/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
* Copyright 2009 VMware, Inc. All Rights Reserved.
* Copyright © 2010-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "main/glheader.h"
#include "main/context.h"
#include "main/imports.h"
#include "main/macros.h"
#include "main/samplerobj.h"
#include "main/shaderobj.h"
#include "main/texenvprogram.h"
#include "main/texobj.h"
#include "main/uniforms.h"
#include "compiler/glsl/ir_builder.h"
#include "compiler/glsl/ir_optimization.h"
#include "compiler/glsl/glsl_parser_extras.h"
#include "compiler/glsl/glsl_symbol_table.h"
#include "compiler/glsl_types.h"
#include "program/ir_to_mesa.h"
#include "program/program.h"
#include "program/programopt.h"
#include "program/prog_cache.h"
#include "program/prog_instruction.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_statevars.h"
#include "util/bitscan.h"
using namespace ir_builder;
/*
* Note on texture units:
*
* The number of texture units supported by fixed-function fragment
* processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
* That's because there's a one-to-one correspondence between texture
* coordinates and samplers in fixed-function processing.
*
* Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
* sets of texcoords, so is fixed-function fragment processing.
*
* We can safely use ctx->Const.MaxTextureUnits for loop bounds.
*/
struct texenvprog_cache_item
{
GLuint hash;
void *key;
struct gl_shader_program *data;
struct texenvprog_cache_item *next;
};
static GLboolean
texenv_doing_secondary_color(struct gl_context *ctx)
{
if (ctx->Light.Enabled &&
(ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
return GL_TRUE;
if (ctx->Fog.ColorSumEnabled)
return GL_TRUE;
return GL_FALSE;
}
struct mode_opt {
#ifdef __GNUC__
__extension__ GLubyte Source:4; /**< SRC_x */
__extension__ GLubyte Operand:3; /**< OPR_x */
#else
GLubyte Source; /**< SRC_x */
GLubyte Operand; /**< OPR_x */
#endif
};
struct state_key {
GLuint nr_enabled_units:8;
GLuint enabled_units:8;
GLuint separate_specular:1;
GLuint fog_mode:2; /**< FOG_x */
GLuint inputs_available:12;
GLuint num_draw_buffers:4;
/* NOTE: This array of structs must be last! (see "keySize" below) */
struct {
GLuint enabled:1;
GLuint source_index:4; /**< TEXTURE_x_INDEX */
GLuint shadow:1;
GLuint ScaleShiftRGB:2;
GLuint ScaleShiftA:2;
GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
GLuint ModeRGB:5; /**< MODE_x */
GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
GLuint ModeA:5; /**< MODE_x */
struct mode_opt OptRGB[MAX_COMBINER_TERMS];
struct mode_opt OptA[MAX_COMBINER_TERMS];
} unit[MAX_TEXTURE_UNITS];
};
#define FOG_NONE 0
#define FOG_LINEAR 1
#define FOG_EXP 2
#define FOG_EXP2 3
static GLuint translate_fog_mode( GLenum mode )
{
switch (mode) {
case GL_LINEAR: return FOG_LINEAR;
case GL_EXP: return FOG_EXP;
case GL_EXP2: return FOG_EXP2;
default: return FOG_NONE;
}
}
#define OPR_SRC_COLOR 0
#define OPR_ONE_MINUS_SRC_COLOR 1
#define OPR_SRC_ALPHA 2
#define OPR_ONE_MINUS_SRC_ALPHA 3
#define OPR_ZERO 4
#define OPR_ONE 5
#define OPR_UNKNOWN 7
static GLuint translate_operand( GLenum operand )
{
switch (operand) {
case GL_SRC_COLOR: return OPR_SRC_COLOR;
case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
case GL_ZERO: return OPR_ZERO;
case GL_ONE: return OPR_ONE;
default:
assert(0);
return OPR_UNKNOWN;
}
}
#define SRC_TEXTURE 0
#define SRC_TEXTURE0 1
#define SRC_TEXTURE1 2
#define SRC_TEXTURE2 3
#define SRC_TEXTURE3 4
#define SRC_TEXTURE4 5
#define SRC_TEXTURE5 6
#define SRC_TEXTURE6 7
#define SRC_TEXTURE7 8
#define SRC_CONSTANT 9
#define SRC_PRIMARY_COLOR 10
#define SRC_PREVIOUS 11
#define SRC_ZERO 12
