#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <libgen.h>
#include <math.h>
#include "fio.h"
#include "diskutil.h"
#include "lib/ieee754.h"
#include "json.h"
#include "lib/getrusage.h"
#include "idletime.h"
#include "lib/pow2.h"
#include "lib/output_buffer.h"
#include "helper_thread.h"
#include "smalloc.h"
#define LOG_MSEC_SLACK 10
struct fio_mutex *stat_mutex;
void clear_rusage_stat(struct thread_data *td)
{
struct thread_stat *ts = &td->ts;
fio_getrusage(&td->ru_start);
ts->usr_time = ts->sys_time = 0;
ts->ctx = 0;
ts->minf = ts->majf = 0;
}
void update_rusage_stat(struct thread_data *td)
{
struct thread_stat *ts = &td->ts;
fio_getrusage(&td->ru_end);
ts->usr_time += mtime_since(&td->ru_start.ru_utime,
&td->ru_end.ru_utime);
ts->sys_time += mtime_since(&td->ru_start.ru_stime,
&td->ru_end.ru_stime);
ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
- (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
}
/*
* Given a latency, return the index of the corresponding bucket in
* the structure tracking percentiles.
*
* (1) find the group (and error bits) that the value (latency)
* belongs to by looking at its MSB. (2) find the bucket number in the
* group by looking at the index bits.
*
*/
static unsigned int plat_val_to_idx(unsigned int val)
{
unsigned int msb, error_bits, base, offset, idx;
/* Find MSB starting from bit 0 */
if (val == 0)
msb = 0;
else
msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
/*
* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index
*/
if (msb <= FIO_IO_U_PLAT_BITS)
return val;
/* Compute the number of error bits to discard*/
error_bits = msb - FIO_IO_U_PLAT_BITS;
/* Compute the number of buckets before the group */
base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
/*
* Discard the error bits and apply the mask to find the
* index for the buckets in the group
*/
offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
/* Make sure the index does not exceed (array size - 1) */
idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
(base + offset) : (FIO_IO_U_PLAT_NR - 1);
return idx;
}
/*
* Convert the given index of the bucket array to the value
* represented by the bucket
*/
static unsigned long long plat_idx_to_val(unsigned int idx)
{
unsigned int error_bits, k, base;
assert(idx < FIO_IO_U_PLAT_NR);
/* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index */
if (idx < (FIO_IO_U_PLAT_VAL << 1))
return idx;
/* Find the group and compute the minimum value of that group */
error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
/* Find its bucket number of the group */
k = idx % FIO_IO_U_PLAT_VAL;
/* Return the mean of the range of the bucket */
return base + ((k + 0.5) * (1 << error_bits));
}
static int double_cmp(const void *a, const void *b)
{
const fio_fp64_t fa = *(const fio_fp64_t *) a;
const fio_fp64_t fb = *(const fio_fp64_t *) b;
int cmp = 0;
if (fa.u.f > fb.u.f)
cmp = 1;
else if (fa.u.f < fb.u.f)
cmp = -1;
return cmp;
}
unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
fio_fp64_t *plist, unsigned int **output,
unsigned int *maxv, unsigned int *minv)
{
unsigned long sum = 0;
unsigned int len, i, j = 0;
unsigned int oval_len = 0;
unsigned int *ovals = NULL;
int is_last;
*minv = -1U;
*maxv = 0;
len = 0;
while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
len++;
if (!len)
return 0;
/*
* Sort the percentile list. Note that it may already be sorted if
* we are using the default values, but since it's a short list this
* isn't a worry. Also note that this does not work for NaN values.
*/
if (len > 1)
qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
/*
* Calculate bucket values, note down max and min values
*/
is_last = 0;
for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
sum += io_u_plat[i];
while (sum >= (plist[j].u.f / 100.0 * nr)) {
assert(plist[j].u.f <= 100.0);
if (j == oval_len) {
oval_len += 100;
ovals = realloc(ovals, oval_len * sizeof(unsigned int));
}
ovals[j] = plat_idx_to_val(i);
if (ovals[j] < *minv)
*minv = ovals[j];
if (ovals[j] > *maxv)
*maxv = ovals[j];
is_last = (j == len - 1);
if (is_last)
break;
j++;
}
}
*output = ovals;
return len;
}
/*
* Find and display the p-th percentile of clat
*/
static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
fio_fp64_t *plist, unsigned int precision,
struct buf_output *out)
{
unsigned int len, j = 0, minv, maxv;
unsigned int *ovals;
int is_last, per_line, scale_down;
char fmt[32];
len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
if (!len)
goto out;
/*
* We default to usecs, but if the value range is such that we
* should scale down to msecs, do that.
*/
if (minv > 2000 && maxv > 99999) {
scale_down = 1;
log_buf(out, " clat percentiles (msec):\n |");
} else {
scale_down = 0;
log_buf(out, " clat percentiles (usec):\n |");
}
snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
per_line = (80 - 7) / (precision + 14);
for (j = 0; j < len; j++) {
char fbuf[16], *ptr = fbuf;
/* for formatting */
if (j != 0 && (j % per_line) == 0)
log_buf(out, " |");
/* end of the list */
is_last = (j == len - 1);
if (plist[j].u.f < 10.0)
ptr += sprintf(fbuf, " ");
snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
if (scale_down)
ovals[j] = (ovals[j] + 999) / 1000;
log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
if (is_last)
break;
if ((j % per_line) == per_line - 1) /* for formatting */
log_buf(out, "\n");
}
out:
if (ovals)
free(ovals);
}
bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
double *mean, double *dev)
{
double n = (double) is->samples;
if (n == 0)
return false;
*min = is->min_val;
*max = is->max_val;
*mean = is->mean.u.f;
if (n > 1.0)
*dev = sqrt(is->S.u.f / (n - 1.0));
else
*dev = 0;
return true;
}
void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
{
char *io, *agg, *min, *max;
char *ioalt, *aggalt, *minalt, *maxalt;
const char *str[] = { " READ", " WRITE" , " TRIM"};
int i;
log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
const int i2p = is_power_of_2(rs->kb_base);
if (!rs->max_run[i])
continue;
