C++程序  |  324行  |  10.89 KB

/** @file
  Compute the base 10 logrithm of x.

  Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials are licensed and made available under
  the terms and conditions of the BSD License that accompanies this distribution.
  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================

  e_pow.c 5.1 93/09/24
  NetBSD: e_pow.c,v 1.13 2004/06/30 18:43:15 drochner Exp
**/
#include  <LibConfig.h>
#include  <sys/EfiCdefs.h>

#if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
  // C4723: potential divide by zero.
  #pragma warning ( disable : 4723 )
  // C4756: overflow in constant arithmetic
  #pragma warning ( disable : 4756 )
#endif

/* __ieee754_pow(x,y) return x**y
 *
 *          n
 * Method:  Let x =  2   * (1+f)
 *  1. Compute and return log2(x) in two pieces:
 *    log2(x) = w1 + w2,
 *     where w1 has 53-24 = 29 bit trailing zeros.
 *  2. Perform y*log2(x) = n+y' by simulating multi-precision
 *     arithmetic, where |y'|<=0.5.
 *  3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *  1.  (anything) ** 0  is 1
 *  2.  (anything) ** 1  is itself
 *  3.  (anything) ** NAN is NAN
 *  4.  NAN ** (anything except 0) is NAN
 *  5.  +-(|x| > 1) **  +INF is +INF
 *  6.  +-(|x| > 1) **  -INF is +0
 *  7.  +-(|x| < 1) **  +INF is +0
 *  8.  +-(|x| < 1) **  -INF is +INF
 *  9.  +-1         ** +-INF is NAN
 *  10. +0 ** (+anything except 0, NAN)               is +0
 *  11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *  12. +0 ** (-anything except 0, NAN)               is +INF
 *  13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *  14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *  15. +INF ** (+anything except 0,NAN) is +INF
 *  16. +INF ** (-anything except 0,NAN) is +0
 *  17. -INF ** (anything)  = -0 ** (-anything)
 *  18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *  19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *  pow(x,y) returns x**y nearly rounded. In particular
 *      pow(integer,integer)
 *  always returns the correct integer provided it is
 *  representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

#include "math.h"
#include "math_private.h"
#include  <errno.h>

static const double
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero    =  0.0,
one =  1.0,
two =  2.0,
two53 =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
huge  =  1.0e300,
tiny    =  1.0e-300,
  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

double
__ieee754_pow(double x, double y)
{
  double z,ax,z_h,z_l,p_h,p_l;
  double y1,t1,t2,r,s,t,u,v,w;
  int32_t i,j,k,yisint,n;
  int32_t hx,hy,ix,iy;
  u_int32_t lx,ly;

  EXTRACT_WORDS(hx,lx,x);
  EXTRACT_WORDS(hy,ly,y);
  ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

    /* y==zero: x**0 = 1 */
  if((iy|ly)==0) return one;

    /* +-NaN return x+y */
  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
     iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
    return x+y;

    /* determine if y is an odd int when x < 0
     * yisint = 0 ... y is not an integer
     * yisint = 1 ... y is an odd int
     * yisint = 2 ... y is an even int
     */
  yisint  = 0;
  if(hx<0) {
      if(iy>=0x43400000) yisint = 2; /* even integer y */
      else if(iy>=0x3ff00000) {
    k = (iy>>20)-0x3ff;    /* exponent */
    if(k>20) {
        j = ly>>(52-k);
        if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
    } else if(ly==0) {
        j = iy>>(20-k);
        if((j<<(20-k))==iy) yisint = 2-(j&1);
    }
      }
  }

    /* special value of y */
  if(ly==0) {
      if (iy==0x7ff00000) { /* y is +-inf */
          if(((ix-0x3ff00000)|lx)==0)
        return  y - y;  /* inf**+-1 is NaN */
          else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
        return (hy>=0)? y: zero;
          else      /* (|x|<1)**-,+inf = inf,0 */
        return (hy<0)?-y: zero;
      }
      if(iy==0x3ff00000) {  /* y is  +-1 */
    if(hy<0) return one/x; else return x;
      }
      if(hy==0x40000000) return x*x; /* y is  2 */
      if(hy==0x3fe00000) {  /* y is  0.5 */
    if(hx>=0) /* x >= +0 */
    return __ieee754_sqrt(x);
      }
  }

  ax   = fabs(x);
    /* special value of x */
  if(lx==0) {
      if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
    z = ax;     /*x is +-0,+-inf,+-1*/
    if(hy<0) z = one/z; /* z = (1/|x|) */
    if(hx<0) {
        if(((ix-0x3ff00000)|yisint)==0) {
      z = (z-z)/(z-z); /* (-1)**non-int is NaN */
        } else if(yisint==1)
      z = -z;   /* (x<0)**odd = -(|x|**odd) */
    }
    return z;
      }
  }

  n = (hx>>31)+1;

