//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//
#ifndef CS_AARCH64_ADDRESSINGMODES_H
#define CS_AARCH64_ADDRESSINGMODES_H
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2014 */
#include "../../MathExtras.h"
/// AArch64_AM - AArch64 Addressing Mode Stuff
//===----------------------------------------------------------------------===//
// Shifts
//
typedef enum AArch64_AM_ShiftExtendType {
AArch64_AM_InvalidShiftExtend = -1,
AArch64_AM_LSL = 0,
AArch64_AM_LSR,
AArch64_AM_ASR,
AArch64_AM_ROR,
AArch64_AM_MSL,
AArch64_AM_UXTB,
AArch64_AM_UXTH,
AArch64_AM_UXTW,
AArch64_AM_UXTX,
AArch64_AM_SXTB,
AArch64_AM_SXTH,
AArch64_AM_SXTW,
AArch64_AM_SXTX,
} AArch64_AM_ShiftExtendType;
/// getShiftName - Get the string encoding for the shift type.
static inline const char *AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST)
{
switch (ST) {
default: return NULL; // never reach
case AArch64_AM_LSL: return "lsl";
case AArch64_AM_LSR: return "lsr";
case AArch64_AM_ASR: return "asr";
case AArch64_AM_ROR: return "ror";
case AArch64_AM_MSL: return "msl";
case AArch64_AM_UXTB: return "uxtb";
case AArch64_AM_UXTH: return "uxth";
case AArch64_AM_UXTW: return "uxtw";
case AArch64_AM_UXTX: return "uxtx";
case AArch64_AM_SXTB: return "sxtb";
case AArch64_AM_SXTH: return "sxth";
case AArch64_AM_SXTW: return "sxtw";
case AArch64_AM_SXTX: return "sxtx";
}
}
/// getShiftType - Extract the shift type.
static inline AArch64_AM_ShiftExtendType AArch64_AM_getShiftType(unsigned Imm)
{
switch ((Imm >> 6) & 0x7) {
default: return AArch64_AM_InvalidShiftExtend;
case 0: return AArch64_AM_LSL;
case 1: return AArch64_AM_LSR;
case 2: return AArch64_AM_ASR;
case 3: return AArch64_AM_ROR;
case 4: return AArch64_AM_MSL;
}
}
/// getShiftValue - Extract the shift value.
static inline unsigned AArch64_AM_getShiftValue(unsigned Imm)
{
return Imm & 0x3f;
}
//===----------------------------------------------------------------------===//
// Extends
//
/// getArithShiftValue - get the arithmetic shift value.
static inline unsigned AArch64_AM_getArithShiftValue(unsigned Imm)
{
return Imm & 0x7;
}
/// getExtendType - Extract the extend type for operands of arithmetic ops.
static inline AArch64_AM_ShiftExtendType AArch64_AM_getExtendType(unsigned Imm)
{
// assert((Imm & 0x7) == Imm && "invalid immediate!");
switch (Imm) {
default: // llvm_unreachable("Compiler bug!");
case 0: return AArch64_AM_UXTB;
case 1: return AArch64_AM_UXTH;
case 2: return AArch64_AM_UXTW;
case 3: return AArch64_AM_UXTX;
case 4: return AArch64_AM_SXTB;
case 5: return AArch64_AM_SXTH;
case 6: return AArch64_AM_SXTW;
case 7: return AArch64_AM_SXTX;
}
}
static inline AArch64_AM_ShiftExtendType AArch64_AM_getArithExtendType(unsigned Imm)
{
return AArch64_AM_getExtendType((Imm >> 3) & 0x7);
}
static inline uint64_t ror(uint64_t elt, unsigned size)
{
return ((elt & 1) << (size-1)) | (elt >> 1);
}
/// decodeLogicalImmediate - Decode a logical immediate value in the form
/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
/// integer value it represents with regSize bits.
static inline uint64_t AArch64_AM_decodeLogicalImmediate(uint64_t val, unsigned regSize)
{
// Extract the N, imms, and immr fields.
unsigned N = (val >> 12) & 1;
unsigned immr = (val >> 6) & 0x3f;
unsigned imms = val & 0x3f;
unsigned i;
// assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
// assert(len >= 0 && "undefined logical immediate encoding");
unsigned size = (1 << len);
unsigned R = immr & (size - 1);
unsigned S = imms & (size - 1);
// assert(S != size - 1 && "undefined logical immediate encoding");
uint64_t pattern = (1ULL << (S + 1)) - 1;
for (i = 0; i < R; ++i)
pattern = ror(pattern, size);
// Replicate the pattern to fill the regSize.
while (size != regSize) {
pattern |= (pattern << size);
size *= 2;
}
return pattern;
}
/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
/// is a valid encoding for an integer value with regSize bits.
static inline bool AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize)
{
unsigned size;
unsigned S;
int len;
// Extract the N and imms fields needed for checking.
unsigned N = (val >> 12) & 1;
unsigned imms = val & 0x3f;
if (regSize == 32 && N != 0) // undefined logical immediate encoding
return false;
len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
if (len < 0) // undefined logical immediate encoding
return false;
size = (1 << len);
S = imms & (size - 1);
if (S == size - 1) // undefined logical immediate encoding
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Floating-point Immediates
//
static inline float AArch64_AM_getFPImmFloat(unsigned Imm)
{
// We expect an 8-bit binary encoding of a floating-point number here.
union {
uint32_t I;
float F;
} FPUnion;
uint8_t Sign = (Imm >> 7) & 0x1;
uint8_t Exp = (Imm >> 4) & 0x7;
uint8_t Mantissa = Imm & 0xf;
// 8-bit FP iEEEE Float Encoding
// abcd efgh aBbbbbbc defgh000 00000000 00000000
//
// where B = NOT(b);
FPUnion.I = 0;
FPUnion.I |= Sign << 31;
FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
FPUnion.I |= (Exp & 0x3) << 23;
FPUnion.I |= Mantissa << 19;
return FPUnion.F;
}
//===--------------------------------------------------------------------===//
// AdvSIMD Modified Immediates
//===--------------------------------------------------------------------===//
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm)
{
static const uint32_t lookup[16] = {
0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff,
0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff,
0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff,
0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff
};
return lookup[Imm & 0x0f] | ((uint64_t)lookup[Imm >> 4] << 32);
}
#endif