#define SRC_UNKNOWN 15
static GLuint translate_source( GLenum src )
{
switch (src) {
case GL_TEXTURE: return SRC_TEXTURE;
case GL_TEXTURE0:
case GL_TEXTURE1:
case GL_TEXTURE2:
case GL_TEXTURE3:
case GL_TEXTURE4:
case GL_TEXTURE5:
case GL_TEXTURE6:
case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
case GL_CONSTANT: return SRC_CONSTANT;
case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
case GL_PREVIOUS: return SRC_PREVIOUS;
case GL_ZERO:
return SRC_ZERO;
default:
assert(0);
return SRC_UNKNOWN;
}
}
#define MODE_REPLACE 0 /* r = a0 */
#define MODE_MODULATE 1 /* r = a0 * a1 */
#define MODE_ADD 2 /* r = a0 + a1 */
#define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
#define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
#define MODE_SUBTRACT 5 /* r = a0 - a1 */
#define MODE_DOT3_RGB 6 /* r = a0 . a1 */
#define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
#define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
#define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
#define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
#define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
#define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
#define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
#define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
#define MODE_UNKNOWN 16
/**
* Translate GL combiner state into a MODE_x value
*/
static GLuint translate_mode( GLenum envMode, GLenum mode )
{
switch (mode) {
case GL_REPLACE: return MODE_REPLACE;
case GL_MODULATE: return MODE_MODULATE;
case GL_ADD:
if (envMode == GL_COMBINE4_NV)
return MODE_ADD_PRODUCTS;
else
return MODE_ADD;
case GL_ADD_SIGNED:
if (envMode == GL_COMBINE4_NV)
return MODE_ADD_PRODUCTS_SIGNED;
else
return MODE_ADD_SIGNED;
case GL_INTERPOLATE: return MODE_INTERPOLATE;
case GL_SUBTRACT: return MODE_SUBTRACT;
case GL_DOT3_RGB: return MODE_DOT3_RGB;
case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
default:
assert(0);
return MODE_UNKNOWN;
}
}
/**
* Do we need to clamp the results of the given texture env/combine mode?
* If the inputs to the mode are in [0,1] we don't always have to clamp
* the results.
*/
static GLboolean
need_saturate( GLuint mode )
{
switch (mode) {
case MODE_REPLACE:
case MODE_MODULATE:
case MODE_INTERPOLATE:
return GL_FALSE;
case MODE_ADD:
case MODE_ADD_SIGNED:
case MODE_SUBTRACT:
case MODE_DOT3_RGB:
case MODE_DOT3_RGB_EXT:
case MODE_DOT3_RGBA:
case MODE_DOT3_RGBA_EXT:
case MODE_MODULATE_ADD_ATI:
case MODE_MODULATE_SIGNED_ADD_ATI:
case MODE_MODULATE_SUBTRACT_ATI:
case MODE_ADD_PRODUCTS:
case MODE_ADD_PRODUCTS_SIGNED:
return GL_TRUE;
default:
assert(0);
return GL_FALSE;
}
}
#define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
/**
* Identify all possible varying inputs. The fragment program will
* never reference non-varying inputs, but will track them via state
* constants instead.
*
* This function figures out all the inputs that the fragment program
* has access to. The bitmask is later reduced to just those which
* are actually referenced.
*/
static GLbitfield get_fp_input_mask( struct gl_context *ctx )
{
/* _NEW_PROGRAM */
const GLboolean vertexShader =
(ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] &&
ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->data->LinkStatus &&
ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]);
const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
GLbitfield fp_inputs = 0x0;
if (ctx->VertexProgram._Overriden) {
/* Somebody's messing with the vertex program and we don't have
* a clue what's happening. Assume that it could be producing
* all possible outputs.
