/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Feature processing for FFModel (feed-forward SmartSelection model).
#ifndef LIBTEXTCLASSIFIER_FEATURE_PROCESSOR_H_
#define LIBTEXTCLASSIFIER_FEATURE_PROCESSOR_H_
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "cached-features.h"
#include "model_generated.h"
#include "token-feature-extractor.h"
#include "tokenizer.h"
#include "types.h"
#include "util/base/integral_types.h"
#include "util/base/logging.h"
#include "util/utf8/unicodetext.h"
#include "util/utf8/unilib.h"
namespace libtextclassifier2 {
constexpr int kInvalidLabel = -1;
namespace internal {
TokenFeatureExtractorOptions BuildTokenFeatureExtractorOptions(
const FeatureProcessorOptions* options);
// Splits tokens that contain the selection boundary inside them.
// E.g. "foo{bar}@google.com" -> "foo", "bar", "@google.com"
void SplitTokensOnSelectionBoundaries(CodepointSpan selection,
std::vector<Token>* tokens);
// Returns the index of token that corresponds to the codepoint span.
int CenterTokenFromClick(CodepointSpan span, const std::vector<Token>& tokens);
// Returns the index of token that corresponds to the middle of the codepoint
// span.
int CenterTokenFromMiddleOfSelection(
CodepointSpan span, const std::vector<Token>& selectable_tokens);
// Strips the tokens from the tokens vector that are not used for feature
// extraction because they are out of scope, or pads them so that there is
// enough tokens in the required context_size for all inferences with a click
// in relative_click_span.
void StripOrPadTokens(TokenSpan relative_click_span, int context_size,
std::vector<Token>* tokens, int* click_pos);
// If unilib is not nullptr, just returns unilib. Otherwise, if unilib is
// nullptr, will create UniLib, assign ownership to owned_unilib, and return it.
const UniLib* MaybeCreateUnilib(const UniLib* unilib,
std::unique_ptr<UniLib>* owned_unilib);
} // namespace internal
// Converts a codepoint span to a token span in the given list of tokens.
// If snap_boundaries_to_containing_tokens is set to true, it is enough for a
// token to overlap with the codepoint range to be considered part of it.
// Otherwise it must be fully included in the range.
TokenSpan CodepointSpanToTokenSpan(
const std::vector<Token>& selectable_tokens, CodepointSpan codepoint_span,
bool snap_boundaries_to_containing_tokens = false);
// Converts a token span to a codepoint span in the given list of tokens.
CodepointSpan TokenSpanToCodepointSpan(
const std::vector<Token>& selectable_tokens, TokenSpan token_span);
// Takes care of preparing features for the span prediction model.
class FeatureProcessor {
public:
// A cache mapping codepoint spans to embedded tokens features. An instance
// can be provided to multiple calls to ExtractFeatures() operating on the
// same context (the same codepoint spans corresponding to the same tokens),
// as an optimization. Note that the tokenizations do not have to be
// identical.
typedef std::map<CodepointSpan, std::vector<float>> EmbeddingCache;
// If unilib is nullptr, will create and own an instance of a UniLib,
// otherwise will use what's passed in.
explicit FeatureProcessor(const FeatureProcessorOptions* options,
const UniLib* unilib = nullptr)
: owned_unilib_(nullptr),
unilib_(internal::MaybeCreateUnilib(unilib, &owned_unilib_)),
feature_extractor_(internal::BuildTokenFeatureExtractorOptions(options),
*unilib_),
options_(options),
tokenizer_(
options->tokenization_codepoint_config() != nullptr
? Tokenizer({options->tokenization_codepoint_config()->begin(),
options->tokenization_codepoint_config()->end()},
options->tokenize_on_script_change())
: Tokenizer({}, /*split_on_script_change=*/false)) {
MakeLabelMaps();
if (options->supported_codepoint_ranges() != nullptr) {
PrepareCodepointRanges({options->supported_codepoint_ranges()->begin(),
options->supported_codepoint_ranges()->end()},
&supported_codepoint_ranges_);
}
if (options->internal_tokenizer_codepoint_ranges() != nullptr) {
PrepareCodepointRanges(
{options->internal_tokenizer_codepoint_ranges()->begin(),
options->internal_tokenizer_codepoint_ranges()->end()},
&internal_tokenizer_codepoint_ranges_);
}
PrepareIgnoredSpanBoundaryCodepoints();
}
// Tokenizes the input string using the selected tokenization method.
