//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
class PrototypeAST;
class ExprAST;
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
const PrototypeAST& getProto() const;
const std::string& getName() const;
llvm::Function *codegen();
};
/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
namespace llvm {
namespace orc {
class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;
IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
public:
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;
KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()),
DL(TM->createDataLayout()),
CompileCallbackMgr(
orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)),
CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,
[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));
}) {
auto IndirectStubsMgrBuilder =
orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
IndirectStubsMgr = IndirectStubsMgrBuilder();
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}
TargetMachine &getTargetMachine() { return *TM; }
ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(
[&](const std::string &Name) {
if (auto Sym = IndirectStubsMgr->findStub(Name, false))
return Sym.toRuntimeDyldSymbol();
if (auto Sym = OptimizeLayer.findSymbol(Name, false))
return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);
},
[](const std::string &Name) {
if (auto SymAddr =
RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);
return RuntimeDyld::SymbolInfo(nullptr);
});
// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));
// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return OptimizeLayer.addModuleSet(std::move(Ms),
make_unique<SectionMemoryManager>(),
std::move(Resolver));
}
Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
// Create a CompileCallback - this is the re-entry point into the compiler
// for functions that haven't been compiled yet.
auto CCInfo = CompileCallbackMgr->getCompileCallback();
// Create an indirect stub. This serves as the functions "canonical
// definition" - an unchanging (constant address) entry point to the
// function implementation.
// Initially we point the stub's function-pointer at the compile callback
// that we just created. In the compile action for the callback (see below)
// we will update the stub's function pointer to point at the function
// implementation that we just implemented.
if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
CCInfo.getAddress(),
JITSymbolFlags::Exported))
return Err;
// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
// capture-by-move, which is be required for unique_ptr.
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
// Set the action to compile our AST. This lambda will be run if/when
// execution hits the compile callback (via the stub).
//
// The steps to compile are:
// (1) IRGen the function.
// (2) Add the IR module to the JIT to make it executable like any other
// module.
// (3) Use findSymbol to get the address of the compiled function.
// (4) Update the stub pointer to point at the implementation so that
/// subsequent calls go directly to it and bypass the compiler.
// (5) Return the address of the implementation: this lambda will actually
// be run inside an attempted call to the function, and we need to
// continue on to the implementation to complete the attempted call.
// The JIT runtime (the resolver block) will use the return address of
// this function as the address to continue at once it has reset the
// CPU state to what it was immediately before the call.
CCInfo.setCompileAction(
[this, SharedFnAST]() {
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
addModule(std::move(M));
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
assert(Sym && "Couldn't find compiled function?");
TargetAddress SymAddr = Sym.getAddress();
if (auto Err =
IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
SymAddr)) {
logAllUnhandledErrors(std::move(Err), errs(),
"Error updating function pointer: ");
exit(1);
}
return SymAddr;
});
return Error::success();
}
JITSymbol findSymbol(const std::string Name) {
return OptimizeLayer.findSymbol(mangle(Name), true);
}
void removeModule(ModuleHandle H) {
OptimizeLayer.removeModuleSet(H);
}
private:
std::string mangle(const std::string &Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return MangledNameStream.str();
}
std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();
// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);
return M;
}
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H