/*
* Mesa 3-D graphics library
*
* Copyright (C) 2014 Intel Corporation All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "format_utils.h"
#include "glformats.h"
#include "format_pack.h"
#include "format_unpack.h"
const mesa_array_format RGBA32_FLOAT =
MESA_ARRAY_FORMAT(4, 1, 1, 1, 4, 0, 1, 2, 3);
const mesa_array_format RGBA8_UBYTE =
MESA_ARRAY_FORMAT(1, 0, 0, 1, 4, 0, 1, 2, 3);
const mesa_array_format RGBA32_UINT =
MESA_ARRAY_FORMAT(4, 0, 0, 0, 4, 0, 1, 2, 3);
const mesa_array_format RGBA32_INT =
MESA_ARRAY_FORMAT(4, 1, 0, 0, 4, 0, 1, 2, 3);
static void
invert_swizzle(uint8_t dst[4], const uint8_t src[4])
{
int i, j;
dst[0] = MESA_FORMAT_SWIZZLE_NONE;
dst[1] = MESA_FORMAT_SWIZZLE_NONE;
dst[2] = MESA_FORMAT_SWIZZLE_NONE;
dst[3] = MESA_FORMAT_SWIZZLE_NONE;
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j)
if (src[j] == i && dst[i] == MESA_FORMAT_SWIZZLE_NONE)
dst[i] = j;
}
/* Takes a src to RGBA swizzle and applies a rebase swizzle to it. This
* is used when we need to rebase a format to match a different
* base internal format.
*
* The rebase swizzle can be NULL, which means that no rebase is necessary,
* in which case the src to RGBA swizzle is copied to the output without
* changes.
*
* The resulting rebased swizzle and well as the input swizzles are
* all 4-element swizzles, but the rebase swizzle can be NULL if no rebase
* is necessary.
*/
static void
compute_rebased_rgba_component_mapping(uint8_t *src2rgba,
uint8_t *rebase_swizzle,
uint8_t *rebased_src2rgba)
{
int i;
if (rebase_swizzle) {
for (i = 0; i < 4; i++) {
if (rebase_swizzle[i] > MESA_FORMAT_SWIZZLE_W)
rebased_src2rgba[i] = rebase_swizzle[i];
else
rebased_src2rgba[i] = src2rgba[rebase_swizzle[i]];
}
} else {
/* No rebase needed, so src2rgba is all that we need */
memcpy(rebased_src2rgba, src2rgba, 4 * sizeof(uint8_t));
}
}
/* Computes the final swizzle transform to apply from src to dst in a
* conversion that might involve a rebase swizzle.
*
* This is used to compute the swizzle transform to apply in conversions
* between array formats where we have a src2rgba swizzle, a rgba2dst swizzle
* and possibly, a rebase swizzle.
*
* The final swizzle transform to apply (src2dst) when a rebase swizzle is
* involved is: src -> rgba -> base -> rgba -> dst
*/
static void
compute_src2dst_component_mapping(uint8_t *src2rgba, uint8_t *rgba2dst,
uint8_t *rebase_swizzle, uint8_t *src2dst)
{
int i;
if (!rebase_swizzle) {
for (i = 0; i < 4; i++) {
if (rgba2dst[i] > MESA_FORMAT_SWIZZLE_W) {
src2dst[i] = rgba2dst[i];
} else {
src2dst[i] = src2rgba[rgba2dst[i]];
}
}
} else {
for (i = 0; i < 4; i++) {
if (rgba2dst[i] > MESA_FORMAT_SWIZZLE_W) {
src2dst[i] = rgba2dst[i];
} else if (rebase_swizzle[rgba2dst[i]] > MESA_FORMAT_SWIZZLE_W) {
src2dst[i] = rebase_swizzle[rgba2dst[i]];
} else {
src2dst[i] = src2rgba[rebase_swizzle[rgba2dst[i]]];
}
}
}
}
/**
* This function is used by clients of _mesa_format_convert to obtain
* the rebase swizzle to use in a format conversion based on the base
* format involved.
*
* \param baseFormat the base internal format involved in the conversion.
* \param map the rebase swizzle to consider
*
* This function computes 'map' as rgba -> baseformat -> rgba and returns true
* if the resulting swizzle transform is not the identity transform (thus, a
* rebase is needed). If the function returns false then a rebase swizzle
* is not necessary and the value of 'map' is undefined. In this situation
* clients of _mesa_format_convert should pass NULL in the 'rebase_swizzle'
* parameter.