io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
rs->unified_rw_rep ? " MIXED" : str[i],
agg, aggalt, min, max, minalt, maxalt, io, ioalt,
(unsigned long long) rs->min_run[i],
(unsigned long long) rs->max_run[i]);
free(io);
free(agg);
free(min);
free(max);
free(ioalt);
free(aggalt);
free(minalt);
free(maxalt);
}
}
void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
{
int i;
/*
* Do depth distribution calculations
*/
for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
if (total) {
io_u_dist[i] = (double) map[i] / (double) total;
io_u_dist[i] *= 100.0;
if (io_u_dist[i] < 0.1 && map[i])
io_u_dist[i] = 0.1;
} else
io_u_dist[i] = 0.0;
}
}
static void stat_calc_lat(struct thread_stat *ts, double *dst,
unsigned int *src, int nr)
{
unsigned long total = ddir_rw_sum(ts->total_io_u);
int i;
/*
* Do latency distribution calculations
*/
for (i = 0; i < nr; i++) {
if (total) {
dst[i] = (double) src[i] / (double) total;
dst[i] *= 100.0;
if (dst[i] < 0.01 && src[i])
dst[i] = 0.01;
} else
dst[i] = 0.0;
}
}
void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
{
stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
}
void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
{
stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
}
static void display_lat(const char *name, unsigned long min, unsigned long max,
double mean, double dev, struct buf_output *out)
{
const char *base = "(usec)";
char *minp, *maxp;
if (usec_to_msec(&min, &max, &mean, &dev))
base = "(msec)";
minp = num2str(min, 6, 1, 0, N2S_NONE);
maxp = num2str(max, 6, 1, 0, N2S_NONE);
log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
" stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
free(minp);
free(maxp);
}
static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
int ddir, struct buf_output *out)
{
const char *str[] = { " read", "write", " trim" };
unsigned long min, max, runt;
unsigned long long bw, iops;
double mean, dev;
char *io_p, *bw_p, *bw_p_alt, *iops_p;
int i2p;
assert(ddir_rw(ddir));
if (!ts->runtime[ddir])
return;
i2p = is_power_of_2(rs->kb_base);
runt = ts->runtime[ddir];
bw = (1000 * ts->io_bytes[ddir]) / runt;
io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
rs->unified_rw_rep ? "mixed" : str[ddir],
iops_p, bw_p, bw_p_alt, io_p,
(unsigned long long) ts->runtime[ddir]);
free(io_p);
free(bw_p);
free(bw_p_alt);
free(iops_p);
if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
display_lat("slat", min, max, mean, dev, out);
if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
display_lat("clat", min, max, mean, dev, out);
if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
display_lat(" lat", min, max, mean, dev, out);
if (ts->clat_percentiles) {
show_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list,
ts->percentile_precision, out);
}
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
const char *bw_str;
if ((rs->unit_base == 1) && i2p)
bw_str = "Kibit";
else if (rs->unit_base == 1)
bw_str = "kbit";
else if (i2p)
bw_str = "KiB";
else
bw_str = "kB";
if (rs->unit_base == 1) {
min *= 8.0;
max *= 8.0;
mean *= 8.0;
dev *= 8.0;
}
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
if (mean > fkb_base * fkb_base) {
min /= fkb_base;
max /= fkb_base;
mean /= fkb_base;
dev /= fkb_base;
bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
}
log_buf(out, " bw (%5s/s): min=%5lu, max=%5lu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
bw_str, min, max, p_of_agg, mean, dev);
}
}
static int show_lat(double *io_u_lat, int nr, const char **ranges,
const char *msg, struct buf_output *out)
{
int new_line = 1, i, line = 0, shown = 0;
for (i = 0; i < nr; i++) {
if (io_u_lat[i] <= 0.0)
continue;
shown = 1;
if (new_line) {
if (line)
log_buf(out, "\n");
log_buf(out, " lat (%s) : ", msg);
new_line = 0;
line = 0;
}
if (line)
log_buf(out, ", ");
log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
line++;
if (line == 5)
new_line = 1;
}
if (shown)
log_buf(out, "\n");
return shown;
}
static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
{
const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
"250=", "500=", "750=", "1000=", };
show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
}
static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
{
const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
"250=", "500=", "750=", "1000=", "2000=",
">=2000=", };
show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
}
static void show_latencies(struct thread_stat *ts, struct buf_output *out)
{
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
show_lat_u(io_u_lat_u, out);
show_lat_m(io_u_lat_m, out);
}
static int block_state_category(int block_state)
{
switch (block_state) {
case BLOCK_STATE_UNINIT:
return 0;
case BLOCK_STATE_TRIMMED:
case BLOCK_STATE_WRITTEN:
return 1;
case BLOCK_STATE_WRITE_FAILURE:
case BLOCK_STATE_TRIM_FAILURE:
return 2;
default:
/* Silence compile warning on some BSDs and have a return */
assert(0);
return -1;
}
}
static int compare_block_infos(const void *bs1, const void *bs2)
{
uint32_t block1 = *(uint32_t *)bs1;
uint32_t block2 = *(uint32_t *)bs2;
int state1 = BLOCK_INFO_STATE(block1);
int state2 = BLOCK_INFO_STATE(block2);
int bscat1 = block_state_category(state1);
int bscat2 = block_state_category(state2);
int cycles1 = BLOCK_INFO_TRIMS(block1);
int cycles2 = BLOCK_INFO_TRIMS(block2);
if (bscat1 < bscat2)
return -1;
if (bscat1 > bscat2)
return 1;
if (cycles1 < cycles2)
return -1;
if (cycles1 > cycles2)
return 1;
if (state1 < state2)
return -1;
if (state1 > state2)
return 1;
assert(block1 == block2);
return 0;
}
static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
fio_fp64_t *plist, unsigned int **percentiles,
unsigned int *types)
{
int len = 0;
int i, nr_uninit;
qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
len++;
if (!len)
return 0;
/*
* Sort the percentile list. Note that it may already be sorted if
* we are using the default values, but since it's a short list this
* isn't a worry. Also note that this does not work for NaN values.
