/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 2.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Default vertex attribute test
*//*--------------------------------------------------------------------*/
#include "es2fDefaultVertexAttributeTests.hpp"
#include "tcuVector.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuSurface.hpp"
#include "tcuTextureUtil.hpp"
#include "gluRenderContext.hpp"
#include "gluCallLogWrapper.hpp"
#include "gluShaderProgram.hpp"
#include "gluObjectWrapper.hpp"
#include "gluPixelTransfer.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "deMath.h"
#include "deStringUtil.hpp"
#include "deString.h"
#include <limits>
namespace deqp
{
namespace gles2
{
namespace Functional
{
namespace
{
static const int s_valueRange = 10;
static const char* const s_passThroughFragmentShaderSource = "varying mediump vec4 v_color;\n"
"void main (void)\n"
"{\n"
" gl_FragColor = v_color;\n"
"}\n";
template <typename T1, int S1, typename T2, int S2>
tcu::Vector<T1, S1> convertToTypeVec (const tcu::Vector<T2, S2>& v)
{
tcu::Vector<T1, S1> retVal;
for (int ndx = 0; ndx < S1; ++ndx)
retVal[ndx] = T1(0);
if (S1 == 4)
retVal[3] = T1(1);
for (int ndx = 0; ndx < de::min(S1, S2); ++ndx)
retVal[ndx] = T1(v[ndx]);
return retVal;
}
class FloatLoader
{
public:
virtual ~FloatLoader (void) {};
// returns the value loaded
virtual tcu::Vec4 load (glu::CallLogWrapper& gl, int index, const tcu::Vec4& v) const = 0;
};
#define GEN_DIRECT_FLOAT_LOADER(TYPE, COMPS, TYPECODE, CASENAME, VALUES) \
class LoaderVertexAttrib##COMPS##TYPECODE : public FloatLoader \
{ \
public: \
enum \
{ \
NORMALIZING = 0, \
}; \
enum \
{ \
COMPONENTS = (COMPS) \
}; \
typedef TYPE Type; \
\
tcu::Vec4 load (glu::CallLogWrapper& gl, int index, const tcu::Vec4& v) const \
{ \
tcu::Vector<TYPE, COMPONENTS> value; \
value = convertToTypeVec<Type, COMPONENTS>(v); \
\
gl.glVertexAttrib ##COMPS ##TYPECODE VALUES; \
return convertToTypeVec<float, 4>(value); \
} \
\
static const char* getCaseName (void) \
{ \
return CASENAME; \
} \
\
static const char* getName (void) \
{ \
return "VertexAttrib" #COMPS #TYPECODE; \
} \
}
#define GEN_INDIRECT_FLOAT_LOADER(TYPE, COMPS, TYPECODE, CASENAME) \
class LoaderVertexAttrib##COMPS##TYPECODE : public FloatLoader \
{ \
public: \
enum \
{ \
NORMALIZING = 0, \
}; \
enum \
{ \
COMPONENTS = (COMPS) \
}; \
typedef TYPE Type; \
\
tcu::Vec4 load (glu::CallLogWrapper& gl, int index, const tcu::Vec4& v) const \
{ \
tcu::Vector<TYPE, COMPONENTS> value; \
value = convertToTypeVec<Type, COMPONENTS>(v); \
\
gl.glVertexAttrib ##COMPS ##TYPECODE (index, value.getPtr()); \
return convertToTypeVec<float, 4>(value); \
} \
\
static const char* getCaseName (void) \
{ \
return CASENAME; \
} \
\
static const char* getName (void) \
{ \
return "VertexAttrib" #COMPS #TYPECODE; \
} \
}
GEN_DIRECT_FLOAT_LOADER(float, 1, f, "vertex_attrib_1f", (index, value.x()));
GEN_DIRECT_FLOAT_LOADER(float, 2, f, "vertex_attrib_2f", (index, value.x(), value.y()));
GEN_DIRECT_FLOAT_LOADER(float, 3, f, "vertex_attrib_3f", (index, value.x(), value.y(), value.z()));
GEN_DIRECT_FLOAT_LOADER(float, 4, f, "vertex_attrib_4f", (index, value.x(), value.y(), value.z(), value.w()));
GEN_INDIRECT_FLOAT_LOADER(float, 1, fv, "vertex_attrib_1fv");
GEN_INDIRECT_FLOAT_LOADER(float, 2, fv, "vertex_attrib_2fv");
GEN_INDIRECT_FLOAT_LOADER(float, 3, fv, "vertex_attrib_3fv");
GEN_INDIRECT_FLOAT_LOADER(float, 4, fv, "vertex_attrib_4fv");
class AttributeCase : public TestCase
{
AttributeCase (Context& ctx, const char* name, const char* desc, const char* funcName, bool normalizing, bool useNegative, glu::DataType dataType);
public:
template<typename LoaderType>
static AttributeCase* create (Context& ctx, glu::DataType dataType);
~AttributeCase (void);
private:
void init (void);
void deinit (void);
IterateResult iterate (void);
glu::DataType getTargetType (void) const;
std::string genVertexSource (void) const;
bool renderWithValue (const tcu::Vec4& v);