*/
bool
_mesa_compute_rgba2base2rgba_component_mapping(GLenum baseFormat, uint8_t *map)
{
uint8_t rgba2base[6], base2rgba[6];
int i;
switch (baseFormat) {
case GL_ALPHA:
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_RG:
case GL_RGB:
case GL_BGR:
case GL_RGBA:
case GL_BGRA:
case GL_ABGR_EXT:
case GL_LUMINANCE:
case GL_INTENSITY:
case GL_LUMINANCE_ALPHA:
{
bool needRebase = false;
_mesa_compute_component_mapping(GL_RGBA, baseFormat, rgba2base);
_mesa_compute_component_mapping(baseFormat, GL_RGBA, base2rgba);
for (i = 0; i < 4; i++) {
if (base2rgba[i] > MESA_FORMAT_SWIZZLE_W) {
map[i] = base2rgba[i];
} else {
map[i] = rgba2base[base2rgba[i]];
}
if (map[i] != i)
needRebase = true;
}
return needRebase;
}
default:
unreachable("Unexpected base format");
}
}
/**
* Special case conversion function to swap r/b channels from the source
* image to the dest image.
*/
static void
convert_ubyte_rgba_to_bgra(size_t width, size_t height,
const uint8_t *src, size_t src_stride,
uint8_t *dst, size_t dst_stride)
{
int row;
if (sizeof(void *) == 8 &&
src_stride % 8 == 0 &&
dst_stride % 8 == 0 &&
(GLsizeiptr) src % 8 == 0 &&
(GLsizeiptr) dst % 8 == 0) {
/* use 64-bit word to swizzle two 32-bit pixels. We need 8-byte
* alignment for src/dst addresses and strides.
*/
for (row = 0; row < height; row++) {
const GLuint64 *s = (const GLuint64 *) src;
GLuint64 *d = (GLuint64 *) dst;
int i;
for (i = 0; i < width/2; i++) {
d[i] = ( (s[i] & 0xff00ff00ff00ff00) |
((s[i] & 0xff000000ff) << 16) |
((s[i] & 0xff000000ff0000) >> 16));
}
if (width & 1) {
/* handle the case of odd widths */
const GLuint s = ((const GLuint *) src)[width - 1];
GLuint *d = (GLuint *) dst + width - 1;
*d = ( (s & 0xff00ff00) |
((s & 0xff) << 16) |
((s & 0xff0000) >> 16));
}
src += src_stride;
dst += dst_stride;
}
} else {
for (row = 0; row < height; row++) {
const GLuint *s = (const GLuint *) src;
GLuint *d = (GLuint *) dst;
int i;
for (i = 0; i < width; i++) {
d[i] = ( (s[i] & 0xff00ff00) |
((s[i] & 0xff) << 16) |
((s[i] & 0xff0000) >> 16));
}
src += src_stride;
dst += dst_stride;
}
}
}
/**
* This can be used to convert between most color formats.
*
* Limitations:
* - This function doesn't handle GL_COLOR_INDEX or YCBCR formats.
* - This function doesn't handle byte-swapping or transferOps, these should
* be handled by the caller.
*
* \param void_dst The address where converted color data will be stored.
* The caller must ensure that the buffer is large enough
* to hold the converted pixel data.
* \param dst_format The destination color format. It can be a mesa_format
* or a mesa_array_format represented as an uint32_t.
* \param dst_stride The stride of the destination format in bytes.
* \param void_src The address of the source color data to convert.
* \param src_format The source color format. It can be a mesa_format
* or a mesa_array_format represented as an uint32_t.
* \param src_stride The stride of the source format in bytes.
* \param width The width, in pixels, of the source image to convert.
* \param height The height, in pixels, of the source image to convert.
* \param rebase_swizzle A swizzle transform to apply during the conversion,
* typically used to match a different internal base
* format involved. NULL if no rebase transform is needed
* (i.e. the internal base format and the base format of
* the dst or the src -depending on whether we are doing
* an upload or a download respectively- are the same).