    /* (x<0)**(non-int) is NaN */
    if((n|yisint)==0) {
      errno = EDOM;
      return (x-x)/(x-x);
    }

  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

    /* |y| is huge */
  if(iy>0x41e00000) { /* if |y| > 2**31 */
      if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
    if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
    if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
      }
  /* over/underflow if x is not close to one */
      if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
      if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
  /* now |1-x| is tiny <= 2**-20, suffice to compute
     log(x) by x-x^2/2+x^3/3-x^4/4 */
      t = ax-one;   /* t has 20 trailing zeros */
      w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
      u = ivln2_h*t;  /* ivln2_h has 21 sig. bits */
      v = t*ivln2_l-w*ivln2;
      t1 = u+v;
      SET_LOW_WORD(t1,0);
      t2 = v-(t1-u);
  } else {
      double ss,s2,s_h,s_l,t_h,t_l;
      n = 0;
  /* take care subnormal number */
      if(ix<0x00100000)
    {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
      n  += ((ix)>>20)-0x3ff;
      j  = ix&0x000fffff;
  /* determine interval */
      ix = j|0x3ff00000;    /* normalize ix */
      if(j<=0x3988E) k=0;   /* |x|<sqrt(3/2) */
      else if(j<0xBB67A) k=1; /* |x|<sqrt(3)   */
      else {k=0;n+=1;ix -= 0x00100000;}
      SET_HIGH_WORD(ax,ix);

  /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
      u = ax-bp[k];   /* bp[0]=1.0, bp[1]=1.5 */
      v = one/(ax+bp[k]);
      ss = u*v;
      s_h = ss;
      SET_LOW_WORD(s_h,0);
  /* t_h=ax+bp[k] High */
      t_h = zero;
      SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
      t_l = ax - (t_h-bp[k]);
      s_l = v*((u-s_h*t_h)-s_h*t_l);
  /* compute log(ax) */
      s2 = ss*ss;
      r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
      r += s_l*(s_h+ss);
      s2  = s_h*s_h;
      t_h = 3.0+s2+r;
      SET_LOW_WORD(t_h,0);
      t_l = r-((t_h-3.0)-s2);
  /* u+v = ss*(1+...) */
      u = s_h*t_h;
      v = s_l*t_h+t_l*ss;
  /* 2/(3log2)*(ss+...) */
      p_h = u+v;
      SET_LOW_WORD(p_h,0);
      p_l = v-(p_h-u);
      z_h = cp_h*p_h;   /* cp_h+cp_l = 2/(3*log2) */
      z_l = cp_l*p_h+p_l*cp+dp_l[k];
  /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
      t = (double)n;
      t1 = (((z_h+z_l)+dp_h[k])+t);
      SET_LOW_WORD(t1,0);
      t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  }

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  y1  = y;
  SET_LOW_WORD(y1,0);
  p_l = (y-y1)*t1+y*t2;
  p_h = y1*t1;
  z = p_l+p_h;
  EXTRACT_WORDS(j,i,z);
  if (j>=0x40900000) {        /* z >= 1024 */
      if(((j-0x40900000)|i)!=0)     /* if z > 1024 */
    return s*huge*huge;     /* overflow */
      else {
    if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
      }
  } else if((j&0x7fffffff)>=0x4090cc00 ) {  /* z <= -1075 */
      if(((j-0xc090cc00)|i)!=0)     /* z < -1075 */
    return s*tiny*tiny;   /* underflow */
      else {
    if(p_l<=z-p_h) return s*tiny*tiny;  /* underflow */
      }
  }
    /*
     * compute 2**(p_h+p_l)
     */
  i = j&0x7fffffff;
  k = (i>>20)-0x3ff;
  n = 0;
  if(i>0x3fe00000) {    /* if |z| > 0.5, set n = [z+0.5] */
      n = j+(0x00100000>>(k+1));
      k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
      t = zero;
      SET_HIGH_WORD(t,n&~(0x000fffff>>k));
      n = ((n&0x000fffff)|0x00100000)>>(20-k);
      if(j<0) n = -n;
      p_h -= t;
  }
  t = p_l+p_h;
  SET_LOW_WORD(t,0);
  u = t*lg2_h;
  v = (p_l-(t-p_h))*lg2+t*lg2_l;
  z = u+v;
  w = v-(z-u);
  t  = z*z;
  t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  r  = (z*t1)/(t1-two)-(w+z*w);
  z  = one-(r-z);
  GET_HIGH_WORD(j,z);
  j += (n<<20);
  if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
  else SET_HIGH_WORD(z,j);
  return s*z;
}