tcu::Vec4 computeColor (const tcu::Vec4& value);
bool verifyUnicoloredBuffer (const tcu::Surface& scene, const tcu::Vec4& refValue);
const bool m_normalizing;
const bool m_useNegativeValues;
const char* const m_funcName;
const glu::DataType m_dataType;
const FloatLoader* m_loader;
glu::ShaderProgram* m_program;
deUint32 m_bufID;
bool m_allIterationsPassed;
int m_iteration;
enum
{
RENDER_SIZE = 32
};
};
AttributeCase::AttributeCase (Context& ctx, const char* name, const char* desc, const char* funcName, bool normalizing, bool useNegative, glu::DataType dataType)
: TestCase (ctx, name, desc)
, m_normalizing (normalizing)
, m_useNegativeValues (useNegative)
, m_funcName (funcName)
, m_dataType (dataType)
, m_loader (DE_NULL)
, m_program (DE_NULL)
, m_bufID (0)
, m_allIterationsPassed (true)
, m_iteration (0)
{
}
template<typename LoaderType>
AttributeCase* AttributeCase::create (Context& ctx, glu::DataType dataType)
{
AttributeCase* retVal = new AttributeCase(ctx,
LoaderType::getCaseName(),
(std::string("Test ") + LoaderType::getName()).c_str(),
LoaderType::getName(),
LoaderType::NORMALIZING != 0,
std::numeric_limits<typename LoaderType::Type>::is_signed,
dataType);
retVal->m_loader = new LoaderType();
return retVal;
}
AttributeCase::~AttributeCase (void)
{
deinit();
}
void AttributeCase::init (void)
{
if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE)
throw tcu::NotSupportedError("Render target must be at least " + de::toString<int>(RENDER_SIZE) + "x" + de::toString<int>(RENDER_SIZE));
// log test info
{
const float maxRange = (m_normalizing) ? (1.0f) : (s_valueRange);
const float minRange = (m_useNegativeValues) ? (-maxRange) : (0.0f);
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Loading attribute values using " << m_funcName << "\n"
<< "Attribute type: " << glu::getDataTypeName(m_dataType) << "\n"
<< "Attribute value range: [" << minRange << ", " << maxRange << "]"
<< tcu::TestLog::EndMessage;
}
// gen shader and base quad
m_program = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(genVertexSource()) << glu::FragmentSource(s_passThroughFragmentShaderSource));
m_testCtx.getLog() << *m_program;
if (!m_program->isOk())
throw tcu::TestError("could not build program");
{
const tcu::Vec4 fullscreenQuad[] =
{
tcu::Vec4( 1.0f, 1.0f, 0.0f, 1.0f),
tcu::Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
tcu::Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
tcu::Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
};
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
gl.genBuffers(1, &m_bufID);
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufID);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(fullscreenQuad), fullscreenQuad, GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "fill buffer");
}
}
void AttributeCase::deinit (void)
{
delete m_loader;
m_loader = DE_NULL;
delete m_program;
m_program = DE_NULL;
if (m_bufID)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_bufID);
m_bufID = 0;
}
}
AttributeCase::IterateResult AttributeCase::iterate (void)
{
static const tcu::Vec4 testValues[] =
{
tcu::Vec4(0.0f, 0.5f, 0.2f, 1.0f),
tcu::Vec4(0.1f, 0.7f, 1.0f, 0.6f),
tcu::Vec4(0.4f, 0.2f, 0.0f, 0.5f),
tcu::Vec4(0.5f, 0.0f, 0.9f, 0.1f),
tcu::Vec4(0.6f, 0.2f, 0.2f, 0.9f),
tcu::Vec4(0.9f, 1.0f, 0.0f, 0.0f),
tcu::Vec4(1.0f, 0.5f, 0.3f, 0.8f),
};
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Iteration", "Iteration " + de::toString(m_iteration+1) + "/" + de::toString(DE_LENGTH_OF_ARRAY(testValues)));
// Test normalizing transfers with whole range, non-normalizing with up to s_valueRange
const tcu::Vec4 testValue = ((m_useNegativeValues) ? (testValues[m_iteration] * 2.0f - tcu::Vec4(1.0f)) : (testValues[m_iteration])) * ((m_normalizing) ? (1.0f) : ((float)s_valueRange));
if (!renderWithValue(testValue))
m_allIterationsPassed = false;
// continue
if (++m_iteration < DE_LENGTH_OF_ARRAY(testValues))
return CONTINUE;
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got unexpected values");