*/
void
_mesa_format_convert(void *void_dst, uint32_t dst_format, size_t dst_stride,
void *void_src, uint32_t src_format, size_t src_stride,
size_t width, size_t height, uint8_t *rebase_swizzle)
{
uint8_t *dst = (uint8_t *)void_dst;
uint8_t *src = (uint8_t *)void_src;
mesa_array_format src_array_format, dst_array_format;
bool src_format_is_mesa_array_format, dst_format_is_mesa_array_format;
uint8_t src2dst[4], src2rgba[4], rgba2dst[4], dst2rgba[4];
uint8_t rebased_src2rgba[4];
enum mesa_array_format_datatype src_type = 0, dst_type = 0, common_type;
bool normalized, dst_integer, src_integer, is_signed;
int src_num_channels = 0, dst_num_channels = 0;
uint8_t (*tmp_ubyte)[4];
float (*tmp_float)[4];
uint32_t (*tmp_uint)[4];
int bits;
size_t row;
if (_mesa_format_is_mesa_array_format(src_format)) {
src_format_is_mesa_array_format = true;
src_array_format = src_format;
} else {
assert(_mesa_is_format_color_format(src_format));
src_format_is_mesa_array_format = false;
src_array_format = _mesa_format_to_array_format(src_format);
}
if (_mesa_format_is_mesa_array_format(dst_format)) {
dst_format_is_mesa_array_format = true;
dst_array_format = dst_format;
} else {
assert(_mesa_is_format_color_format(dst_format));
dst_format_is_mesa_array_format = false;
dst_array_format = _mesa_format_to_array_format(dst_format);
}
/* First we see if we can implement the conversion with a direct pack
* or unpack.
*
* In this case we want to be careful when we need to apply a swizzle to
* match an internal base format, since in these cases a simple pack/unpack
* to the dst format from the src format may not match the requirements
* of the internal base format. For now we decide to be safe and
* avoid this path in these scenarios but in the future we may want to
* enable it for specific combinations that are known to work.
*/
if (!rebase_swizzle) {
/* Handle the cases where we can directly unpack */
if (!src_format_is_mesa_array_format) {
if (dst_array_format == RGBA32_FLOAT) {
for (row = 0; row < height; ++row) {
_mesa_unpack_rgba_row(src_format, width,
src, (float (*)[4])dst);
src += src_stride;
dst += dst_stride;
}
return;
} else if (dst_array_format == RGBA8_UBYTE) {
assert(!_mesa_is_format_integer_color(src_format));
for (row = 0; row < height; ++row) {
_mesa_unpack_ubyte_rgba_row(src_format, width,
src, (uint8_t (*)[4])dst);
src += src_stride;
dst += dst_stride;
}
return;
} else if (dst_array_format == RGBA32_UINT &&
_mesa_is_format_unsigned(src_format)) {
assert(_mesa_is_format_integer_color(src_format));
for (row = 0; row < height; ++row) {
_mesa_unpack_uint_rgba_row(src_format, width,
src, (uint32_t (*)[4])dst);
src += src_stride;
dst += dst_stride;
}
return;
}
}
/* Handle the cases where we can directly pack */
if (!dst_format_is_mesa_array_format) {
if (src_array_format == RGBA32_FLOAT) {
for (row = 0; row < height; ++row) {
_mesa_pack_float_rgba_row(dst_format, width,
(const float (*)[4])src, dst);
src += src_stride;
dst += dst_stride;
}
return;
} else if (src_array_format == RGBA8_UBYTE) {
assert(!_mesa_is_format_integer_color(dst_format));
if (dst_format == MESA_FORMAT_B8G8R8A8_UNORM) {
convert_ubyte_rgba_to_bgra(width, height, src, src_stride,
dst, dst_stride);
}
else {
for (row = 0; row < height; ++row) {
_mesa_pack_ubyte_rgba_row(dst_format, width,
(const uint8_t (*)[4])src, dst);
src += src_stride;
dst += dst_stride;
}
}
return;
} else if (src_array_format == RGBA32_UINT &&
_mesa_is_format_unsigned(dst_format)) {
assert(_mesa_is_format_integer_color(dst_format));
for (row = 0; row < height; ++row) {
_mesa_pack_uint_rgba_row(dst_format, width,
(const uint32_t (*)[4])src, dst);
src += src_stride;
dst += dst_stride;
}
return;
}
}
}
/* Handle conversions between array formats */
normalized = false;
if (src_array_format) {
src_type = _mesa_array_format_get_datatype(src_array_format);
src_num_channels = _mesa_array_format_get_num_channels(src_array_format);
_mesa_array_format_get_swizzle(src_array_format, src2rgba);
normalized = _mesa_array_format_is_normalized(src_array_format);
}
if (dst_array_format) {
dst_type = _mesa_array_format_get_datatype(dst_array_format);
dst_num_channels = _mesa_array_format_get_num_channels(dst_array_format);
_mesa_array_format_get_swizzle(dst_array_format, dst2rgba);
invert_swizzle(rgba2dst, dst2rgba);
normalized |= _mesa_array_format_is_normalized(dst_array_format);
}
if (src_array_format && dst_array_format) {
assert(_mesa_array_format_is_normalized(src_array_format) ==
_mesa_array_format_is_normalized(dst_array_format));
compute_src2dst_component_mapping(src2rgba, rgba2dst, rebase_swizzle,
src2dst);
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
src, src_type, src_num_channels,
src2dst, normalized, width);
src += src_stride;
dst += dst_stride;
}
return;
}
/* At this point, we're fresh out of fast-paths and we need to convert
* to float, uint32, or, if we're lucky, uint8.
