdPlatformBootTimeOut,
                GetFrontPageTimeoutFromQemu ());
  ASSERT_RETURN_ERROR (PcdStatus);

  //
  // Register platform-specific boot options and keyboard shortcuts.
  //
  PlatformRegisterOptionsAndKeys ();
}

/**
  Do the platform specific action after the console is ready
  Possible things that can be done in PlatformBootManagerAfterConsole:
  > Console post action:
    > Dynamically switch output mode from 100x31 to 80x25 for certain senarino
    > Signal console ready platform customized event
  > Run diagnostics like memory testing
  > Connect certain devices
  > Dispatch aditional option roms
  > Special boot: e.g.: USB boot, enter UI
**/
VOID
EFIAPI
PlatformBootManagerAfterConsole (
  VOID
  )
{
  //
  // Show the splash screen.
  //
  BootLogoEnableLogo ();

  //
  // Connect the rest of the devices.
  //
  EfiBootManagerConnectAll ();

  //
  // Process QEMU's -kernel command line option. Note that the kernel booted
  // this way should receive ACPI tables, which is why we connect all devices
  // first (see above) -- PCI enumeration blocks ACPI table installation, if
  // there is a PCI host.
  //
  TryRunningQemuKernel ();

  //
  // Enumerate all possible boot options, then filter and reorder them based on
  // the QEMU configuration.
  //
  EfiBootManagerRefreshAllBootOption ();

  //
  // Register UEFI Shell
  //
  PlatformRegisterFvBootOption (
    PcdGetPtr (PcdShellFile), L"EFI Internal Shell", LOAD_OPTION_ACTIVE
    );

  RemoveStaleFvFileOptions ();
  SetBootOrderFromQemu ();
}

/**
  This function is called each second during the boot manager waits the
  timeout.

  @param TimeoutRemain  The remaining timeout.
**/
VOID
EFIAPI
PlatformBootManagerWaitCallback (
  UINT16          TimeoutRemain
  )
{
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
  UINT16                              Timeout;

  Timeout = PcdGet16 (PcdPlatformBootTimeOut);

  Black.Raw = 0x00000000;
  White.Raw = 0x00FFFFFF;

  BootLogoUpdateProgress (
    White.Pixel,
    Black.Pixel,
    L"Start boot option",
    White.Pixel,
    (Timeout - TimeoutRemain) * 100 / Timeout,
    0
    );
}