return STOP;
}
std::string AttributeCase::genVertexSource (void) const
{
const int vectorSize = (glu::isDataTypeMatrix(m_dataType)) ? (glu::getDataTypeMatrixNumRows(m_dataType)) : (glu::isDataTypeVector(m_dataType)) ? (glu::getDataTypeScalarSize(m_dataType)) : (-1);
const char* const vectorType = glu::getDataTypeName((glu::isDataTypeMatrix(m_dataType)) ? (glu::getDataTypeVector(glu::TYPE_FLOAT, vectorSize)) : (glu::isDataTypeVector(m_dataType)) ? (glu::getDataTypeVector(glu::TYPE_FLOAT, vectorSize)) : (glu::TYPE_FLOAT));
const int components = (glu::isDataTypeMatrix(m_dataType)) ? (glu::getDataTypeMatrixNumRows(m_dataType)) : (glu::getDataTypeScalarSize(m_dataType));
std::ostringstream buf;
buf << "attribute highp vec4 a_position;\n"
"attribute highp " << glu::getDataTypeName(m_dataType) << " a_value;\n"
"varying highp vec4 v_color;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"\n";
if (m_normalizing)
buf << " highp " << vectorType << " normalizedValue = " << ((glu::getDataTypeScalarType(m_dataType) == glu::TYPE_FLOAT) ? ("") : (vectorType)) << "(a_value" << ((glu::isDataTypeMatrix(m_dataType)) ? ("[1]") : ("")) << ");\n";
else
buf << " highp " << vectorType << " normalizedValue = " << ((glu::getDataTypeScalarType(m_dataType) == glu::TYPE_FLOAT) ? ("") : (vectorType)) << "(a_value" << ((glu::isDataTypeMatrix(m_dataType)) ? ("[1]") : ("")) << ") / float(" << s_valueRange << ");\n";
if (m_useNegativeValues)
buf << " highp " << vectorType << " positiveNormalizedValue = (normalizedValue + " << vectorType << "(1.0)) / 2.0;\n";
else
buf << " highp " << vectorType << " positiveNormalizedValue = normalizedValue;\n";
if (components == 1)
buf << " v_color = vec4(positiveNormalizedValue, 0.0, 0.0, 1.0);\n";
else if (components == 2)
buf << " v_color = vec4(positiveNormalizedValue.xy, 0.0, 1.0);\n";
else if (components == 3)
buf << " v_color = vec4(positiveNormalizedValue.xyz, 1.0);\n";
else if (components == 4)
buf << " v_color = vec4((positiveNormalizedValue.xy + positiveNormalizedValue.zz) / 2.0, positiveNormalizedValue.w, 1.0);\n";
else
DE_ASSERT(DE_FALSE);
buf << "}\n";
return buf.str();
}
bool AttributeCase::renderWithValue (const tcu::Vec4& v)
{
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
gl.enableLogging(true);
const int positionIndex = gl.glGetAttribLocation(m_program->getProgram(), "a_position");
const int valueIndex = gl.glGetAttribLocation(m_program->getProgram(), "a_value");
tcu::Surface dest (RENDER_SIZE, RENDER_SIZE);
tcu::Vec4 loadedValue;
gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
gl.glClear(GL_COLOR_BUFFER_BIT);
gl.glViewport(0, 0, RENDER_SIZE, RENDER_SIZE);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup");
gl.glBindBuffer(GL_ARRAY_BUFFER, m_bufID);
gl.glVertexAttribPointer(positionIndex, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.glEnableVertexAttribArray(positionIndex);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "position va");
// transfer test value. Load to the second column in the matrix case
loadedValue = m_loader->load(gl, (glu::isDataTypeMatrix(m_dataType)) ? (valueIndex + 1) : (valueIndex), v);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "default va");
gl.glUseProgram(m_program->getProgram());
gl.glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
gl.glUseProgram(0);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "draw");
glu::readPixels(m_context.getRenderContext(), 0, 0, dest.getAccess());
// check whole result is colored correctly
return verifyUnicoloredBuffer(dest, computeColor(loadedValue));
}
tcu::Vec4 AttributeCase::computeColor (const tcu::Vec4& value)
{
const tcu::Vec4 normalizedValue = value / ((m_normalizing) ? (1.0f) : ((float)s_valueRange));
const tcu::Vec4 positiveNormalizedValue = ((m_useNegativeValues) ? ((normalizedValue + tcu::Vec4(1.0f)) / 2.0f) : (normalizedValue));
const int components = (glu::isDataTypeMatrix(m_dataType)) ? (glu::getDataTypeMatrixNumRows(m_dataType)) : (glu::getDataTypeScalarSize(m_dataType));