*/
dst_integer = false;
src_integer = false;
if (src_array_format) {
if (!_mesa_array_format_is_float(src_array_format) &&
!_mesa_array_format_is_normalized(src_array_format))
src_integer = true;
} else {
switch (_mesa_get_format_datatype(src_format)) {
case GL_UNSIGNED_INT:
case GL_INT:
src_integer = true;
break;
}
}
/* If the destination format is signed but the source is unsigned, then we
* don't loose any data by converting to a signed intermediate format above
* and beyond the precision that we loose in the conversion itself. If the
* destination is unsigned then, by using an unsigned intermediate format,
* we make the conversion function that converts from the source to the
* intermediate format take care of truncating at zero. The exception here
* is if the intermediate format is float, in which case the first
* conversion will leave it signed and the second conversion will truncate
* at zero.
*/
is_signed = false;
if (dst_array_format) {
if (!_mesa_array_format_is_float(dst_array_format) &&
!_mesa_array_format_is_normalized(dst_array_format))
dst_integer = true;
is_signed = _mesa_array_format_is_signed(dst_array_format);
bits = 8 * _mesa_array_format_get_type_size(dst_array_format);
} else {
switch (_mesa_get_format_datatype(dst_format)) {
case GL_UNSIGNED_NORMALIZED:
is_signed = false;
break;
case GL_SIGNED_NORMALIZED:
is_signed = true;
break;
case GL_FLOAT:
is_signed = true;
break;
case GL_UNSIGNED_INT:
is_signed = false;
dst_integer = true;
break;
case GL_INT:
is_signed = true;
dst_integer = true;
break;
}
bits = _mesa_get_format_max_bits(dst_format);
}
assert(src_integer == dst_integer);
if (src_integer && dst_integer) {
tmp_uint = malloc(width * height * sizeof(*tmp_uint));
/* The [un]packing functions for unsigned datatypes treat the 32-bit
* integer array as signed for signed formats and as unsigned for
* unsigned formats. This is a bit of a problem if we ever convert from
* a signed to an unsigned format because the unsigned packing function
* doesn't know that the input is signed and will treat it as unsigned
* and not do the trunctation. The thing that saves us here is that all
* of the packed formats are unsigned, so we can just always use
* _mesa_swizzle_and_convert for signed formats, which is aware of the
* truncation problem.
*/
common_type = is_signed ? MESA_ARRAY_FORMAT_TYPE_INT :
MESA_ARRAY_FORMAT_TYPE_UINT;
if (src_array_format) {
compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
rebased_src2rgba);
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(tmp_uint + row * width, common_type, 4,
src, src_type, src_num_channels,
rebased_src2rgba, normalized, width);
src += src_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_unpack_uint_rgba_row(src_format, width,
src, tmp_uint + row * width);
if (rebase_swizzle)
_mesa_swizzle_and_convert(tmp_uint + row * width, common_type, 4,
tmp_uint + row * width, common_type, 4,
rebase_swizzle, false, width);
src += src_stride;
}
}
/* At this point, we have already done the truncation if the source is
* signed but the destination is unsigned, so no need to force the
* _mesa_swizzle_and_convert path.