*/
fp_inputs = ~0;
}
else if (ctx->RenderMode == GL_FEEDBACK) {
/* _NEW_RENDERMODE */
fp_inputs = (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
}
else if (!(vertexProgram || vertexShader)) {
/* Fixed function vertex logic */
/* _NEW_VARYING_VP_INPUTS */
GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
/* These get generated in the setup routine regardless of the
* vertex program:
*/
/* _NEW_POINT */
if (ctx->Point.PointSprite)
varying_inputs |= VARYING_BITS_TEX_ANY;
/* First look at what values may be computed by the generated
* vertex program:
*/
/* _NEW_LIGHT */
if (ctx->Light.Enabled) {
fp_inputs |= VARYING_BIT_COL0;
if (texenv_doing_secondary_color(ctx))
fp_inputs |= VARYING_BIT_COL1;
}
/* _NEW_TEXTURE */
fp_inputs |= (ctx->Texture._TexGenEnabled |
ctx->Texture._TexMatEnabled) << VARYING_SLOT_TEX0;
/* Then look at what might be varying as a result of enabled
* arrays, etc:
*/
if (varying_inputs & VERT_BIT_COLOR0)
fp_inputs |= VARYING_BIT_COL0;
if (varying_inputs & VERT_BIT_COLOR1)
fp_inputs |= VARYING_BIT_COL1;
fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
<< VARYING_SLOT_TEX0);
}
else {
/* calculate from vp->outputs */
struct gl_program *vprog;
GLbitfield64 vp_outputs;
/* Choose GLSL vertex shader over ARB vertex program. Need this
* since vertex shader state validation comes after fragment state
* validation (see additional comments in state.c).
*/
if (vertexShader)
vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
else
vprog = ctx->VertexProgram.Current;
vp_outputs = vprog->info.outputs_written;
/* These get generated in the setup routine regardless of the
* vertex program:
*/
/* _NEW_POINT */
if (ctx->Point.PointSprite)
vp_outputs |= VARYING_BITS_TEX_ANY;
if (vp_outputs & (1 << VARYING_SLOT_COL0))
fp_inputs |= VARYING_BIT_COL0;
if (vp_outputs & (1 << VARYING_SLOT_COL1))
fp_inputs |= VARYING_BIT_COL1;
fp_inputs |= (((vp_outputs & VARYING_BITS_TEX_ANY) >> VARYING_SLOT_TEX0)
<< VARYING_SLOT_TEX0);
}
return fp_inputs;
}
/**
* Examine current texture environment state and generate a unique
* key to identify it.
*/
static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
{
GLuint j;
GLbitfield inputs_referenced = VARYING_BIT_COL0;
const GLbitfield inputs_available = get_fp_input_mask( ctx );
GLbitfield mask;
GLuint keySize;
memset(key, 0, sizeof(*key));
/* _NEW_TEXTURE */
mask = ctx->Texture._EnabledCoordUnits;
while (mask) {
const int i = u_bit_scan(&mask);
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
const struct gl_texture_object *texObj = texUnit->_Current;
const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
const struct gl_sampler_object *samp;
GLenum format;
if (!texObj)
continue;
samp = _mesa_get_samplerobj(ctx, i);
format = _mesa_texture_base_format(texObj);
key->unit[i].enabled = 1;
key->enabled_units |= (1<<i);
key->nr_enabled_units = i + 1;
inputs_referenced |= VARYING_BIT_TEX(i);
key->unit[i].source_index = _mesa_tex_target_to_index(ctx,
texObj->Target);
key->unit[i].shadow =
((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
((format == GL_DEPTH_COMPONENT) ||
(format == GL_DEPTH_STENCIL_EXT)));
key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
key->unit[i].NumArgsA = comb->_NumArgsA;
key->unit[i].ModeRGB =
translate_mode(texUnit->EnvMode, comb->ModeRGB);
key->unit[i].ModeA =
translate_mode(texUnit->EnvMode, comb->ModeA);
key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
key->unit[i].ScaleShiftA = comb->ScaleShiftA;
for (j = 0; j < MAX_COMBINER_TERMS; j++) {
key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
}
}
/* _NEW_LIGHT | _NEW_FOG */
if (texenv_doing_secondary_color(ctx)) {
key->separate_specular = 1;
inputs_referenced |= VARYING_BIT_COL1;
}
/* _NEW_FOG */
if (ctx->Fog.Enabled) {
key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
inputs_referenced |= VARYING_BIT_FOGC; /* maybe */
}
/* _NEW_BUFFERS */
key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
/* _NEW_COLOR */
if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
/* if alpha test is enabled we need to emit at least one color */
key->num_draw_buffers = 1;
}
key->inputs_available = (inputs_available & inputs_referenced);
/* compute size of state key, ignoring unused texture units */
keySize = sizeof(*key) - sizeof(key->unit)
+ key->nr_enabled_units * sizeof(key->unit[0]);
return keySize;
}
/** State used to build the fragment program:
*/
class texenv_fragment_program : public ir_factory {
public:
struct gl_shader_program *shader_program;
struct gl_shader *shader;
exec_list *top_instructions;
struct state_key *state;
ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
/* Reg containing each texture unit's sampled texture color,
* else undef.