std::vector<Token> Tokenize(const std::string& text) const;
// Same as above but takes UnicodeText.
std::vector<Token> Tokenize(const UnicodeText& text_unicode) const;
// Converts a label into a token span.
bool LabelToTokenSpan(int label, TokenSpan* token_span) const;
// Gets the total number of selection labels.
int GetSelectionLabelCount() const { return label_to_selection_.size(); }
// Gets the string value for given collection label.
std::string LabelToCollection(int label) const;
// Gets the total number of collections of the model.
int NumCollections() const { return collection_to_label_.size(); }
// Gets the name of the default collection.
std::string GetDefaultCollection() const;
const FeatureProcessorOptions* GetOptions() const { return options_; }
// Retokenizes the context and input span, and finds the click position.
// Depending on the options, might modify tokens (split them or remove them).
void RetokenizeAndFindClick(const std::string& context,
CodepointSpan input_span,
bool only_use_line_with_click,
std::vector<Token>* tokens, int* click_pos) const;
// Same as above but takes UnicodeText.
void RetokenizeAndFindClick(const UnicodeText& context_unicode,
CodepointSpan input_span,
bool only_use_line_with_click,
std::vector<Token>* tokens, int* click_pos) const;
// Returns true if the token span has enough supported codepoints (as defined
// in the model config) or not and model should not run.
bool HasEnoughSupportedCodepoints(const std::vector<Token>& tokens,
TokenSpan token_span) const;
// Extracts features as a CachedFeatures object that can be used for repeated
// inference over token spans in the given context.
bool ExtractFeatures(const std::vector<Token>& tokens, TokenSpan token_span,
CodepointSpan selection_span_for_feature,
const EmbeddingExecutor* embedding_executor,
EmbeddingCache* embedding_cache, int feature_vector_size,
std::unique_ptr<CachedFeatures>* cached_features) const;
// Fills selection_label_spans with CodepointSpans that correspond to the
// selection labels. The CodepointSpans are based on the codepoint ranges of
// given tokens.
bool SelectionLabelSpans(
VectorSpan<Token> tokens,
std::vector<CodepointSpan>* selection_label_spans) const;
int DenseFeaturesCount() const {
return feature_extractor_.DenseFeaturesCount();
}
int EmbeddingSize() const { return options_->embedding_size(); }
// Splits context to several segments.
std::vector<UnicodeTextRange> SplitContext(
const UnicodeText& context_unicode) const;
// Strips boundary codepoints from the span in context and returns the new
// start and end indices. If the span comprises entirely of boundary
// codepoints, the first index of span is returned for both indices.
CodepointSpan StripBoundaryCodepoints(const std::string& context,
CodepointSpan span) const;
// Same as above but takes UnicodeText.
CodepointSpan StripBoundaryCodepoints(const UnicodeText& context_unicode,
CodepointSpan span) const;
protected:
// Represents a codepoint range [start, end).
struct CodepointRange {
int32 start;
int32 end;
CodepointRange(int32 arg_start, int32 arg_end)
: start(arg_start), end(arg_end) {}
};
// Returns the class id corresponding to the given string collection
// identifier. There is a catch-all class id that the function returns for
// unknown collections.
int CollectionToLabel(const std::string& collection) const;
// Prepares mapping from collection names to labels.
void MakeLabelMaps();
// Gets the number of spannable tokens for the model.