*/
if (dst_format_is_mesa_array_format) {
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
tmp_uint + row * width, common_type, 4,
rgba2dst, normalized, width);
dst += dst_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_pack_uint_rgba_row(dst_format, width,
(const uint32_t (*)[4])tmp_uint + row * width, dst);
dst += dst_stride;
}
}
free(tmp_uint);
} else if (is_signed || bits > 8) {
tmp_float = malloc(width * height * sizeof(*tmp_float));
if (src_format_is_mesa_array_format) {
compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
rebased_src2rgba);
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(tmp_float + row * width,
MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
src, src_type, src_num_channels,
rebased_src2rgba, normalized, width);
src += src_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_unpack_rgba_row(src_format, width,
src, tmp_float + row * width);
if (rebase_swizzle)
_mesa_swizzle_and_convert(tmp_float + row * width,
MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
tmp_float + row * width,
MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
rebase_swizzle, normalized, width);
src += src_stride;
}
}
if (dst_format_is_mesa_array_format) {
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
tmp_float + row * width,
MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
rgba2dst, normalized, width);
dst += dst_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_pack_float_rgba_row(dst_format, width,
(const float (*)[4])tmp_float + row * width, dst);
dst += dst_stride;
}
}
free(tmp_float);
} else {
tmp_ubyte = malloc(width * height * sizeof(*tmp_ubyte));
if (src_format_is_mesa_array_format) {
compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
rebased_src2rgba);
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(tmp_ubyte + row * width,
MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
src, src_type, src_num_channels,
rebased_src2rgba, normalized, width);
src += src_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_unpack_ubyte_rgba_row(src_format, width,
src, tmp_ubyte + row * width);
if (rebase_swizzle)
_mesa_swizzle_and_convert(tmp_ubyte + row * width,
MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
tmp_ubyte + row * width,
MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
rebase_swizzle, normalized, width);
src += src_stride;
}
}
if (dst_format_is_mesa_array_format) {
for (row = 0; row < height; ++row) {
_mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
tmp_ubyte + row * width,
MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
rgba2dst, normalized, width);
dst += dst_stride;
}
} else {
for (row = 0; row < height; ++row) {
_mesa_pack_ubyte_rgba_row(dst_format, width,
(const uint8_t (*)[4])tmp_ubyte + row * width, dst);
dst += dst_stride;
}
}
free(tmp_ubyte);
}
}
static const uint8_t map_identity[7] = { 0, 1, 2, 3, 4, 5, 6 };
static const uint8_t map_3210[7] = { 3, 2, 1, 0, 4, 5, 6 };
static const uint8_t map_1032[7] = { 1, 0, 3, 2, 4, 5, 6 };
/**
* Describes a format as an array format, if possible
*
* A helper function for figuring out if a (possibly packed) format is
* actually an array format and, if so, what the array parameters are.
*
* \param[in] format the mesa format
* \param[out] type the GL type of the array (GL_BYTE, etc.)
* \param[out] num_components the number of components in the array
* \param[out] swizzle a swizzle describing how to get from the
* given format to RGBA
* \param[out] normalized for integer formats, this represents whether
* the format is a normalized integer or a
* regular integer
* \return true if this format is an array format, false otherwise
*/
bool
_mesa_format_to_array(mesa_format format, GLenum *type, int *num_components,
uint8_t swizzle[4], bool *normalized)
{
int i;
GLuint format_components;
uint8_t packed_swizzle[4];
const uint8_t *endian;
if (_mesa_is_format_compressed(format))
return false;
*normalized = !_mesa_is_format_integer(format);
_mesa_uncompressed_format_to_type_and_comps(format, type, &format_components);
switch (_mesa_get_format_layout(format)) {
case MESA_FORMAT_LAYOUT_ARRAY:
*num_components = format_components;
_mesa_get_format_swizzle(format, swizzle);
return true;
case MESA_FORMAT_LAYOUT_PACKED:
switch (*type) {
case GL_UNSIGNED_BYTE:
case GL_BYTE:
if (_mesa_get_format_max_bits(format) != 8)
return false;
*num_components = _mesa_get_format_bytes(format);
switch (*num_components) {
case 1:
endian = map_identity;
break;
case 2:
endian = _mesa_little_endian() ? map_identity : map_1032;
break;
case 4:
endian = _mesa_little_endian() ? map_identity : map_3210;
break;
default:
endian = map_identity;
assert(!"Invalid number of components");
}
break;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
case GL_HALF_FLOAT:
if (_mesa_get_format_max_bits(format) != 16)
return false;
*num_components = _mesa_get_format_bytes(format) / 2;
switch (*num_components) {
case 1:
endian = map_identity;
break;
case 2:
endian = _mesa_little_endian() ? map_identity : map_1032;
break;
default:
endian = map_identity;
assert(!"Invalid number of components");
}
break;
case GL_UNSIGNED_INT:
case GL_INT:
case GL_FLOAT:
/* This isn't packed. At least not really. */
assert(format_components == 1);
if (_mesa_get_format_max_bits(format) != 32)
return false;
*num_components = format_components;
endian = map_identity;
break;
default:
return false;
}
_mesa_get_format_swizzle(format, packed_swizzle);
for (i = 0; i < 4; ++i)
swizzle[i] = endian[packed_swizzle[i]];
return true;
case MESA_FORMAT_LAYOUT_OTHER:
default:
return false;
}
}
/**
* Attempts to perform the given swizzle-and-convert operation with memcpy
*
* This function determines if the given swizzle-and-convert operation can
* be done with a simple memcpy and, if so, does the memcpy. If not, it
* returns false and we fall back to the standard version below.