*/
/* Texcoord override from bumpmapping. */
ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
/* Reg containing texcoord for a texture unit,
* needed for bump mapping, else undef.
*/
ir_rvalue *src_previous; /**< Reg containing color from previous
* stage. May need to be decl'd.
*/
};
static ir_rvalue *
get_current_attrib(texenv_fragment_program *p, GLuint attrib)
{
ir_variable *current;
ir_rvalue *val;
current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
assert(current);
current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
val = new(p->mem_ctx) ir_dereference_variable(current);
ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
return new(p->mem_ctx) ir_dereference_array(val, index);
}
static ir_rvalue *
get_gl_Color(texenv_fragment_program *p)
{
if (p->state->inputs_available & VARYING_BIT_COL0) {
ir_variable *var = p->shader->symbols->get_variable("gl_Color");
assert(var);
return new(p->mem_ctx) ir_dereference_variable(var);
} else {
return get_current_attrib(p, VERT_ATTRIB_COLOR0);
}
}
static ir_rvalue *
get_source(texenv_fragment_program *p,
GLuint src, GLuint unit)
{
ir_variable *var;
ir_dereference *deref;
switch (src) {
case SRC_TEXTURE:
return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
case SRC_TEXTURE0:
case SRC_TEXTURE1:
case SRC_TEXTURE2:
case SRC_TEXTURE3:
case SRC_TEXTURE4:
case SRC_TEXTURE5:
case SRC_TEXTURE6:
case SRC_TEXTURE7:
return new(p->mem_ctx)
ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
case SRC_CONSTANT:
var = p->shader->symbols->get_variable("gl_TextureEnvColor");
assert(var);
deref = new(p->mem_ctx) ir_dereference_variable(var);
var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
return new(p->mem_ctx) ir_dereference_array(deref,
new(p->mem_ctx) ir_constant(unit));
case SRC_PRIMARY_COLOR:
var = p->shader->symbols->get_variable("gl_Color");
assert(var);
return new(p->mem_ctx) ir_dereference_variable(var);
case SRC_ZERO:
return new(p->mem_ctx) ir_constant(0.0f);
case SRC_PREVIOUS:
if (!p->src_previous) {
return get_gl_Color(p);
} else {
return p->src_previous->clone(p->mem_ctx, NULL);
}
default:
assert(0);
return NULL;
}
}
static ir_rvalue *
emit_combine_source(texenv_fragment_program *p,
GLuint unit,
GLuint source,
GLuint operand)
{
ir_rvalue *src;
src = get_source(p, source, unit);
switch (operand) {
case OPR_ONE_MINUS_SRC_COLOR:
return sub(new(p->mem_ctx) ir_constant(1.0f), src);
case OPR_SRC_ALPHA:
return src->type->is_scalar() ? src : swizzle_w(src);
case OPR_ONE_MINUS_SRC_ALPHA: {
ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
}
case OPR_ZERO:
return new(p->mem_ctx) ir_constant(0.0f);
case OPR_ONE:
return new(p->mem_ctx) ir_constant(1.0f);
case OPR_SRC_COLOR:
return src;
default:
assert(0);
return src;
}
}
/**
* Check if the RGB and Alpha sources and operands match for the given
* texture unit's combinder state. When the RGB and A sources and
* operands match, we can emit fewer instructions.