*/
if (len > 1)
qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
nr_uninit = 0;
/* Start only after the uninit entries end */
for (nr_uninit = 0;
nr_uninit < nr_block_infos
&& BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
nr_uninit ++)
;
if (nr_uninit == nr_block_infos)
return 0;
*percentiles = calloc(len, sizeof(**percentiles));
for (i = 0; i < len; i++) {
int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
+ nr_uninit;
(*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
}
memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
for (i = 0; i < nr_block_infos; i++)
types[BLOCK_INFO_STATE(block_infos[i])]++;
return len;
}
static const char *block_state_names[] = {
[BLOCK_STATE_UNINIT] = "unwritten",
[BLOCK_STATE_TRIMMED] = "trimmed",
[BLOCK_STATE_WRITTEN] = "written",
[BLOCK_STATE_TRIM_FAILURE] = "trim failure",
[BLOCK_STATE_WRITE_FAILURE] = "write failure",
};
static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
fio_fp64_t *plist, struct buf_output *out)
{
int len, pos, i;
unsigned int *percentiles = NULL;
unsigned int block_state_counts[BLOCK_STATE_COUNT];
len = calc_block_percentiles(nr_block_infos, block_infos, plist,
&percentiles, block_state_counts);
log_buf(out, " block lifetime percentiles :\n |");
pos = 0;
for (i = 0; i < len; i++) {
uint32_t block_info = percentiles[i];
#define LINE_LENGTH 75
char str[LINE_LENGTH];
int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
plist[i].u.f, block_info,
i == len - 1 ? '\n' : ',');
assert(strln < LINE_LENGTH);
if (pos + strln > LINE_LENGTH) {
pos = 0;
log_buf(out, "\n |");
}
log_buf(out, "%s", str);
pos += strln;
#undef LINE_LENGTH
}
if (percentiles)
free(percentiles);
log_buf(out, " states :");
for (i = 0; i < BLOCK_STATE_COUNT; i++)
log_buf(out, " %s=%u%c",
block_state_names[i], block_state_counts[i],
i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
}
static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
{
char *p1, *p1alt, *p2;
unsigned long long bw_mean, iops_mean;
const int i2p = is_power_of_2(ts->kb_base);
if (!ts->ss_dur)
return;
bw_mean = steadystate_bw_mean(ts);
iops_mean = steadystate_iops_mean(ts);
p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
p1, p1alt, p2,
ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
ts->ss_criterion.u.f,
ts->ss_state & __FIO_SS_PCT ? "%" : "");
free(p1);
free(p1alt);
free(p2);
}
static void show_thread_status_normal(struct thread_stat *ts,
struct group_run_stats *rs,
struct buf_output *out)
{
double usr_cpu, sys_cpu;
unsigned long runtime;
double io_u_dist[FIO_IO_U_MAP_NR];
time_t time_p;
char time_buf[32];
if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
return;
memset(time_buf, 0, sizeof(time_buf));
time(&time_p);
os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
if (!ts->error) {
log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
ts->name, ts->groupid, ts->members,
ts->error, (int) ts->pid, time_buf);
} else {
log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
ts->name, ts->groupid, ts->members,
ts->error, ts->verror, (int) ts->pid,
time_buf);
}
if (strlen(ts->description))
log_buf(out, " Description : [%s]\n", ts->description);
if (ts->io_bytes[DDIR_READ])
show_ddir_status(rs, ts, DDIR_READ, out);
if (ts->io_bytes[DDIR_WRITE])
show_ddir_status(rs, ts, DDIR_WRITE, out);
if (ts->io_bytes[DDIR_TRIM])
show_ddir_status(rs, ts, DDIR_TRIM, out);
show_latencies(ts, out);
runtime = ts->total_run_time;
if (runtime) {
double runt = (double) runtime;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
" majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
" 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
" 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
" 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
" short=%llu,%llu,%llu,"
" dropped=%llu,%llu,%llu\n",
(unsigned long long) ts->total_io_u[0],
(unsigned long long) ts->total_io_u[1],
(unsigned long long) ts->total_io_u[2],
(unsigned long long) ts->short_io_u[0],
(unsigned long long) ts->short_io_u[1],
(unsigned long long) ts->short_io_u[2],
(unsigned long long) ts->drop_io_u[0],
(unsigned long long) ts->drop_io_u[1],
(unsigned long long) ts->drop_io_u[2]);
if (ts->continue_on_error) {
log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
(unsigned long long)ts->total_err_count,
ts->first_error,
strerror(ts->first_error));
}
if (ts->latency_depth) {
log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
(unsigned long long)ts->latency_target,
(unsigned long long)ts->latency_window,
ts->latency_percentile.u.f,
ts->latency_depth);
}
if (ts->nr_block_infos)
show_block_infos(ts->nr_block_infos, ts->block_infos,
ts->percentile_list, out);
if (ts->ss_dur)
show_ss_normal(ts, out);
}
static void show_ddir_status_terse(struct thread_stat *ts,
struct group_run_stats *rs, int ddir,
struct buf_output *out)
{
unsigned long min, max;
unsigned long long bw, iops;
unsigned int *ovals = NULL;
double mean, dev;
unsigned int len, minv, maxv;
int i;
assert(ddir_rw(ddir));
iops = bw = 0;
if (ts->runtime[ddir]) {
uint64_t runt = ts->runtime[ddir];
bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
}
log_buf(out, ";%llu;%llu;%llu;%llu",
(unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
(unsigned long long) ts->runtime[ddir]);
if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (ts->clat_percentiles) {
len = calc_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list, &ovals, &maxv,
&minv);
} else
len = 0;
for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
if (i >= len) {
log_buf(out, ";0%%=0");
continue;
}
log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
}
if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (ovals)
free(ovals);
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
double p_of_agg = 100.0;
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
} else
log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
}
static void add_ddir_status_json(struct thread_stat *ts,
struct group_run_stats *rs, int ddir, struct json_object *parent)
{
unsigned long min, max;
unsigned long long bw;
unsigned int *ovals = NULL;
double mean, dev, iops;
unsigned int len, minv, maxv;
int i;
const char *ddirname[] = {"read", "write", "trim"};
struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
char buf[120];
double p_of_agg = 100.0;
assert(ddir_rw(ddir));
if (ts->unified_rw_rep && ddir != DDIR_READ)
return;
dir_object = json_create_object();
json_object_add_value_object(parent,
ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
bw = 0;
iops = 0.0;
if (ts->runtime[ddir]) {
uint64_t runt = ts->runtime[ddir];
bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
}
json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
json_object_add_value_int(dir_object, "bw", bw);
json_object_add_value_float(dir_object, "iops", iops);
json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "slat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "clat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (ts->clat_percentiles) {
len = calc_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list, &ovals, &maxv,
&minv);
} else
len = 0;
percentile_object = json_create_object();
json_object_add_value_object(tmp_object, "percentile", percentile_object);
for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
if (i >= len) {
json_object_add_value_int(percentile_object, "0.00", 0);
continue;
}
snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
}
if (output_format & FIO_OUTPUT_JSON_PLUS) {
clat_bins_object = json_create_object();
json_object_add_value_object(tmp_object, "bins", clat_bins_object);
for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
if (ts->io_u_plat[ddir][i]) {
snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
}
}
}
if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "lat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (ovals)
free(ovals);
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
} else {
min = max = 0;
p_of_agg = mean = dev = 0.0;
}
json_object_add_value_int(dir_object, "bw_min", min);
json_object_add_value_int(dir_object, "bw_max", max);
json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
json_object_add_value_float(dir_object, "bw_mean", mean);
json_object_add_value_float(dir_object, "bw_dev", dev);
}
static void show_thread_status_terse_v2(struct thread_stat *ts,
struct group_run_stats *rs,
struct buf_output *out)
{
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
/* General Info */
log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
/* Log Read Status */
show_ddir_status_terse(ts, rs, DDIR_READ, out);
/* Log Write Status */
show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
/* Log Trim Status */
show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
/* Only show fixed 7 I/O depth levels*/
log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
io_u_dist[4], io_u_dist[5], io_u_dist[6]);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
/* Millisecond latency */
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error)
log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
log_buf(out, "\n");
/* Additional output if description is set */
if (strlen(ts->description))
log_buf(out, ";%s", ts->description);
log_buf(out, "\n");
}
static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
struct group_run_stats *rs, int ver,
struct buf_output *out)
{
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
/* General Info */
log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
ts->name, ts->groupid, ts->error);
/* Log Read Status */
show_ddir_status_terse(ts, rs, DDIR_READ, out);
/* Log Write Status */
show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
/* Log Trim Status */
if (ver == 4)
show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
/* Only show fixed 7 I/O depth levels*/
log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
io_u_dist[4], io_u_dist[5], io_u_dist[6]);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
/* Millisecond latency */
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
/* disk util stats, if any */
show_disk_util(1, NULL, out);
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error)
log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
/* Additional output if description is set */
if (strlen(ts->description))
log_buf(out, ";%s", ts->description);
log_buf(out, "\n");
}
static void json_add_job_opts(struct json_object *root, const char *name,
struct flist_head *opt_list, bool num_jobs)
{
struct json_object *dir_object;
struct flist_head *entry;
struct print_option *p;
if (flist_empty(opt_list))
return;
dir_object = json_create_object();
json_object_add_value_object(root, name, dir_object);
flist_for_each(entry, opt_list) {
const char *pos = "";
p = flist_entry(entry, struct print_option, list);
if (!num_jobs && !strcmp(p->name, "numjobs"))
continue;
if (p->value)
pos = p->value;
json_object_add_value_string(dir_object, p->name, pos);
}
}
static struct json_object *show_thread_status_json(struct thread_stat *ts,
struct group_run_stats *rs,
struct flist_head *opt_list)
{
struct json_object *root, *tmp;
struct jobs_eta *je;
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
size_t size;
root = json_create_object();
json_object_add_value_string(root, "jobname", ts->name);
json_object_add_value_int(root, "groupid", ts->groupid);
json_object_add_value_int(root, "error", ts->error);
/* ETA Info */
je = get_jobs_eta(true, &size);
if (je) {
json_object_add_value_int(root, "eta", je->eta_sec);
json_object_add_value_int(root, "elapsed", je->elapsed_sec);
}
if (opt_list)
json_add_job_opts(root, "job options", opt_list, true);
add_ddir_status_json(ts, rs, DDIR_READ, root);
add_ddir_status_json(ts, rs, DDIR_WRITE, root);
add_ddir_status_json(ts, rs, DDIR_TRIM, root);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
json_object_add_value_float(root, "usr_cpu", usr_cpu);
json_object_add_value_float(root, "sys_cpu", sys_cpu);
json_object_add_value_int(root, "ctx", ts->ctx);
json_object_add_value_int(root, "majf", ts->majf);
json_object_add_value_int(root, "minf", ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
tmp = json_create_object();
json_object_add_value_object(root, "iodepth_level", tmp);
/* Only show fixed 7 I/O depth levels*/
for (i = 0; i < 7; i++) {
char name[20];
if (i < 6)
snprintf(name, 20, "%d", 1 << i);
else
snprintf(name, 20, ">=%d", 1 << i);
json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
}
tmp = json_create_object();
json_object_add_value_object(root, "latency_us", tmp);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
const char *ranges[] = { "2", "4", "10", "20", "50", "100",
"250", "500", "750", "1000", };
json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
}
/* Millisecond latency */
tmp = json_create_object();
json_object_add_value_object(root, "latency_ms", tmp);
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
const char *ranges[] = { "2", "4", "10", "20", "50", "100",
"250", "500", "750", "1000", "2000",
">=2000", };
json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
}
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error) {
json_object_add_value_int(root, "total_err", ts->total_err_count);
json_object_add_value_int(root, "first_error", ts->first_error);
}
if (ts->latency_depth) {
json_object_add_value_int(root, "latency_depth", ts->latency_depth);
json_object_add_value_int(root, "latency_target", ts->latency_target);
json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
json_object_add_value_int(root, "latency_window", ts->latency_window);
}
/* Additional output if description is set */
if (strlen(ts->description))
json_object_add_value_string(root, "desc", ts->description);
if (ts->nr_block_infos) {
/* Block error histogram and types */
int len;
unsigned int *percentiles = NULL;
unsigned int block_state_counts[BLOCK_STATE_COUNT];
len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
ts->percentile_list,
&percentiles, block_state_counts);
if (len) {
struct json_object *block, *percentile_object, *states;
int state;
block = json_create_object();
json_object_add_value_object(root, "block", block);
percentile_object = json_create_object();
json_object_add_value_object(block, "percentiles",
percentile_object);
for (i = 0; i < len; i++) {
char buf[20];
snprintf(buf, sizeof(buf), "%f",
ts->percentile_list[i].u.f);
json_object_add_value_int(percentile_object,
(const char *)buf,
percentiles[i]);
}
states = json_create_object();
json_object_add_value_object(block, "states", states);
for (state = 0; state < BLOCK_STATE_COUNT; state++) {
json_object_add_value_int(states,
block_state_names[state],
block_state_counts[state]);
}
free(percentiles);
}
}
if (ts->ss_dur) {
struct json_object *data;
struct json_array *iops, *bw;
int i, j, k;
char ss_buf[64];
snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
(float) ts->ss_limit.u.f,
ts->ss_state & __FIO_SS_PCT ? "%" : "");
tmp = json_create_object();
json_object_add_value_object(root, "steadystate", tmp);
json_object_add_value_string(tmp, "ss", ss_buf);
json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
ts->ss_state & __FIO_SS_PCT ? "%" : "");
json_object_add_value_string(tmp, "criterion", ss_buf);
json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
data = json_create_object();
json_object_add_value_object(tmp, "data", data);
bw = json_create_array();
iops = json_create_array();
