#include "instrument.h"
#include <unistd.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "honggfuzz.h"
#include "libcommon/common.h"
#include "libcommon/log.h"
#include "libcommon/util.h"
int hfuzz_module_instrument = 0;
static bool guards_initialized = false;
/*
* We require SSE4.2 with x86-(32|64) for the 'popcnt', as it's much faster than the software
* emulation of gcc/clang
*/
#if defined(__x86_64__) || defined(__i386__)
#define ATTRIBUTE_X86_REQUIRE_SSE42 __attribute__((__target__("sse4.2")))
#else
#define ATTRIBUTE_X86_REQUIRE_SSE42
#endif /* defined(__x86_64__) || defined(__i386__) */
static feedback_t bbMapFb;
feedback_t* feedback = &bbMapFb;
uint32_t my_thread_no = 0;
__attribute__((constructor)) static void mapBB(void) {
char* my_thread_no_str = getenv(_HF_THREAD_NO_ENV);
if (my_thread_no_str == NULL) {
return;
}
my_thread_no = atoi(my_thread_no_str);
if (my_thread_no >= _HF_THREAD_MAX) {
LOG_F("Received (via envvar) my_thread_no > _HF_THREAD_MAX (%" PRIu32 " > %d)\n",
my_thread_no, _HF_THREAD_MAX);
}
struct stat st;
if (fstat(_HF_BITMAP_FD, &st) == -1) {
return;
}
if (st.st_size != sizeof(feedback_t)) {
LOG_F(
"size of the feedback structure mismatch: st.size != sizeof(feedback_t) (%zu != %zu). "
"Recompile your fuzzed binaries with your newest honggfuzz sources (libhfuzz.a)\n",
(size_t)st.st_size, sizeof(feedback_t));
}
if ((feedback = mmap(NULL, sizeof(feedback_t), PROT_READ | PROT_WRITE, MAP_SHARED,
_HF_BITMAP_FD, 0)) == MAP_FAILED) {
PLOG_F("mmap of the feedback structure");
}
feedback->pidFeedbackPc[my_thread_no] = 0U;
feedback->pidFeedbackEdge[my_thread_no] = 0U;
feedback->pidFeedbackCmp[my_thread_no] = 0U;
}
/*
* -finstrument-functions
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __cyg_profile_func_enter(void* func, void* caller) {
register size_t pos =
(((uintptr_t)func << 12) | ((uintptr_t)caller & 0xFFF)) & _HF_PERF_BITMAP_BITSZ_MASK;
register uint8_t prev = ATOMIC_BTS(feedback->bbMapPc, pos);
if (!prev) {
ATOMIC_PRE_INC_RELAXED(feedback->pidFeedbackPc[my_thread_no]);
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __cyg_profile_func_exit(void* func UNUSED, void* caller UNUSED) {
return;
}
/*
* -fsanitize-coverage=trace-pc
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_pc(void) {
register uintptr_t ret = (uintptr_t)__builtin_return_address(0) & _HF_PERF_BITMAP_BITSZ_MASK;
register uint8_t prev = ATOMIC_BTS(feedback->bbMapPc, ret);
if (!prev) {
ATOMIC_PRE_INC_RELAXED(feedback->pidFeedbackPc[my_thread_no]);
}
}
/*
* -fsanitize-coverage=trace-cmp
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
uintptr_t pos = (uintptr_t)__builtin_return_address(0) % _HF_PERF_BITMAP_SIZE_16M;
register uint8_t v = ((sizeof(Arg1) * 8) - __builtin_popcount(Arg1 ^ Arg2));
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
uintptr_t pos = (uintptr_t)__builtin_return_address(0) % _HF_PERF_BITMAP_SIZE_16M;
register uint8_t v = ((sizeof(Arg1) * 8) - __builtin_popcount(Arg1 ^ Arg2));
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
uintptr_t pos = (uintptr_t)__builtin_return_address(0) % _HF_PERF_BITMAP_SIZE_16M;
register uint8_t v = ((sizeof(Arg1) * 8) - __builtin_popcount(Arg1 ^ Arg2));
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
uintptr_t pos = (uintptr_t)__builtin_return_address(0) % _HF_PERF_BITMAP_SIZE_16M;
register uint8_t v = ((sizeof(Arg1) * 8) - __builtin_popcountll(Arg1 ^ Arg2));
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}
/*
* Const versions of trace_cmp, we don't use any special handling for these (for
* now)
*/
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2)
__attribute__((alias("__sanitizer_cov_trace_cmp1")));
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2)
__attribute__((alias("__sanitizer_cov_trace_cmp2")));
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2)