*/
static GLboolean args_match( const struct state_key *key, GLuint unit )
{
GLuint i, numArgs = key->unit[unit].NumArgsRGB;
for (i = 0; i < numArgs; i++) {
if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
return GL_FALSE;
switch (key->unit[unit].OptA[i].Operand) {
case OPR_SRC_ALPHA:
switch (key->unit[unit].OptRGB[i].Operand) {
case OPR_SRC_COLOR:
case OPR_SRC_ALPHA:
break;
default:
return GL_FALSE;
}
break;
case OPR_ONE_MINUS_SRC_ALPHA:
switch (key->unit[unit].OptRGB[i].Operand) {
case OPR_ONE_MINUS_SRC_COLOR:
case OPR_ONE_MINUS_SRC_ALPHA:
break;
default:
return GL_FALSE;
}
break;
default:
return GL_FALSE; /* impossible */
}
}
return GL_TRUE;
}
static ir_rvalue *
smear(ir_rvalue *val)
{
if (!val->type->is_scalar())
return val;
return swizzle_xxxx(val);
}
static ir_rvalue *
emit_combine(texenv_fragment_program *p,
GLuint unit,
GLuint nr,
GLuint mode,
const struct mode_opt *opt)
{
ir_rvalue *src[MAX_COMBINER_TERMS];
ir_rvalue *tmp0, *tmp1;
GLuint i;
assert(nr <= MAX_COMBINER_TERMS);
for (i = 0; i < nr; i++)
src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
switch (mode) {
case MODE_REPLACE:
return src[0];
case MODE_MODULATE:
return mul(src[0], src[1]);
case MODE_ADD:
return add(src[0], src[1]);
case MODE_ADD_SIGNED:
return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
case MODE_INTERPOLATE:
/* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
tmp0 = mul(src[0], src[2]);
tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
src[2]->clone(p->mem_ctx, NULL)));
return add(tmp0, tmp1);
case MODE_SUBTRACT:
return sub(src[0], src[1]);
case MODE_DOT3_RGBA:
case MODE_DOT3_RGBA_EXT:
case MODE_DOT3_RGB_EXT:
case MODE_DOT3_RGB: {
tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
}
case MODE_MODULATE_ADD_ATI:
return add(mul(src[0], src[2]), src[1]);
case MODE_MODULATE_SIGNED_ADD_ATI:
return add(add(mul(src[0], src[2]), src[1]),
new(p->mem_ctx) ir_constant(-0.5f));
case MODE_MODULATE_SUBTRACT_ATI:
return sub(mul(src[0], src[2]), src[1]);
case MODE_ADD_PRODUCTS:
return add(mul(src[0], src[1]), mul(src[2], src[3]));
case MODE_ADD_PRODUCTS_SIGNED:
return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
new(p->mem_ctx) ir_constant(-0.5f));
default:
assert(0);
return src[0];
}
}
/**
* Generate instructions for one texture unit's env/combiner mode.
*/
static ir_rvalue *
emit_texenv(texenv_fragment_program *p, GLuint unit)
{
const struct state_key *key = p->state;
GLboolean rgb_saturate, alpha_saturate;
GLuint rgb_shift, alpha_shift;
if (!key->unit[unit].enabled) {
return get_source(p, SRC_PREVIOUS, 0);
}
switch (key->unit[unit].ModeRGB) {
case MODE_DOT3_RGB_EXT:
alpha_shift = key->unit[unit].ScaleShiftA;
rgb_shift = 0;
break;
case MODE_DOT3_RGBA_EXT:
alpha_shift = 0;
rgb_shift = 0;
break;
default:
rgb_shift = key->unit[unit].ScaleShiftRGB;
alpha_shift = key->unit[unit].ScaleShiftA;
break;
}
/* If we'll do rgb/alpha shifting don't saturate in emit_combine().
* We don't want to clamp twice.