/*
** if ss was attained or the buffer is not full,
** ss->head points to the first element in the list.
** otherwise it actually points to the second element
** in the list
*/
if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
j = ts->ss_head;
else
j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
for (i = 0; i < ts->ss_dur; i++) {
k = (j + i) % ts->ss_dur;
json_array_add_value_int(bw, ts->ss_bw_data[k]);
json_array_add_value_int(iops, ts->ss_iops_data[k]);
}
json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
json_object_add_value_array(data, "iops", iops);
json_object_add_value_array(data, "bw", bw);
}
return root;
}
static void show_thread_status_terse(struct thread_stat *ts,
struct group_run_stats *rs,
struct buf_output *out)
{
if (terse_version == 2)
show_thread_status_terse_v2(ts, rs, out);
else if (terse_version == 3 || terse_version == 4)
show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
else
log_err("fio: bad terse version!? %d\n", terse_version);
}
struct json_object *show_thread_status(struct thread_stat *ts,
struct group_run_stats *rs,
struct flist_head *opt_list,
struct buf_output *out)
{
struct json_object *ret = NULL;
if (output_format & FIO_OUTPUT_TERSE)
show_thread_status_terse(ts, rs, out);
if (output_format & FIO_OUTPUT_JSON)
ret = show_thread_status_json(ts, rs, opt_list);
if (output_format & FIO_OUTPUT_NORMAL)
show_thread_status_normal(ts, rs, out);
return ret;
}
static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
{
double mean, S;
if (src->samples == 0)
return;
dst->min_val = min(dst->min_val, src->min_val);
dst->max_val = max(dst->max_val, src->max_val);
/*
* Compute new mean and S after the merge
* <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
* #Parallel_algorithm>
*/
if (first) {
mean = src->mean.u.f;
S = src->S.u.f;
} else {
double delta = src->mean.u.f - dst->mean.u.f;
mean = ((src->mean.u.f * src->samples) +
(dst->mean.u.f * dst->samples)) /
(dst->samples + src->samples);
S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
(dst->samples * src->samples) /
(dst->samples + src->samples);
}
dst->samples += src->samples;
dst->mean.u.f = mean;
dst->S.u.f = S;
}
void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
{
int i;
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
if (dst->max_run[i] < src->max_run[i])
dst->max_run[i] = src->max_run[i];
if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
dst->min_run[i] = src->min_run[i];
if (dst->max_bw[i] < src->max_bw[i])
dst->max_bw[i] = src->max_bw[i];
if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
dst->min_bw[i] = src->min_bw[i];
dst->iobytes[i] += src->iobytes[i];
dst->agg[i] += src->agg[i];
}
if (!dst->kb_base)
dst->kb_base = src->kb_base;
if (!dst->unit_base)
dst->unit_base = src->unit_base;
}
void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
bool first)
{
int l, k;
for (l = 0; l < DDIR_RWDIR_CNT; l++) {
if (!dst->unified_rw_rep) {
sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
dst->io_bytes[l] += src->io_bytes[l];
if (dst->runtime[l] < src->runtime[l])
dst->runtime[l] = src->runtime[l];
} else {
sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
dst->io_bytes[0] += src->io_bytes[l];
if (dst->runtime[0] < src->runtime[l])
dst->runtime[0] = src->runtime[l];
/*
* We're summing to the same destination, so override
* 'first' after the first iteration of the loop
*/
first = false;
}
}
dst->usr_time += src->usr_time;
dst->sys_time += src->sys_time;
dst->ctx += src->ctx;
dst->majf += src->majf;
dst->minf += src->minf;
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_map[k] += src->io_u_map[k];
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_submit[k] += src->io_u_submit[k];
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_complete[k] += src->io_u_complete[k];
for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
dst->io_u_lat_u[k] += src->io_u_lat_u[k];
for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
dst->io_u_lat_m[k] += src->io_u_lat_m[k];
for (k = 0; k < DDIR_RWDIR_CNT; k++) {
if (!dst->unified_rw_rep) {
dst->total_io_u[k] += src->total_io_u[k];
dst->short_io_u[k] += src->short_io_u[k];
dst->drop_io_u[k] += src->drop_io_u[k];
} else {
dst->total_io_u[0] += src->total_io_u[k];
dst->short_io_u[0] += src->short_io_u[k];
dst->drop_io_u[0] += src->drop_io_u[k];
}
}
for (k = 0; k < DDIR_RWDIR_CNT; k++) {
int m;
for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
if (!dst->unified_rw_rep)
dst->io_u_plat[k][m] += src->io_u_plat[k][m];
else
dst->io_u_plat[0][m] += src->io_u_plat[k][m];
}
}
dst->total_run_time += src->total_run_time;
dst->total_submit += src->total_submit;
dst->total_complete += src->total_complete;
}
void init_group_run_stat(struct group_run_stats *gs)
{
int i;
memset(gs, 0, sizeof(*gs));
for (i = 0; i < DDIR_RWDIR_CNT; i++)
gs->min_bw[i] = gs->min_run[i] = ~0UL;
}
void init_thread_stat(struct thread_stat *ts)
{
int j;
memset(ts, 0, sizeof(*ts));
for (j = 0; j < DDIR_RWDIR_CNT; j++) {
ts->lat_stat[j].min_val = -1UL;
ts->clat_stat[j].min_val = -1UL;
ts->slat_stat[j].min_val = -1UL;
ts->bw_stat[j].min_val = -1UL;
}
ts->groupid = -1;
}
void __show_run_stats(void)
{
struct group_run_stats *runstats, *rs;
struct thread_data *td;
struct thread_stat *threadstats, *ts;
int i, j, k, nr_ts, last_ts, idx;
int kb_base_warned = 0;
int unit_base_warned = 0;
struct json_object *root = NULL;
struct json_array *array = NULL;
struct buf_output output[FIO_OUTPUT_NR];
struct flist_head **opt_lists;
runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
for (i = 0; i < groupid + 1; i++)
init_group_run_stat(&runstats[i]);
/*
* find out how many threads stats we need. if group reporting isn't
* enabled, it's one-per-td.
*/
nr_ts = 0;
last_ts = -1;
for_each_td(td, i) {
if (!td->o.group_reporting) {
nr_ts++;
continue;
}
if (last_ts == td->groupid)
continue;
if (!td->o.stats)
continue;
last_ts = td->groupid;
nr_ts++;
}
threadstats = malloc(nr_ts * sizeof(struct thread_stat));
opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
for (i = 0; i < nr_ts; i++) {
init_thread_stat(&threadstats[i]);
opt_lists[i] = NULL;
}
j = 0;
last_ts = -1;
idx = 0;
for_each_td(td, i) {
if (!td->o.stats)
continue;
if (idx && (!td->o.group_reporting ||
(td->o.group_reporting && last_ts != td->groupid))) {
idx = 0;
j++;
}
last_ts = td->groupid;
ts = &threadstats[j];
ts->clat_percentiles = td->o.clat_percentiles;
ts->percentile_precision = td->o.percentile_precision;
memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
opt_lists[j] = &td->opt_list;
idx++;
ts->members++;
if (ts->groupid == -1) {
/*
* These are per-group shared already
*/
strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
if (td->o.description)
strncpy(ts->description, td->o.description,
FIO_JOBDESC_SIZE - 1);
else
memset(ts->description, 0, FIO_JOBDESC_SIZE);
/*
* If multiple entries in this group, this is
* the first member.
*/
ts->thread_number = td->thread_number;
ts->groupid = td->groupid;
/*
* first pid in group, not very useful...
