/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDefaultGeoProcFactory.h"
#include "SkRefCnt.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLUtil.h"
/*
* The default Geometry Processor simply takes position and multiplies it by the uniform view
* matrix. It also leaves coverage untouched. Behind the scenes, we may add per vertex color or
* local coords.
*/
enum GPFlag {
kColorAttribute_GPFlag = 0x1,
kColorAttributeIsSkColor_GPFlag = 0x2,
kLocalCoordAttribute_GPFlag = 0x4,
kCoverageAttribute_GPFlag = 0x8,
kLinearizeColorAttribute_GPFlag = 0x10,
};
class DefaultGeoProc : public GrGeometryProcessor {
public:
static sk_sp<GrGeometryProcessor> Make(uint32_t gpTypeFlags,
GrColor color,
sk_sp<GrColorSpaceXform> colorSpaceXform,
const SkMatrix& viewMatrix,
const SkMatrix& localMatrix,
bool localCoordsWillBeRead,
uint8_t coverage) {
return sk_sp<GrGeometryProcessor>(new DefaultGeoProc(
gpTypeFlags, color, std::move(colorSpaceXform), viewMatrix, localMatrix, coverage,
localCoordsWillBeRead));
}
const char* name() const override { return "DefaultGeometryProcessor"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inColor() const { return fInColor; }
const Attribute* inLocalCoords() const { return fInLocalCoords; }
const Attribute* inCoverage() const { return fInCoverage; }
GrColor color() const { return fColor; }
bool hasVertexColor() const { return SkToBool(fInColor); }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool localCoordsWillBeRead() const { return fLocalCoordsWillBeRead; }
uint8_t coverage() const { return fCoverage; }
bool hasVertexCoverage() const { return SkToBool(fInCoverage); }
bool linearizeColor() const {
// Linearization should only happen with SkColor
bool linearize = SkToBool(fFlags & kLinearizeColorAttribute_GPFlag);
SkASSERT(!linearize || (fFlags & kColorAttributeIsSkColor_GPFlag));
return linearize;
}
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
GLSLProcessor()
: fViewMatrix(SkMatrix::InvalidMatrix()), fColor(GrColor_ILLEGAL), fCoverage(0xff) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(gp);
// Setup pass through color
if (gp.hasVertexColor()) {
GrGLSLVarying varying(kHalf4_GrSLType);
varyingHandler->addVarying("color", &varying);
// There are several optional steps to process the color. Start with the attribute:
vertBuilder->codeAppendf("half4 color = %s;", gp.inColor()->fName);
// Linearize
if (gp.linearizeColor()) {
SkString srgbFuncName;
static const GrShaderVar gSrgbArgs[] = {
GrShaderVar("x", kHalf_GrSLType),
};
vertBuilder->emitFunction(kHalf_GrSLType,
"srgb_to_linear",
SK_ARRAY_COUNT(gSrgbArgs),
gSrgbArgs,
"return (x <= 0.04045) ? (x / 12.92) "
": pow((x + 0.055) / 1.055, 2.4);",
&srgbFuncName);
vertBuilder->codeAppendf("color = half4(%s(%s.r), %s(%s.g), %s(%s.b), %s.a);",
srgbFuncName.c_str(), gp.inColor()->fName,
srgbFuncName.c_str(), gp.inColor()->fName,
srgbFuncName.c_str(), gp.inColor()->fName,
gp.inColor()->fName);
}
// For SkColor, do a red/blue swap and premul
if (gp.fFlags & kColorAttributeIsSkColor_GPFlag) {
vertBuilder->codeAppend("color = half4(color.a * color.bgr, color.a);");
}
// Do color-correction to destination gamut
if (gp.linearizeColor()) {
fColorSpaceHelper.emitCode(uniformHandler, gp.fColorSpaceXform.get(),
kVertex_GrShaderFlag);
if (fColorSpaceHelper.isValid()) {
SkString xformedColor;
vertBuilder->appendColorGamutXform(&xformedColor, "color",
&fColorSpaceHelper);
vertBuilder->codeAppendf("color = %s;", xformedColor.c_str());
}
}
vertBuilder->codeAppendf("%s = color;\n", varying.vsOut());
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, varying.fsIn());
} else {