//
// Spannable tokens are those tokens of context, which the model predicts
// selection spans over (i.e., there is 1:1 correspondence between the output
// classes of the model and each of the spannable tokens).
int GetNumContextTokens() const { return options_->context_size() * 2 + 1; }
// Converts a label into a span of codepoint indices corresponding to it
// given output_tokens.
bool LabelToSpan(int label, const VectorSpan<Token>& output_tokens,
CodepointSpan* span) const;
// Converts a span to the corresponding label given output_tokens.
bool SpanToLabel(const std::pair<CodepointIndex, CodepointIndex>& span,
const std::vector<Token>& output_tokens, int* label) const;
// Converts a token span to the corresponding label.
int TokenSpanToLabel(const std::pair<TokenIndex, TokenIndex>& span) const;
void PrepareCodepointRanges(
const std::vector<const FeatureProcessorOptions_::CodepointRange*>&
codepoint_ranges,
std::vector<CodepointRange>* prepared_codepoint_ranges);
// Returns the ratio of supported codepoints to total number of codepoints in
// the given token span.
float SupportedCodepointsRatio(const TokenSpan& token_span,
const std::vector<Token>& tokens) const;
// Returns true if given codepoint is covered by the given sorted vector of
// codepoint ranges.
bool IsCodepointInRanges(
int codepoint, const std::vector<CodepointRange>& codepoint_ranges) const;
void PrepareIgnoredSpanBoundaryCodepoints();
// Counts the number of span boundary codepoints. If count_from_beginning is
// True, the counting will start at the span_start iterator (inclusive) and at
// maximum end at span_end (exclusive). If count_from_beginning is True, the
// counting will start from span_end (exclusive) and end at span_start
// (inclusive).
int CountIgnoredSpanBoundaryCodepoints(
const UnicodeText::const_iterator& span_start,
const UnicodeText::const_iterator& span_end,
bool count_from_beginning) const;
// Finds the center token index in tokens vector, using the method defined
// in options_.
int FindCenterToken(CodepointSpan span,
const std::vector<Token>& tokens) const;
// Tokenizes the input text using ICU tokenizer.
bool ICUTokenize(const UnicodeText& context_unicode,
std::vector<Token>* result) const;
// Takes the result of ICU tokenization and retokenizes stretches of tokens
// made of a specific subset of characters using the internal tokenizer.
void InternalRetokenize(const UnicodeText& unicode_text,
std::vector<Token>* tokens) const;
// Tokenizes a substring of the unicode string, appending the resulting tokens
// to the output vector. The resulting tokens have bounds relative to the full
// string. Does nothing if the start of the span is negative.
void TokenizeSubstring(const UnicodeText& unicode_text, CodepointSpan span,
std::vector<Token>* result) const;
// Removes all tokens from tokens that are not on a line (defined by calling
// SplitContext on the context) to which span points.
void StripTokensFromOtherLines(const std::string& context, CodepointSpan span,
std::vector<Token>* tokens) const;
// Same as above but takes UnicodeText.
void StripTokensFromOtherLines(const UnicodeText& context_unicode,
CodepointSpan span,
std::vector<Token>* tokens) const;
// Extracts the features of a token and appends them to the output vector.
// Uses the embedding cache to to avoid re-extracting the re-embedding the
// sparse features for the same token.
bool AppendTokenFeaturesWithCache(const Token& token,
CodepointSpan selection_span_for_feature,
const EmbeddingExecutor* embedding_executor,
EmbeddingCache* embedding_cache,
std::vector<float>* output_features) const;
private:
std::unique_ptr<UniLib> owned_unilib_;
const UniLib* unilib_;
protected:
const TokenFeatureExtractor feature_extractor_;
// Codepoint ranges that define what codepoints are supported by the model.
// NOTE: Must be sorted.
std::vector<CodepointRange> supported_codepoint_ranges_;
// Codepoint ranges that define which tokens (consisting of which codepoints)
// should be re-tokenized with the internal tokenizer in the mixed
// tokenization mode.
// NOTE: Must be sorted.
std::vector<CodepointRange> internal_tokenizer_codepoint_ranges_;
private:
// Set of codepoints that will be stripped from beginning and end of
// predicted spans.
std::set<int32> ignored_span_boundary_codepoints_;
const FeatureProcessorOptions* const options_;
// Mapping between token selection spans and labels ids.
std::map<TokenSpan, int> selection_to_label_;
std::vector<TokenSpan> label_to_selection_;
// Mapping between collections and labels.
std::map<std::string, int> collection_to_label_;
Tokenizer tokenizer_;
};
} // namespace libtextclassifier2
#endif // LIBTEXTCLASSIFIER_FEATURE_PROCESSOR_H_