*/
ts->pid = td->pid;
ts->kb_base = td->o.kb_base;
ts->unit_base = td->o.unit_base;
ts->unified_rw_rep = td->o.unified_rw_rep;
} else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
log_info("fio: kb_base differs for jobs in group, using"
" %u as the base\n", ts->kb_base);
kb_base_warned = 1;
} else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
log_info("fio: unit_base differs for jobs in group, using"
" %u as the base\n", ts->unit_base);
unit_base_warned = 1;
}
ts->continue_on_error = td->o.continue_on_error;
ts->total_err_count += td->total_err_count;
ts->first_error = td->first_error;
if (!ts->error) {
if (!td->error && td->o.continue_on_error &&
td->first_error) {
ts->error = td->first_error;
ts->verror[sizeof(ts->verror) - 1] = '\0';
strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
} else if (td->error) {
ts->error = td->error;
ts->verror[sizeof(ts->verror) - 1] = '\0';
strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
}
}
ts->latency_depth = td->latency_qd;
ts->latency_target = td->o.latency_target;
ts->latency_percentile = td->o.latency_percentile;
ts->latency_window = td->o.latency_window;
ts->nr_block_infos = td->ts.nr_block_infos;
for (k = 0; k < ts->nr_block_infos; k++)
ts->block_infos[k] = td->ts.block_infos[k];
sum_thread_stats(ts, &td->ts, idx == 1);
if (td->o.ss_dur) {
ts->ss_state = td->ss.state;
ts->ss_dur = td->ss.dur;
ts->ss_head = td->ss.head;
ts->ss_bw_data = td->ss.bw_data;
ts->ss_iops_data = td->ss.iops_data;
ts->ss_limit.u.f = td->ss.limit;
ts->ss_slope.u.f = td->ss.slope;
ts->ss_deviation.u.f = td->ss.deviation;
ts->ss_criterion.u.f = td->ss.criterion;
}
else
ts->ss_dur = ts->ss_state = 0;
}
for (i = 0; i < nr_ts; i++) {
unsigned long long bw;
ts = &threadstats[i];
if (ts->groupid == -1)
continue;
rs = &runstats[ts->groupid];
rs->kb_base = ts->kb_base;
rs->unit_base = ts->unit_base;
rs->unified_rw_rep += ts->unified_rw_rep;
for (j = 0; j < DDIR_RWDIR_CNT; j++) {
if (!ts->runtime[j])
continue;
if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
rs->min_run[j] = ts->runtime[j];
if (ts->runtime[j] > rs->max_run[j])
rs->max_run[j] = ts->runtime[j];
bw = 0;
if (ts->runtime[j])
bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
if (bw < rs->min_bw[j])
rs->min_bw[j] = bw;
if (bw > rs->max_bw[j])
rs->max_bw[j] = bw;
rs->iobytes[j] += ts->io_bytes[j];
}
}
for (i = 0; i < groupid + 1; i++) {
int ddir;
rs = &runstats[i];
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
if (rs->max_run[ddir])
rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
rs->max_run[ddir];
}
}
for (i = 0; i < FIO_OUTPUT_NR; i++)
buf_output_init(&output[i]);
/*
* don't overwrite last signal output
*/
if (output_format & FIO_OUTPUT_NORMAL)
log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
if (output_format & FIO_OUTPUT_JSON) {
struct thread_data *global;
char time_buf[32];
struct timeval now;
unsigned long long ms_since_epoch;
gettimeofday(&now, NULL);
ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
(unsigned long long)(now.tv_usec) / 1000;
os_ctime_r((const time_t *) &now.tv_sec, time_buf,
sizeof(time_buf));
if (time_buf[strlen(time_buf) - 1] == '\n')
time_buf[strlen(time_buf) - 1] = '\0';
root = json_create_object();
json_object_add_value_string(root, "fio version", fio_version_string);
json_object_add_value_int(root, "timestamp", now.tv_sec);
json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
json_object_add_value_string(root, "time", time_buf);
global = get_global_options();
json_add_job_opts(root, "global options", &global->opt_list, false);
array = json_create_array();
json_object_add_value_array(root, "jobs", array);
}
if (is_backend)
fio_server_send_job_options(&get_global_options()->opt_list, -1U);
for (i = 0; i < nr_ts; i++) {
ts = &threadstats[i];
rs = &runstats[ts->groupid];
if (is_backend) {
fio_server_send_job_options(opt_lists[i], i);
fio_server_send_ts(ts, rs);
} else {
if (output_format & FIO_OUTPUT_TERSE)
show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
if (output_format & FIO_OUTPUT_JSON) {
struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
json_array_add_value_object(array, tmp);
}
if (output_format & FIO_OUTPUT_NORMAL)
show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
}
}
if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
/* disk util stats, if any */
show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
json_print_object(root, &output[__FIO_OUTPUT_JSON]);
log_buf(&output[__FIO_OUTPUT_JSON], "\n");
json_free_object(root);
}
for (i = 0; i < groupid + 1; i++) {
rs = &runstats[i];
rs->groupid = i;
if (is_backend)
fio_server_send_gs(rs);
else if (output_format & FIO_OUTPUT_NORMAL)
show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
}
if (is_backend)
fio_server_send_du();
else if (output_format & FIO_OUTPUT_NORMAL) {
show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
}
for (i = 0; i < FIO_OUTPUT_NR; i++) {
buf_output_flush(&output[i]);
buf_output_free(&output[i]);
}
log_info_flush();
free(runstats);
free(threadstats);
free(opt_lists);
}
void show_run_stats(void)
{
fio_mutex_down(stat_mutex);
__show_run_stats();
fio_mutex_up(stat_mutex);
}
void __show_running_run_stats(void)
{
struct thread_data *td;
unsigned long long *rt;
struct timeval tv;
int i;
fio_mutex_down(stat_mutex);
rt = malloc(thread_number * sizeof(unsigned long long));
fio_gettime(&tv, NULL);
for_each_td(td, i) {
td->update_rusage = 1;
td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
td->ts.total_run_time = mtime_since(&td->epoch, &tv);
rt[i] = mtime_since(&td->start, &tv);
if (td_read(td) && td->ts.io_bytes[DDIR_READ])
td->ts.runtime[DDIR_READ] += rt[i];
if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
td->ts.runtime[DDIR_WRITE] += rt[i];
if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
td->ts.runtime[DDIR_TRIM] += rt[i];
}
for_each_td(td, i) {
if (td->runstate >= TD_EXITED)
continue;
if (td->rusage_sem) {
td->update_rusage = 1;
fio_mutex_down(td->rusage_sem);
}
td->update_rusage = 0;
}
__show_run_stats();
for_each_td(td, i) {
if (td_read(td) && td->ts.io_bytes[DDIR_READ])
td->ts.runtime[DDIR_READ] -= rt[i];
if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
td->ts.runtime[DDIR_WRITE] -= rt[i];
if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
td->ts.runtime[DDIR_TRIM] -= rt[i];
}
free(rt);
fio_mutex_up(stat_mutex);
}
static int status_interval_init;
static struct timeval status_time;
static int status_file_disabled;
#define FIO_STATUS_FILE "fio-dump-status"
static int check_status_file(void)
{
struct stat sb;
const char *temp_dir;
char fio_status_file_path[PATH_MAX];
if (status_file_disabled)
return 0;
temp_dir = getenv("TMPDIR");
if (temp_dir == NULL) {
temp_dir = getenv("TEMP");
if (temp_dir && strlen(temp_dir) >= PATH_MAX)
temp_dir = NULL;
}
if (temp_dir == NULL)
temp_dir = "/tmp";
snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
if (stat(fio_status_file_path, &sb))
return 0;
if (unlink(fio_status_file_path) < 0) {
log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
strerror(errno));
log_err("fio: disabling status file updates\n");
status_file_disabled = 1;
}
return 1;
}
void check_for_running_stats(void)
{
if (status_interval) {
if (!status_interval_init) {
fio_gettime(&status_time, NULL);
status_interval_init = 1;
} else if (mtime_since_now(&status_time) >= status_interval) {
show_running_run_stats();
fio_gettime(&status_time, NULL);
return;
}
}
if (check_status_file()) {
show_running_run_stats();
return;
}
}
static inline void add_stat_sample(struct io_stat *is, unsigned long data)
{
double val = data;
double delta;
if (data > is->max_val)
is->max_val = data;
if (data < is->min_val)
is->min_val = data;
delta = val - is->mean.u.f;
if (delta) {
is->mean.u.f += delta / (is->samples + 1.0);
is->S.u.f += delta * (val - is->mean.u.f);
}
is->samples++;
}
/*
* Return a struct io_logs, which is added to the tail of the log
* list for 'iolog'.