__attribute__((alias("__sanitizer_cov_trace_cmp4")));
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2)
__attribute__((alias("__sanitizer_cov_trace_cmp8")));
/*
* Cases[0] is number of comparison entries
* Cases[1] is length of Val in bits
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t* Cases) {
for (uint64_t i = 0; i < Cases[0]; i++) {
uintptr_t pos = ((uintptr_t)__builtin_return_address(0) + i) % _HF_PERF_BITMAP_SIZE_16M;
uint8_t v = (uint8_t)Cases[1] - __builtin_popcountll(Val ^ Cases[i + 2]);
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_cmp(
uint64_t SizeAndType, uint64_t Arg1, uint64_t Arg2) {
uint64_t CmpSize = (SizeAndType >> 32) / 8;
switch (CmpSize) {
case (sizeof(uint8_t)):
__sanitizer_cov_trace_cmp1(Arg1, Arg2);
return;
case (sizeof(uint16_t)):
__sanitizer_cov_trace_cmp2(Arg1, Arg2);
return;
case (sizeof(uint32_t)):
__sanitizer_cov_trace_cmp4(Arg1, Arg2);
return;
case (sizeof(uint64_t)):
__sanitizer_cov_trace_cmp8(Arg1, Arg2);
return;
}
}
/*
* -fsanitize-coverage=indirect-calls
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_pc_indir(uintptr_t callee) {
register size_t pos1 = (uintptr_t)__builtin_return_address(0) << 12;
register size_t pos2 = callee & 0xFFF;
register size_t pos = (pos1 | pos2) & _HF_PERF_BITMAP_BITSZ_MASK;
register uint8_t prev = ATOMIC_BTS(feedback->bbMapPc, pos);
if (!prev) {
ATOMIC_PRE_INC_RELAXED(feedback->pidFeedbackPc[my_thread_no]);
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_indir_call16(
void* callee, void* callee_cache16[] UNUSED) {
register size_t pos1 = (uintptr_t)__builtin_return_address(0) << 12;
register size_t pos2 = (uintptr_t)callee & 0xFFF;
register size_t pos = (pos1 | pos2) & _HF_PERF_BITMAP_BITSZ_MASK;
register uint8_t prev = ATOMIC_BTS(feedback->bbMapPc, pos);
if (!prev) {
ATOMIC_PRE_INC_RELAXED(feedback->pidFeedbackPc[my_thread_no]);
}
}
/*
* -fsanitize-coverage=trace-pc-guard
*/
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_pc_guard_init(
uint32_t* start, uint32_t* stop) {
guards_initialized = true;
static uint32_t n = 1U;
for (uint32_t* x = start; x < stop; x++, n++) {
if (n >= _HF_PC_GUARD_MAX) {
LOG_F("This process has too many PC guards: %tx\n",
((uintptr_t)stop - (uintptr_t)start) / sizeof(start));
}
/* If the corresponding PC was already hit, map this specific guard as non-interesting (0)
*/
*x = ATOMIC_GET(feedback->pcGuardMap[n]) ? 0U : n;
}
}
ATTRIBUTE_X86_REQUIRE_SSE42 void __sanitizer_cov_trace_pc_guard(uint32_t* guard) {
#if defined(__ANDROID__)
// ANDROID: Bionic invokes routines that Honggfuzz wraps, before either
// *SAN or Honggfuzz have initialized. Check to see if Honggfuzz
// has initialized -- if not, force *SAN to initialize (otherwise
// _strcmp() will crash, as it is *SAN-instrumented).
//
// Defer all trace_pc_guard activity until trace_pc_guard_init is
// invoked via sancov.module_ctor in the normal process of things.
if (!guards_initialized) {
void __asan_init(void) __attribute__((weak));
if (__asan_init) {
__asan_init();
}
void __msan_init(void) __attribute__((weak));
if (__msan_init) {
__msan_init();
}
void __ubsan_init(void) __attribute__((weak));
if (__ubsan_init) {
__ubsan_init();
}
void __tsan_init(void) __attribute__((weak));
if (__tsan_init) {
__tsan_init();
}
return;
}
#endif /* defined(__ANDROID__) */
if (*guard == 0U) {
return;
}
bool prev = ATOMIC_XCHG(feedback->pcGuardMap[*guard], true);
if (prev == false) {
ATOMIC_PRE_INC_RELAXED(feedback->pidFeedbackEdge[my_thread_no]);
}
*guard = 0U;
}
void instrumentUpdateCmpMap(uintptr_t addr, unsigned int n) {
uintptr_t pos = addr % _HF_PERF_BITMAP_SIZE_16M;
uint8_t v = n > 254 ? 254 : n;
uint8_t prev = ATOMIC_GET(feedback->bbMapCmp[pos]);
if (prev < v) {
ATOMIC_SET(feedback->bbMapCmp[pos], v);
ATOMIC_POST_ADD(feedback->pidFeedbackCmp[my_thread_no], v - prev);
}
}