*/
if (rgb_shift)
rgb_saturate = GL_FALSE; /* saturate after rgb shift */
else if (need_saturate(key->unit[unit].ModeRGB))
rgb_saturate = GL_TRUE;
else
rgb_saturate = GL_FALSE;
if (alpha_shift)
alpha_saturate = GL_FALSE; /* saturate after alpha shift */
else if (need_saturate(key->unit[unit].ModeA))
alpha_saturate = GL_TRUE;
else
alpha_saturate = GL_FALSE;
ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
ir_dereference *deref;
ir_rvalue *val;
/* Emit the RGB and A combine ops
*/
if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
args_match(key, unit)) {
val = emit_combine(p, unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
val = smear(val);
if (rgb_saturate)
val = saturate(val);
p->emit(assign(temp_var, val));
}
else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
ir_rvalue *val = emit_combine(p, unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
val = smear(val);
if (rgb_saturate)
val = saturate(val);
p->emit(assign(temp_var, val));
}
else {
/* Need to do something to stop from re-emitting identical
* argument calculations here:
*/
val = emit_combine(p, unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
val = swizzle_xyz(smear(val));
if (rgb_saturate)
val = saturate(val);
p->emit(assign(temp_var, val, WRITEMASK_XYZ));
val = emit_combine(p, unit,
key->unit[unit].NumArgsA,
key->unit[unit].ModeA,
key->unit[unit].OptA);
val = swizzle_w(smear(val));
if (alpha_saturate)
val = saturate(val);
p->emit(assign(temp_var, val, WRITEMASK_W));
}
deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
/* Deal with the final shift:
*/
if (alpha_shift || rgb_shift) {
ir_constant *shift;
if (rgb_shift == alpha_shift) {
shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
}
else {
ir_constant_data const_data;
const_data.f[0] = float(1 << rgb_shift);
const_data.f[1] = float(1 << rgb_shift);
const_data.f[2] = float(1 << rgb_shift);
const_data.f[3] = float(1 << alpha_shift);
shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
&const_data);
}
return saturate(mul(deref, shift));
}
else
return deref;
}
/**
* Generate instruction for getting a texture source term.
*/
static void load_texture( texenv_fragment_program *p, GLuint unit )
{
ir_dereference *deref;
if (p->src_texture[unit])
return;
const GLuint texTarget = p->state->unit[unit].source_index;
ir_rvalue *texcoord;
if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
} else if (p->texcoord_tex[unit]) {
texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
} else {
ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
assert(tc_array);
texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
}
if (!p->state->unit[unit].enabled) {
p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
"dummy_tex");
p->emit(p->src_texture[unit]);
p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
return ;
}
const glsl_type *sampler_type = NULL;
int coords = 0;
switch (texTarget) {
case TEXTURE_1D_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::sampler1DShadow_type;
else
sampler_type = glsl_type::sampler1D_type;
coords = 1;
break;
case TEXTURE_1D_ARRAY_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::sampler1DArrayShadow_type;
else
sampler_type = glsl_type::sampler1DArray_type;
coords = 2;
break;
case TEXTURE_2D_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::sampler2DShadow_type;
else
sampler_type = glsl_type::sampler2D_type;
coords = 2;
break;
case TEXTURE_2D_ARRAY_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::sampler2DArrayShadow_type;
else
sampler_type = glsl_type::sampler2DArray_type;
coords = 3;
break;
case TEXTURE_RECT_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::sampler2DRectShadow_type;
else
sampler_type = glsl_type::sampler2DRect_type;
coords = 2;
break;
case TEXTURE_3D_INDEX:
assert(!p->state->unit[unit].shadow);
sampler_type = glsl_type::sampler3D_type;
coords = 3;
break;
case TEXTURE_CUBE_INDEX:
if (p->state->unit[unit].shadow)
sampler_type = glsl_type::samplerCubeShadow_type;
else
sampler_type = glsl_type::samplerCube_type;
coords = 3;
break;
case TEXTURE_EXTERNAL_INDEX:
assert(!p->state->unit[unit].shadow);
sampler_type = glsl_type::samplerExternalOES_type;
coords = 2;
break;
}
p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
"tex");
ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
sampler_name,
ir_var_uniform);
p->top_instructions->push_head(sampler);
/* Set the texture unit for this sampler in the same way that
* layout(binding=X) would.