*
* The arguments are exactly the same as for _mesa_swizzle_and_convert
*
* \return true if it successfully performed the swizzle-and-convert
* operation with memcpy, false otherwise
*/
static bool
swizzle_convert_try_memcpy(void *dst,
enum mesa_array_format_datatype dst_type,
int num_dst_channels,
const void *src,
enum mesa_array_format_datatype src_type,
int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
int i;
if (src_type != dst_type)
return false;
if (num_src_channels != num_dst_channels)
return false;
for (i = 0; i < num_dst_channels; ++i)
if (swizzle[i] != i && swizzle[i] != MESA_FORMAT_SWIZZLE_NONE)
return false;
memcpy(dst, src, count * num_src_channels *
_mesa_array_format_datatype_get_size(src_type));
return true;
}
/**
* Represents a single instance of the standard swizzle-and-convert loop
*
* Any swizzle-and-convert operation simply loops through the pixels and
* performs the transformation operation one pixel at a time. This macro
* embodies one instance of the conversion loop. This way we can do all
* control flow outside of the loop and allow the compiler to unroll
* everything inside the loop.
*
* Note: This loop is carefully crafted for performance. Be careful when
* changing it and run some benchmarks to ensure no performance regressions
* if you do.
*
* \param DST_TYPE the C datatype of the destination
* \param DST_CHANS the number of destination channels
* \param SRC_TYPE the C datatype of the source
* \param SRC_CHANS the number of source channels
* \param CONV an expression for converting from the source data,
* storred in the variable "src", to the destination
* format
*/
#define SWIZZLE_CONVERT_LOOP(DST_TYPE, DST_CHANS, SRC_TYPE, SRC_CHANS, CONV) \
do { \
int s, j; \
for (s = 0; s < count; ++s) { \
for (j = 0; j < SRC_CHANS; ++j) { \
SRC_TYPE src = typed_src[j]; \
tmp[j] = CONV; \
} \
\
typed_dst[0] = tmp[swizzle_x]; \
if (DST_CHANS > 1) { \
typed_dst[1] = tmp[swizzle_y]; \
if (DST_CHANS > 2) { \
typed_dst[2] = tmp[swizzle_z]; \
if (DST_CHANS > 3) { \
typed_dst[3] = tmp[swizzle_w]; \
} \
} \
} \
typed_src += SRC_CHANS; \
typed_dst += DST_CHANS; \
} \
} while (0)
/**
* Represents a single swizzle-and-convert operation
*
* This macro represents everything done in a single swizzle-and-convert
* operation. The actual work is done by the SWIZZLE_CONVERT_LOOP macro.
* This macro acts as a wrapper that uses a nested switch to ensure that
* all looping parameters get unrolled.
*
* This macro makes assumptions about variables etc. in the calling
* function. Changes to _mesa_swizzle_and_convert may require changes to
* this macro.
*
* \param DST_TYPE the C datatype of the destination
* \param SRC_TYPE the C datatype of the source
* \param CONV an expression for converting from the source data,
* storred in the variable "src", to the destination
* format
*/
#define SWIZZLE_CONVERT(DST_TYPE, SRC_TYPE, CONV) \
do { \
const uint8_t swizzle_x = swizzle[0]; \
const uint8_t swizzle_y = swizzle[1]; \
const uint8_t swizzle_z = swizzle[2]; \
const uint8_t swizzle_w = swizzle[3]; \
const SRC_TYPE *typed_src = void_src; \
DST_TYPE *typed_dst = void_dst; \
DST_TYPE tmp[7]; \
tmp[4] = 0; \
tmp[5] = one; \
switch (num_dst_channels) { \
case 1: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 1, CONV); \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 2, CONV); \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 3, CONV); \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 4, CONV); \
break; \
} \
break; \
case 2: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 1, CONV); \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 2, CONV); \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 3, CONV); \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 4, CONV); \
break; \
} \
break; \
case 3: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 1, CONV); \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 2, CONV); \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 3, CONV); \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 4, CONV); \
break; \
} \
break; \
case 4: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 1, CONV); \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 2, CONV); \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 3, CONV); \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 4, CONV); \
break; \
} \
break; \
} \
} while (0)
static void
convert_float(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const float one = 1.0f;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
SWIZZLE_CONVERT(float, float, src);
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
SWIZZLE_CONVERT(float, uint16_t, _mesa_half_to_float(src));
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(float, uint8_t, _mesa_unorm_to_float(src, 8));
} else {
SWIZZLE_CONVERT(float, uint8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(float, int8_t, _mesa_snorm_to_float(src, 8));
} else {
SWIZZLE_CONVERT(float, int8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(float, uint16_t, _mesa_unorm_to_float(src, 16));
} else {
SWIZZLE_CONVERT(float, uint16_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(float, int16_t, _mesa_snorm_to_float(src, 16));
} else {
SWIZZLE_CONVERT(float, int16_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(float, uint32_t, _mesa_unorm_to_float(src, 32));
} else {
SWIZZLE_CONVERT(float, uint32_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(float, int32_t, _mesa_snorm_to_float(src, 32));
} else {
SWIZZLE_CONVERT(float, int32_t, src);
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_half_float(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const uint16_t one = _mesa_float_to_half(1.0f);