*/
static struct io_logs *get_new_log(struct io_log *iolog)
{
size_t new_size, new_samples;
struct io_logs *cur_log;
/*
* Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
* forever
*/
if (!iolog->cur_log_max)
new_samples = DEF_LOG_ENTRIES;
else {
new_samples = iolog->cur_log_max * 2;
if (new_samples > MAX_LOG_ENTRIES)
new_samples = MAX_LOG_ENTRIES;
}
new_size = new_samples * log_entry_sz(iolog);
cur_log = smalloc(sizeof(*cur_log));
if (cur_log) {
INIT_FLIST_HEAD(&cur_log->list);
cur_log->log = malloc(new_size);
if (cur_log->log) {
cur_log->nr_samples = 0;
cur_log->max_samples = new_samples;
flist_add_tail(&cur_log->list, &iolog->io_logs);
iolog->cur_log_max = new_samples;
return cur_log;
}
sfree(cur_log);
}
return NULL;
}
/*
* Add and return a new log chunk, or return current log if big enough
*/
static struct io_logs *regrow_log(struct io_log *iolog)
{
struct io_logs *cur_log;
int i;
if (!iolog || iolog->disabled)
goto disable;
cur_log = iolog_cur_log(iolog);
if (!cur_log) {
cur_log = get_new_log(iolog);
if (!cur_log)
return NULL;
}
if (cur_log->nr_samples < cur_log->max_samples)
return cur_log;
/*
* No room for a new sample. If we're compressing on the fly, flush
* out the current chunk
*/
if (iolog->log_gz) {
if (iolog_cur_flush(iolog, cur_log)) {
log_err("fio: failed flushing iolog! Will stop logging.\n");
return NULL;
}
}
/*
* Get a new log array, and add to our list
*/
cur_log = get_new_log(iolog);
if (!cur_log) {
log_err("fio: failed extending iolog! Will stop logging.\n");
return NULL;
}
if (!iolog->pending || !iolog->pending->nr_samples)
return cur_log;
/*
* Flush pending items to new log
*/
for (i = 0; i < iolog->pending->nr_samples; i++) {
struct io_sample *src, *dst;
src = get_sample(iolog, iolog->pending, i);
dst = get_sample(iolog, cur_log, i);
memcpy(dst, src, log_entry_sz(iolog));
}
cur_log->nr_samples = iolog->pending->nr_samples;
iolog->pending->nr_samples = 0;
return cur_log;
disable:
if (iolog)
iolog->disabled = true;
return NULL;
}
void regrow_logs(struct thread_data *td)
{
regrow_log(td->slat_log);
regrow_log(td->clat_log);
regrow_log(td->clat_hist_log);
regrow_log(td->lat_log);
regrow_log(td->bw_log);
regrow_log(td->iops_log);
td->flags &= ~TD_F_REGROW_LOGS;
}
static struct io_logs *get_cur_log(struct io_log *iolog)
{
struct io_logs *cur_log;
cur_log = iolog_cur_log(iolog);
if (!cur_log) {
cur_log = get_new_log(iolog);
if (!cur_log)
return NULL;
}
if (cur_log->nr_samples < cur_log->max_samples)
return cur_log;
/*
* Out of space. If we're in IO offload mode, or we're not doing
* per unit logging (hence logging happens outside of the IO thread
* as well), add a new log chunk inline. If we're doing inline
* submissions, flag 'td' as needing a log regrow and we'll take
* care of it on the submission side.
*/
if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
!per_unit_log(iolog))
return regrow_log(iolog);
iolog->td->flags |= TD_F_REGROW_LOGS;
assert(iolog->pending->nr_samples < iolog->pending->max_samples);
return iolog->pending;
}
static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
enum fio_ddir ddir, unsigned int bs,
unsigned long t, uint64_t offset)
{
struct io_logs *cur_log;
if (iolog->disabled)
return;
if (flist_empty(&iolog->io_logs))
iolog->avg_last = t;
cur_log = get_cur_log(iolog);
if (cur_log) {
struct io_sample *s;
s = get_sample(iolog, cur_log, cur_log->nr_samples);
s->data = data;
s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
io_sample_set_ddir(iolog, s, ddir);
s->bs = bs;
if (iolog->log_offset) {
struct io_sample_offset *so = (void *) s;
so->offset = offset;
}
cur_log->nr_samples++;
return;
}
iolog->disabled = true;
}
static inline void reset_io_stat(struct io_stat *ios)
{
ios->max_val = ios->min_val = ios->samples = 0;
ios->mean.u.f = ios->S.u.f = 0;
}
void reset_io_stats(struct thread_data *td)
{
struct thread_stat *ts = &td->ts;
int i, j;
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
reset_io_stat(&ts->clat_stat[i]);
reset_io_stat(&ts->slat_stat[i]);
reset_io_stat(&ts->lat_stat[i]);
reset_io_stat(&ts->bw_stat[i]);
reset_io_stat(&ts->iops_stat[i]);
ts->io_bytes[i] = 0;
ts->runtime[i] = 0;
ts->total_io_u[i] = 0;
ts->short_io_u[i] = 0;
ts->drop_io_u[i] = 0;
for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
ts->io_u_plat[i][j] = 0;
}
for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
ts->io_u_map[i] = 0;
ts->io_u_submit[i] = 0;
ts->io_u_complete[i] = 0;
}
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
ts->io_u_lat_u[i] = 0;
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
ts->io_u_lat_m[i] = 0;
ts->total_submit = 0;
ts->total_complete = 0;
}
static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
unsigned long elapsed, bool log_max)
{
/*
* Note an entry in the log. Use the mean from the logged samples,
* making sure to properly round up. Only write a log entry if we
* had actual samples done.
*/
if (iolog->avg_window[ddir].samples) {
union io_sample_data data;
if (log_max)
data.val = iolog->avg_window[ddir].max_val;
else
data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
__add_log_sample(iolog, data, ddir, 0, elapsed, 0);
}
reset_io_stat(&iolog->avg_window[ddir]);
}
static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
bool log_max)
{
int ddir;
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
__add_stat_to_log(iolog, ddir, elapsed, log_max);
}
static long add_log_sample(struct thread_data *td, struct io_log *iolog,
union io_sample_data data, enum fio_ddir ddir,
unsigned int bs, uint64_t offset)
{
unsigned long elapsed, this_window;
if (!ddir_rw(ddir))
return 0;
elapsed = mtime_since_now(&td->epoch);
/*
* If no time averaging, just add the log sample.
*/
if (!iolog->avg_msec) {
__add_log_sample(iolog, data, ddir, bs, elapsed, offset);
return 0;
}
/*
* Add the sample. If the time period has passed, then
* add that entry to the log and clear.
*/
add_stat_sample(&iolog->avg_window[ddir], data.val);
/*
* If period hasn't passed, adding the above sample is all we
* need to do.
