/* K=9 r=1/2 Viterbi decoder for PowerPC G4/G5 Altivec
* Copyright Feb 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <sys/sysctl.h>
#include "fec.h"
typedef union { unsigned char c[256]; vector bool char v[16]; } decision_t;
typedef union { unsigned char c[256]; vector unsigned char v[16]; } metric_t;
static union branchtab29 { unsigned char c[128]; vector unsigned char v[8]; } Branchtab29[2];
static int Init = 0;
/* State info for instance of Viterbi decoder */
struct v29 {
metric_t metrics1; /* path metric buffer 1 */
metric_t metrics2; /* path metric buffer 2 */
decision_t *dp; /* Pointer to current decision */
metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */
decision_t *decisions; /* Beginning of decisions for block */
};
/* Initialize Viterbi decoder for start of new frame */
int init_viterbi29_av(void *p,int starting_state){
struct v29 *vp = p;
int i;
if(p == NULL)
return -1;
for(i=0;i<16;i++)
vp->metrics1.v[i] = (vector unsigned char)(63);
vp->old_metrics = &vp->metrics1;
vp->new_metrics = &vp->metrics2;
vp->dp = vp->decisions;
vp->old_metrics->c[starting_state & 255] = 0; /* Bias known start state */
return 0;
}
void set_viterbi29_polynomial_av(int polys[2]){
int state;
for(state=0;state < 128;state++){
Branchtab29[0].c[state] = (polys[0] < 0) ^ parity((2*state) & abs(polys[0])) ? 255 : 0;
Branchtab29[1].c[state] = (polys[1] < 0) ^ parity((2*state) & abs(polys[1])) ? 255 : 0;
}
Init++;
}
/* Create a new instance of a Viterbi decoder */
void *create_viterbi29_av(int len){
struct v29 *vp;
if(!Init){
int polys[2] = { V29POLYA,V29POLYB };
set_viterbi29_polynomial_av(polys);
}
if((vp = (struct v29 *)malloc(sizeof(struct v29))) == NULL)
return NULL;
if((vp->decisions = (decision_t *)malloc((len+8)*sizeof(decision_t))) == NULL){
free(vp);
return NULL;
}
init_viterbi29_av(vp,0);
return vp;
}
/* Viterbi chainback */
int chainback_viterbi29_av(
void *p,
unsigned char *data, /* Decoded output data */
unsigned int nbits, /* Number of data bits */
unsigned int endstate){ /* Terminal encoder state */
struct v29 *vp = p;
decision_t *d;
if(p == NULL)
return -1;
d = (decision_t *)vp->decisions;
/* Make room beyond the end of the encoder register so we can
* accumulate a full byte of decoded data
*/
endstate %= 256;
/* The store into data[] only needs to be done every 8 bits.
* But this avoids a conditional branch, and the writes will
* combine in the cache anyway
*/
d += 8; /* Look past tail */
while(nbits-- != 0){
int k;
k = d[nbits].c[endstate] & 1;
data[nbits>>3] = endstate = (endstate >> 1) | (k << 7);
}
return 0;
}
/* Delete instance of a Viterbi decoder */
void delete_viterbi29_av(void *p){
struct v29 *vp = p;
if(vp != NULL){
free(vp->decisions);
free(vp);
}
}
int update_viterbi29_blk_av(void *p,unsigned char *syms,int nbits){
struct v29 *vp = p;
decision_t *d;
int i;
if(p == NULL)
return -1;
d = (decision_t *)vp->dp;
while(nbits--){
vector unsigned char sym1v,sym2v;
void *tmp;
/* All this seems necessary just to load a byte into all elements of a vector! */
sym1v = vec_perm(vec_ld(0,syms),vec_ld(1,syms),vec_lvsl(0,syms)); /* sym1v.0 = syms[0]; sym1v.1 = syms[1] */
sym2v = vec_splat(sym1v,1); /* Splat syms[1] across sym2v */
sym1v = vec_splat(sym1v,0); /* Splat syms[0] across sym1v */
syms += 2;
for(i=0;i<8;i++){
vector bool char decision0,decision1;
vector unsigned char metric,m_metric,m0,m1,m2,m3,survivor0,survivor1;
/* Form branch metrics */
metric = vec_avg(vec_xor(Branchtab29[0].v[i],sym1v),vec_xor(Branchtab29[1].v[i],sym2v));
metric = vec_sr(metric,(vector unsigned char)(3));
m_metric = (vector unsigned char)(31) - metric;
/* Add branch metrics to path metrics */
m0 = vec_adds(vp->old_metrics->v[i],metric);
m3 = vec_adds(vp->old_metrics->v[8+i],metric);
m1 = vec_adds(vp->old_metrics->v[8+i],m_metric);
m2 = vec_adds(vp->old_metrics->v[i],m_metric);
/* Compare and select first set */
decision0 = vec_cmpgt(m0,m1);
decision1 = vec_cmpgt(m2,m3);
survivor0 = vec_min(m0,m1);
survivor1 = vec_min(m2,m3);
/* Interleave and store decisions and survivors */
d->v[2*i] = vec_mergeh(decision0,decision1);
d->v[2*i+1] = vec_mergel(decision0,decision1);
vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1);
vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1);
}
d++;
/* renormalize if necessary */
if(vp->new_metrics->c[0] >= 50){
int i;
vector unsigned char scale0,scale1;
/* Find smallest metric and splat */
scale0 = vp->new_metrics->v[0];
scale1 = vp->new_metrics->v[1];
for(i=2;i<16;i+=2){
scale0 = vec_min(scale0,vp->new_metrics->v[i]);
scale1 = vec_min(scale1,vp->new_metrics->v[i+1]);
}
scale0 = vec_min(scale0,scale1);
scale0 = vec_min(scale0,vec_sld(scale0,scale0,8));
scale0 = vec_min(scale0,vec_sld(scale0,scale0,4));
scale0 = vec_min(scale0,vec_sld(scale0,scale0,2));
scale0 = vec_min(scale0,vec_sld(scale0,scale0,1));
/* Now subtract from all metrics */
for(i=0;i<16;i++)
vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale0);
}
/* Swap pointers to old and new metrics */
tmp = vp->old_metrics;
vp->old_metrics = vp->new_metrics;
vp->new_metrics = tmp;
}
vp->dp = d;
return 0;
}