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_half(src));
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
SWIZZLE_CONVERT(uint16_t, uint16_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_unorm_to_half(src, 8));
} else {
SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_float_to_half(src));
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_snorm_to_half(src, 8));
} else {
SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_float_to_half(src));
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_unorm_to_half(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_float_to_half(src));
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_snorm_to_half(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_float_to_half(src));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unorm_to_half(src, 32));
} else {
SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_float_to_half(src));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_snorm_to_half(src, 32));
} else {
SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_float_to_half(src));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_ubyte(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const uint8_t one = normalized ? UINT8_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_unorm(src, 8));
} else {
SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_unorm(src, 8));
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
SWIZZLE_CONVERT(uint8_t, uint8_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int8_t, _mesa_snorm_to_unorm(src, 8, 8));
} else {
SWIZZLE_CONVERT(uint8_t, int8_t, _mesa_signed_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_unorm_to_unorm(src, 16, 8));
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_unsigned_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int16_t, _mesa_snorm_to_unorm(src, 16, 8));
} else {
SWIZZLE_CONVERT(uint8_t, int16_t, _mesa_signed_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint32_t, _mesa_unorm_to_unorm(src, 32, 8));
} else {
SWIZZLE_CONVERT(uint8_t, uint32_t, _mesa_unsigned_to_unsigned(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int32_t, _mesa_snorm_to_unorm(src, 32, 8));
} else {
SWIZZLE_CONVERT(uint8_t, int32_t, _mesa_signed_to_unsigned(src, 8));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_byte(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const int8_t one = normalized ? INT8_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_snorm(src, 8));
} else {
SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_snorm(src, 8));
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 8));
} else {
SWIZZLE_CONVERT(int8_t, uint8_t, _mesa_unsigned_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
SWIZZLE_CONVERT(int8_t, int8_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 8));
} else {
SWIZZLE_CONVERT(int8_t, uint16_t, _mesa_unsigned_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, int16_t, _mesa_snorm_to_snorm(src, 16, 8));
} else {
SWIZZLE_CONVERT(int8_t, int16_t, _mesa_signed_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 8));
} else {
SWIZZLE_CONVERT(int8_t, uint32_t, _mesa_unsigned_to_signed(src, 8));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, int32_t, _mesa_snorm_to_snorm(src, 32, 8));
} else {
SWIZZLE_CONVERT(int8_t, int32_t, _mesa_signed_to_signed(src, 8));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_ushort(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const uint16_t one = normalized ? UINT16_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_unorm(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_unsigned(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_unorm(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_unsigned(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_unorm_to_unorm(src, 8, 16));
} else {
SWIZZLE_CONVERT(uint16_t, uint8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_snorm_to_unorm(src, 8, 16));
} else {
SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_signed_to_unsigned(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
SWIZZLE_CONVERT(uint16_t, uint16_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_snorm_to_unorm(src, 16, 16));
} else {
SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_signed_to_unsigned(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unorm_to_unorm(src, 32, 16));
} else {
SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unsigned_to_unsigned(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_snorm_to_unorm(src, 32, 16));
} else {
SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_signed_to_unsigned(src, 16));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_short(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const int16_t one = normalized ? INT16_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_snorm(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_signed(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_snorm(src, 16));
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_signed(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 16));
} else {
SWIZZLE_CONVERT(int16_t, uint8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int16_t, int8_t, _mesa_snorm_to_snorm(src, 8, 16));
} else {
SWIZZLE_CONVERT(int16_t, int8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 16));
} else {
SWIZZLE_CONVERT(int16_t, uint16_t, _mesa_unsigned_to_signed(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
SWIZZLE_CONVERT(int16_t, int16_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 16));
} else {