*/
sampler->data.explicit_binding = true;
sampler->data.binding = unit;
deref = new(p->mem_ctx) ir_dereference_variable(sampler);
tex->set_sampler(deref, glsl_type::vec4_type);
tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
if (p->state->unit[unit].shadow) {
texcoord = texcoord->clone(p->mem_ctx, NULL);
tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
coords, 0, 0, 0,
1);
coords++;
}
texcoord = texcoord->clone(p->mem_ctx, NULL);
tex->projector = swizzle_w(texcoord);
p->emit(assign(p->src_texture[unit], tex));
}
static void
load_texenv_source(texenv_fragment_program *p,
GLuint src, GLuint unit)
{
switch (src) {
case SRC_TEXTURE:
load_texture(p, unit);
break;
case SRC_TEXTURE0:
case SRC_TEXTURE1:
case SRC_TEXTURE2:
case SRC_TEXTURE3:
case SRC_TEXTURE4:
case SRC_TEXTURE5:
case SRC_TEXTURE6:
case SRC_TEXTURE7:
load_texture(p, src - SRC_TEXTURE0);
break;
default:
/* not a texture src - do nothing */
break;
}
}
/**
* Generate instructions for loading all texture source terms.
*/
static GLboolean
load_texunit_sources( texenv_fragment_program *p, GLuint unit )
{
const struct state_key *key = p->state;
GLuint i;
for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
}
for (i = 0; i < key->unit[unit].NumArgsA; i++) {
load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
}
return GL_TRUE;
}
/**
* Applies the fog calculations.
*
* This is basically like the ARB_fragment_prorgam fog options. Note
* that ffvertex_prog.c produces fogcoord for us when
* GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
*/
static ir_rvalue *
emit_fog_instructions(texenv_fragment_program *p,
ir_rvalue *fragcolor)
{
struct state_key *key = p->state;
ir_rvalue *f, *temp;
ir_variable *params, *oparams;
ir_variable *fogcoord;
/* Temporary storage for the whole fog result. Fog calculations
* only affect rgb so we're hanging on to the .a value of fragcolor
* this way.
*/
ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
p->emit(assign(fog_result, fragcolor));
fragcolor = swizzle_xyz(fog_result);
oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
assert(oparams);
fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
assert(fogcoord);
params = p->shader->symbols->get_variable("gl_Fog");
assert(params);
f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
switch (key->fog_mode) {
case FOG_LINEAR:
/* f = (end - z) / (end - start)
*
* gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
* (end / (end - start)) so we can generate a single MAD.
*/
f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
break;
case FOG_EXP:
/* f = e^(-(density * fogcoord))
*
* gl_MesaFogParamsOptimized gives us density/ln(2) so we can
* use EXP2 which is generally the native instruction without
* having to do any further math on the fog density uniform.
*/
f = mul(f, swizzle_z(oparams));
f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
break;
case FOG_EXP2:
/* f = e^(-(density * fogcoord)^2)
*
* gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
* can do this like FOG_EXP but with a squaring after the
* multiply by density.
*/
ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
f = mul(temp_var, temp_var);
f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
break;
}
p->emit(assign(f_var, saturate(f)));
f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
temp = new(p->mem_ctx) ir_dereference_variable(params);
temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
temp = mul(swizzle_xyz(temp), f);
p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
return new(p->mem_ctx) ir_dereference_variable(fog_result);
}
static void
emit_instructions(texenv_fragment_program *p)
{
struct state_key *key = p->state;
GLuint unit;
if (key->enabled_units) {
/* First pass - to support texture_env_crossbar, first identify
* all referenced texture sources and emit texld instructions
* for each:
*/
for (unit = 0; unit < key->nr_enabled_units; unit++)
if (key->unit[unit].enabled) {
load_texunit_sources(p, unit);
}
/* Second pass - emit combine instructions to build final color:
*/
for (unit = 0; unit < key->nr_enabled_units; unit++) {
if (key->unit[unit].enabled) {
p->src_previous = emit_texenv(p, unit);
}
}
}
ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
if (key->separate_specular) {
ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
"specular_add");
p->emit(assign(spec_result, cf));
ir_rvalue *secondary;
if (p->state->inputs_available & VARYING_BIT_COL1) {
ir_variable *var =
p->shader->symbols->get_variable("gl_SecondaryColor");
assert(var);
secondary = swizzle_xyz(var);
} else {
secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
}
p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
WRITEMASK_XYZ));
cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
}
if (key->fog_mode) {
cf = emit_fog_instructions(p, cf);
}
ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
assert(frag_color);
p->emit(assign(frag_color, cf));
}
/**
* Generate a new fragment program which implements the context's
* current texture env/combine mode.