*/
this_window = elapsed - iolog->avg_last;
if (elapsed < iolog->avg_last)
return iolog->avg_last - elapsed;
else if (this_window < iolog->avg_msec) {
int diff = iolog->avg_msec - this_window;
if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
return diff;
}
_add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
return iolog->avg_msec;
}
void finalize_logs(struct thread_data *td, bool unit_logs)
{
unsigned long elapsed;
elapsed = mtime_since_now(&td->epoch);
if (td->clat_log && unit_logs)
_add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
if (td->slat_log && unit_logs)
_add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
if (td->lat_log && unit_logs)
_add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
_add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
_add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
}
void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
{
struct io_log *iolog;
if (!ddir_rw(ddir))
return;
iolog = agg_io_log[ddir];
__add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
}
static void add_clat_percentile_sample(struct thread_stat *ts,
unsigned long usec, enum fio_ddir ddir)
{
unsigned int idx = plat_val_to_idx(usec);
assert(idx < FIO_IO_U_PLAT_NR);
ts->io_u_plat[ddir][idx]++;
}
void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs, uint64_t offset)
{
unsigned long elapsed, this_window;
struct thread_stat *ts = &td->ts;
struct io_log *iolog = td->clat_hist_log;
td_io_u_lock(td);
add_stat_sample(&ts->clat_stat[ddir], usec);
if (td->clat_log)
add_log_sample(td, td->clat_log, sample_val(usec), ddir, bs,
offset);
if (ts->clat_percentiles)
add_clat_percentile_sample(ts, usec, ddir);
if (iolog && iolog->hist_msec) {
struct io_hist *hw = &iolog->hist_window[ddir];
hw->samples++;
elapsed = mtime_since_now(&td->epoch);
if (!hw->hist_last)
hw->hist_last = elapsed;
this_window = elapsed - hw->hist_last;
if (this_window >= iolog->hist_msec) {
unsigned int *io_u_plat;
struct io_u_plat_entry *dst;
/*
* Make a byte-for-byte copy of the latency histogram
* stored in td->ts.io_u_plat[ddir], recording it in a
* log sample. Note that the matching call to free() is
* located in iolog.c after printing this sample to the
* log file.
*/
io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
dst = malloc(sizeof(struct io_u_plat_entry));
memcpy(&(dst->io_u_plat), io_u_plat,
FIO_IO_U_PLAT_NR * sizeof(unsigned int));
flist_add(&dst->list, &hw->list);
__add_log_sample(iolog, sample_plat(dst), ddir, bs,
elapsed, offset);
/*
* Update the last time we recorded as being now, minus
* any drift in time we encountered before actually
* making the record.
*/
hw->hist_last = elapsed - (this_window - iolog->hist_msec);
hw->samples = 0;
}
}
td_io_u_unlock(td);
}
void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs, uint64_t offset)
{
struct thread_stat *ts = &td->ts;
if (!ddir_rw(ddir))
return;
td_io_u_lock(td);
add_stat_sample(&ts->slat_stat[ddir], usec);
if (td->slat_log)
add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
td_io_u_unlock(td);
}
void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs, uint64_t offset)
{
struct thread_stat *ts = &td->ts;
if (!ddir_rw(ddir))
return;
td_io_u_lock(td);
add_stat_sample(&ts->lat_stat[ddir], usec);
if (td->lat_log)
add_log_sample(td, td->lat_log, sample_val(usec), ddir, bs,
offset);
td_io_u_unlock(td);
}
void add_bw_sample(struct thread_data *td, struct io_u *io_u,
unsigned int bytes, unsigned long spent)
{
struct thread_stat *ts = &td->ts;
unsigned long rate;
if (spent)
rate = bytes * 1000 / spent;
else
rate = 0;
td_io_u_lock(td);
add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
if (td->bw_log)
add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
bytes, io_u->offset);
td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
td_io_u_unlock(td);
}
static int __add_samples(struct thread_data *td, struct timeval *parent_tv,
struct timeval *t, unsigned int avg_time,
uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
struct io_stat *stat, struct io_log *log,
bool is_kb)
{
unsigned long spent, rate;
enum fio_ddir ddir;
unsigned int next, next_log;
next_log = avg_time;
spent = mtime_since(parent_tv, t);
if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
return avg_time - spent;
td_io_u_lock(td);
/*
* Compute both read and write rates for the interval.
*/
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
uint64_t delta;
delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
if (!delta)
continue; /* No entries for interval */
if (spent) {
if (is_kb)
rate = delta * 1000 / spent / 1024; /* KiB/s */
else
rate = (delta * 1000) / spent;
} else
rate = 0;
add_stat_sample(&stat[ddir], rate);
if (log) {
unsigned int bs = 0;
if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
bs = td->o.min_bs[ddir];
next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
next_log = min(next_log, next);
}
stat_io_bytes[ddir] = this_io_bytes[ddir];
}
timeval_add_msec(parent_tv, avg_time);
td_io_u_unlock(td);
if (spent <= avg_time)
next = avg_time;
else
next = avg_time - (1 + spent - avg_time);
return min(next, next_log);
}
static int add_bw_samples(struct thread_data *td, struct timeval *t)
{
return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
td->this_io_bytes, td->stat_io_bytes,
td->ts.bw_stat, td->bw_log, true);
}
void add_iops_sample(struct thread_data *td, struct io_u *io_u,
unsigned int bytes)
{
struct thread_stat *ts = &td->ts;
td_io_u_lock(td);
add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
if (td->iops_log)
add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
bytes, io_u->offset);
td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
td_io_u_unlock(td);
}
static int add_iops_samples(struct thread_data *td, struct timeval *t)
{
return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
td->this_io_blocks, td->stat_io_blocks,
td->ts.iops_stat, td->iops_log, false);
}
/*
* Returns msecs to next event
*/
int calc_log_samples(void)
{
struct thread_data *td;
unsigned int next = ~0U, tmp;
struct timeval now;
int i;
fio_gettime(&now, NULL);
for_each_td(td, i) {
if (!td->o.stats)
continue;
if (in_ramp_time(td) ||
!(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
next = min(td->o.iops_avg_time, td->o.bw_avg_time);
continue;
}
if (!td->bw_log ||
(td->bw_log && !per_unit_log(td->bw_log))) {
tmp = add_bw_samples(td, &now);
if (tmp < next)
next = tmp;
}
if (!td->iops_log ||
(td->iops_log && !per_unit_log(td->iops_log))) {
tmp = add_iops_samples(td, &now);
if (tmp < next)
next = tmp;
}
}
return next == ~0U ? 0 : next;
}
void stat_init(void)
{
stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
}
void stat_exit(void)
{
/*
* When we have the mutex, we know out-of-band access to it
* have ended.
*/
fio_mutex_down(stat_mutex);
fio_mutex_remove(stat_mutex);
}
/*
* Called from signal handler. Wake up status thread.
*/
void show_running_run_stats(void)
{
helper_do_stat();
}
uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
{
/* Ignore io_u's which span multiple blocks--they will just get
* inaccurate counts. */
int idx = (io_u->offset - io_u->file->file_offset)
/ td->o.bs[DDIR_TRIM];
uint32_t *info = &td->ts.block_infos[idx];
assert(idx < td->ts.nr_block_infos);
return info;
}