/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree.
*/
/* More information about these options at jshint.com/docs/options */
'use strict';
/* This is an implementation of the algorithm for calculating the Structural
* SIMilarity (SSIM) index between two images. Please refer to the article [1],
* the website [2] and/or the Wikipedia article [3]. This code takes the value
* of the constants C1 and C2 from the Matlab implementation in [4].
*
* [1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality
* assessment: From error measurement to structural similarity",
* IEEE Transactions on Image Processing, vol. 13, no. 1, Jan. 2004.
* [2] http://www.cns.nyu.edu/~lcv/ssim/
* [3] http://en.wikipedia.org/wiki/Structural_similarity
* [4] http://www.cns.nyu.edu/~lcv/ssim/ssim_index.m
*/
function Ssim() {}
Ssim.prototype = {
// Implementation of Eq.2, a simple average of a vector and Eq.4., except the
// square root. The latter is actually an unbiased estimate of the variance,
// not the exact variance.
statistics: function(a) {
var accu = 0;
var i;
for (i = 0; i < a.length; ++i) {
accu += a[i];
}
var meanA = accu / (a.length - 1);
var diff = 0;
for (i = 1; i < a.length; ++i) {
diff = a[i - 1] - meanA;
accu += a[i] + (diff * diff);
}
return {mean : meanA, variance : accu / a.length};
},
// Implementation of Eq.11., cov(Y, Z) = E((Y - uY), (Z - uZ)).
covariance: function(a, b, meanA, meanB) {
var accu = 0;
for (var i = 0; i < a.length; i += 1) {
accu += (a[i] - meanA) * (b[i] - meanB);
}
return accu / a.length;
},
calculate: function(x, y) {
if (x.length !== y.length) {
return 0;
}
// Values of the constants come from the Matlab code referred before.
var K1 = 0.01;
var K2 = 0.03;
var L = 255;
var C1 = (K1 * L) * (K1 * L);
var C2 = (K2 * L) * (K2 * L);
var C3 = C2 / 2;
var statsX = this.statistics(x);
var muX = statsX.mean;
var sigmaX2 = statsX.variance;
var sigmaX = Math.sqrt(sigmaX2);
var statsY = this.statistics(y);
var muY = statsY.mean;
var sigmaY2 = statsY.variance;
var sigmaY = Math.sqrt(sigmaY2);
var sigmaXy = this.covariance(x, y, muX, muY);
// Implementation of Eq.6.
var luminance = (2 * muX * muY + C1) /
((muX * muX) + (muY * muY) + C1);
// Implementation of Eq.10.
var structure = (sigmaXy + C3) / (sigmaX * sigmaY + C3);
// Implementation of Eq.9.
var contrast = (2 * sigmaX * sigmaY + C2) / (sigmaX2 + sigmaY2 + C2);
// Implementation of Eq.12.
return luminance * contrast * structure;
}
};