SWIZZLE_CONVERT(int16_t, uint32_t, _mesa_unsigned_to_signed(src, 16));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, int32_t, _mesa_snorm_to_snorm(src, 32, 16));
} else {
SWIZZLE_CONVERT(int16_t, int32_t, _mesa_signed_to_signed(src, 16));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_uint(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const uint32_t one = normalized ? UINT32_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_unorm(src, 32));
} else {
SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_unsigned(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_unorm(src, 32));
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_unsigned(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint8_t, _mesa_unorm_to_unorm(src, 8, 32));
} else {
SWIZZLE_CONVERT(uint32_t, uint8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int8_t, _mesa_snorm_to_unorm(src, 8, 32));
} else {
SWIZZLE_CONVERT(uint32_t, int8_t, _mesa_signed_to_unsigned(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_unorm_to_unorm(src, 16, 32));
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int16_t, _mesa_snorm_to_unorm(src, 16, 32));
} else {
SWIZZLE_CONVERT(uint32_t, int16_t, _mesa_signed_to_unsigned(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
SWIZZLE_CONVERT(uint32_t, uint32_t, src);
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int32_t, _mesa_snorm_to_unorm(src, 32, 32));
} else {
SWIZZLE_CONVERT(uint32_t, int32_t, _mesa_signed_to_unsigned(src, 32));
}
break;
default:
assert(!"Invalid channel type combination");
}
}
static void
convert_int(void *void_dst, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
const int32_t one = normalized ? INT32_MAX : 1;
switch (src_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_snorm(src, 32));
} else {
SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_signed(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_snorm(src, 32));
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_signed(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 32));
} else {
SWIZZLE_CONVERT(int32_t, uint8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int32_t, int8_t, _mesa_snorm_to_snorm(src, 8, 32));
} else {
SWIZZLE_CONVERT(int32_t, int8_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 32));
} else {
SWIZZLE_CONVERT(int32_t, uint16_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, int16_t, _mesa_snorm_to_snorm(src, 16, 32));
} else {
SWIZZLE_CONVERT(int32_t, int16_t, src);
}
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 32));
} else {
SWIZZLE_CONVERT(int32_t, uint32_t, _mesa_unsigned_to_signed(src, 32));
}
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
SWIZZLE_CONVERT(int32_t, int32_t, src);
break;
default:
assert(!"Invalid channel type combination");
}
}
/**
* Convert between array-based color formats.
*
* Most format conversion operations required by GL can be performed by
* converting one channel at a time, shuffling the channels around, and
* optionally filling missing channels with zeros and ones. This function
* does just that in a general, yet efficient, way.
*
* The swizzle parameter is an array of 4 numbers (see
* _mesa_get_format_swizzle) that describes where each channel in the
* destination should come from in the source. If swizzle[i] < 4 then it
* means that dst[i] = CONVERT(src[swizzle[i]]). If swizzle[i] is
* MESA_FORMAT_SWIZZLE_ZERO or MESA_FORMAT_SWIZZLE_ONE, the corresponding
* dst[i] will be filled with the appropreate representation of zero or one
* respectively.
*
* Under most circumstances, the source and destination images must be
* different as no care is taken not to clobber one with the other.
* However, if they have the same number of bits per pixel, it is safe to
* do an in-place conversion.
*
* \param[out] dst pointer to where the converted data should
* be stored
*
* \param[in] dst_type the destination GL type of the converted
* data (GL_BYTE, etc.)
*
* \param[in] num_dst_channels the number of channels in the converted
* data
*
* \param[in] src pointer to the source data
*
* \param[in] src_type the GL type of the source data (GL_BYTE,
* etc.)
*
* \param[in] num_src_channels the number of channels in the source data
* (the number of channels total, not just
* the number used)
*
* \param[in] swizzle describes how to get the destination data
* from the source data.
*
* \param[in] normalized for integer types, this indicates whether
* the data should be considered as integers
* or as normalized integers;
*
* \param[in] count the number of pixels to convert
*/
void
_mesa_swizzle_and_convert(void *void_dst, enum mesa_array_format_datatype dst_type, int num_dst_channels,
const void *void_src, enum mesa_array_format_datatype src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
if (swizzle_convert_try_memcpy(void_dst, dst_type, num_dst_channels,
void_src, src_type, num_src_channels,
swizzle, normalized, count))
return;
switch (dst_type) {
case MESA_ARRAY_FORMAT_TYPE_FLOAT:
convert_float(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_HALF:
convert_half_float(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_UBYTE:
convert_ubyte(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_BYTE:
convert_byte(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_USHORT:
convert_ushort(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_SHORT:
convert_short(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_UINT:
convert_uint(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
case MESA_ARRAY_FORMAT_TYPE_INT:
convert_int(void_dst, num_dst_channels, void_src, src_type,
num_src_channels, swizzle, normalized, count);
break;
default:
assert(!"Invalid channel type");
}
}