if (components == 1)
return tcu::Vec4(positiveNormalizedValue.x(), 0.0f, 0.0f, 1.0f);
else if (components == 2)
return tcu::Vec4(positiveNormalizedValue.x(), positiveNormalizedValue.y(), 0.0f, 1.0f);
else if (components == 3)
return tcu::Vec4(positiveNormalizedValue.x(), positiveNormalizedValue.y(), positiveNormalizedValue.z(), 1.0f);
else if (components == 4)
return tcu::Vec4((positiveNormalizedValue.x() + positiveNormalizedValue.z()) / 2.0f, (positiveNormalizedValue.y() + positiveNormalizedValue.z()) / 2.0f, positiveNormalizedValue.w(), 1.0f);
else
DE_ASSERT(DE_FALSE);
return tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
bool AttributeCase::verifyUnicoloredBuffer (const tcu::Surface& scene, const tcu::Vec4& refValue)
{
tcu::Surface errorMask (RENDER_SIZE, RENDER_SIZE);
const tcu::RGBA refColor (refValue);
const int resultThreshold = 2;
const tcu::RGBA colorThreshold = m_context.getRenderTarget().getPixelFormat().getColorThreshold() * resultThreshold;
bool error = false;
tcu::RGBA exampleColor;
tcu::IVec2 examplePos;
tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toIVec());
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying rendered image. Expecting color " << refColor << ", threshold " << colorThreshold << tcu::TestLog::EndMessage;
for (int y = 0; y < RENDER_SIZE; ++y)
for (int x = 0; x < RENDER_SIZE; ++x)
{
const tcu::RGBA color = scene.getPixel(x, y);
if (de::abs(color.getRed() - refColor.getRed()) > colorThreshold.getRed() ||
de::abs(color.getGreen() - refColor.getGreen()) > colorThreshold.getGreen() ||
de::abs(color.getBlue() - refColor.getBlue()) > colorThreshold.getBlue())
{
// first error
if (!error)
{
exampleColor = color;
examplePos = tcu::IVec2(x, y);
}
error = true;
errorMask.setPixel(x, y, tcu::RGBA::red());
}
}
if (!error)
m_testCtx.getLog() << tcu::TestLog::Message << "Rendered image is valid." << tcu::TestLog::EndMessage;
else
{
m_testCtx.getLog() << tcu::TestLog::Message
<< "Found invalid pixel(s).\n"
<< "Pixel at (" << examplePos.x() << ", " << examplePos.y() << ") color: " << exampleColor
<< tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Result", "Render result")
<< tcu::TestLog::Image("Result", "Result", scene)
<< tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask)
<< tcu::TestLog::EndImageSet;
}
return !error;
}
} // anonymous
DefaultVertexAttributeTests::DefaultVertexAttributeTests (Context& context)
: TestCaseGroup(context, "default_vertex_attrib", "Test default vertex attributes")
{
}
DefaultVertexAttributeTests::~DefaultVertexAttributeTests (void)
{
}
void DefaultVertexAttributeTests::init (void)
{
struct Target
{
const char* name;
glu::DataType dataType;
bool reducedTestSets; // !< use reduced coverage
};
static const Target floatTargets[] =
{
{ "float", glu::TYPE_FLOAT, false },
{ "vec2", glu::TYPE_FLOAT_VEC2, true },
{ "vec3", glu::TYPE_FLOAT_VEC3, true },
{ "vec4", glu::TYPE_FLOAT_VEC4, false },
{ "mat2", glu::TYPE_FLOAT_MAT2, true },
{ "mat3", glu::TYPE_FLOAT_MAT3, true },
{ "mat4", glu::TYPE_FLOAT_MAT4, false },
};
// float targets
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(floatTargets); ++targetNdx)
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, floatTargets[targetNdx].name, (std::string("test with ") + floatTargets[targetNdx].name).c_str());
const bool fullSet = !floatTargets[targetNdx].reducedTestSets;
#define ADD_CASE(X) group->addChild(AttributeCase::create<X>(m_context, floatTargets[targetNdx].dataType))
#define ADD_REDUCED_CASE(X) if (fullSet) ADD_CASE(X)
ADD_CASE (LoaderVertexAttrib1f);
ADD_REDUCED_CASE(LoaderVertexAttrib2f);
ADD_REDUCED_CASE(LoaderVertexAttrib3f);
ADD_CASE (LoaderVertexAttrib4f);
ADD_CASE (LoaderVertexAttrib1fv);
ADD_REDUCED_CASE(LoaderVertexAttrib2fv);
ADD_REDUCED_CASE(LoaderVertexAttrib3fv);
ADD_CASE (LoaderVertexAttrib4fv);
#undef ADD_CASE
#undef ADD_REDUCED_CASE
addChild(group);
}
}
} // Functional
} // gles2
} // deqp