*/
static struct gl_shader_program *
create_new_program(struct gl_context *ctx, struct state_key *key)
{
texenv_fragment_program p;
unsigned int unit;
_mesa_glsl_parse_state *state;
p.mem_ctx = ralloc_context(NULL);
p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
#ifdef DEBUG
p.shader->SourceChecksum = 0xf18ed; /* fixed */
#endif
p.shader->ir = new(p.shader) exec_list;
state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
p.shader);
p.shader->symbols = state->symbols;
p.top_instructions = p.shader->ir;
p.instructions = p.shader->ir;
p.state = key;
p.shader_program = _mesa_new_shader_program(0);
/* Tell the linker to ignore the fact that we're building a
* separate shader, in case we're in a GLES2 context that would
* normally reject that. The real problem is that we're building a
* fixed function program in a GLES2 context at all, but that's a
* big mess to clean up.
*/
p.shader_program->SeparateShader = GL_TRUE;
/* The legacy GLSL shadow functions follow the depth texture
* mode and return vec4. The GLSL 1.30 shadow functions return float and
* ignore the depth texture mode. That's a shader and state dependency
* that's difficult to deal with. st/mesa uses a simple but not
* completely correct solution: if the shader declares GLSL >= 1.30 and
* the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
* instead. Thus, the GLSL 1.30 shadow function will get the result in .x
* and legacy shadow functions will get it in .w as expected.
* For the fixed-function fragment shader, use 120 to get correct behavior
* for GL_ALPHA.
*/
state->language_version = 120;
state->es_shader = false;
if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
state->OES_EGL_image_external_enable = true;
_mesa_glsl_initialize_types(state);
_mesa_glsl_initialize_variables(p.instructions, state);
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
p.src_texture[unit] = NULL;
p.texcoord_tex[unit] = NULL;
}
p.src_previous = NULL;
ir_function *main_f = new(p.mem_ctx) ir_function("main");
p.emit(main_f);
state->symbols->add_function(main_f);
ir_function_signature *main_sig =
new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
main_sig->is_defined = true;
main_f->add_signature(main_sig);
p.instructions = &main_sig->body;
if (key->num_draw_buffers)
emit_instructions(&p);
validate_ir_tree(p.shader->ir);
const struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
/* Conservative approach: Don't optimize here, the linker does it too. */
if (!ctx->Const.GLSLOptimizeConservatively) {
while (do_common_optimization(p.shader->ir, false, false, options,
ctx->Const.NativeIntegers))
;
}
reparent_ir(p.shader->ir, p.shader->ir);
p.shader->CompileStatus = true;
p.shader->Version = state->language_version;
p.shader_program->Shaders =
(gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
p.shader_program->Shaders[0] = p.shader;
p.shader_program->NumShaders = 1;
_mesa_glsl_link_shader(ctx, p.shader_program);
if (!p.shader_program->data->LinkStatus)
_mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
p.shader_program->data->InfoLog);
ralloc_free(p.mem_ctx);
return p.shader_program;
}
extern "C" {
/**
* Return a fragment program which implements the current
* fixed-function texture, fog and color-sum operations.
*/
struct gl_shader_program *
_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
{
struct gl_shader_program *shader_program;
struct state_key key;
GLuint keySize;
keySize = make_state_key(ctx, &key);
shader_program = (struct gl_shader_program *)
_mesa_search_program_cache(ctx->FragmentProgram.Cache,
&key, keySize);
if (!shader_program) {
shader_program = create_new_program(ctx, &key);
_mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
&key, keySize, shader_program);
}
return shader_program;
}
}