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
// Setup position
this->writeOutputPosition(vertBuilder,
uniformHandler,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
if (gp.hasExplicitLocalCoords()) {
// emit transforms with explicit local coords
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gp.inLocalCoords()->asShaderVar(),
gp.localMatrix(),
args.fFPCoordTransformHandler);
} else {
// emit transforms with position
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gp.inPosition()->asShaderVar(),
gp.localMatrix(),
args.fFPCoordTransformHandler);
}
// Setup coverage as pass through
if (gp.hasVertexCoverage()) {
fragBuilder->codeAppendf("half alpha = 1.0;");
varyingHandler->addPassThroughAttribute(gp.inCoverage(), "alpha");
fragBuilder->codeAppendf("%s = half4(alpha);", args.fOutputCoverage);
} else if (gp.coverage() == 0xff) {
fragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage);
} else {
const char* fragCoverage;
fCoverageUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kHalf_GrSLType,
"Coverage",
&fragCoverage);
fragBuilder->codeAppendf("%s = half4(%s);", args.fOutputCoverage, fragCoverage);
}
}
static inline void GenKey(const GrGeometryProcessor& gp,
const GrShaderCaps&,
GrProcessorKeyBuilder* b) {
const DefaultGeoProc& def = gp.cast<DefaultGeoProc>();
uint32_t key = def.fFlags;
key |= (def.coverage() == 0xff) ? 0x10 : 0;
key |= (def.localCoordsWillBeRead() && def.localMatrix().hasPerspective()) ? 0x20 : 0x0;
key |= ComputePosKey(def.viewMatrix()) << 20;
b->add32(key);
if (def.linearizeColor()) {
b->add32(GrColorSpaceXform::XformKey(def.fColorSpaceXform.get()));
}
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp,
FPCoordTransformIter&& transformIter) override {
const DefaultGeoProc& dgp = gp.cast<DefaultGeoProc>();
if (!dgp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dgp.viewMatrix())) {
fViewMatrix = dgp.viewMatrix();
float viewMatrix[3 * 3];
GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix);
pdman.setMatrix3f(fViewMatrixUniform, viewMatrix);
}
if (dgp.color() != fColor && !dgp.hasVertexColor()) {
float c[4];
GrColorToRGBAFloat(dgp.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = dgp.color();
}
if (dgp.coverage() != fCoverage && !dgp.hasVertexCoverage()) {
pdman.set1f(fCoverageUniform, GrNormalizeByteToFloat(dgp.coverage()));
fCoverage = dgp.coverage();
}
this->setTransformDataHelper(dgp.fLocalMatrix, pdman, &transformIter);
if (dgp.linearizeColor() && dgp.fColorSpaceXform) {
fColorSpaceHelper.setData(pdman, dgp.fColorSpaceXform.get());
}
}
private:
SkMatrix fViewMatrix;
GrColor fColor;
uint8_t fCoverage;
UniformHandle fViewMatrixUniform;
UniformHandle fColorUniform;
UniformHandle fCoverageUniform;
GrGLSLColorSpaceXformHelper fColorSpaceHelper;
typedef GrGLSLGeometryProcessor INHERITED;
};
void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override {
return new GLSLProcessor();
}
private:
DefaultGeoProc(uint32_t gpTypeFlags,
GrColor color,
sk_sp<GrColorSpaceXform> colorSpaceXform,
const SkMatrix& viewMatrix,
const SkMatrix& localMatrix,
uint8_t coverage,
bool localCoordsWillBeRead)
: INHERITED(kDefaultGeoProc_ClassID)
, fColor(color)
, fViewMatrix(viewMatrix)
, fLocalMatrix(localMatrix)
, fCoverage(coverage)
, fFlags(gpTypeFlags)
, fLocalCoordsWillBeRead(localCoordsWillBeRead)
, fColorSpaceXform(std::move(colorSpaceXform)) {
fInPosition = &this->addVertexAttrib("inPosition", kFloat2_GrVertexAttribType);
if (fFlags & kColorAttribute_GPFlag) {
fInColor = &this->addVertexAttrib("inColor", kUByte4_norm_GrVertexAttribType);
}
if (fFlags & kLocalCoordAttribute_GPFlag) {
fInLocalCoords = &this->addVertexAttrib("inLocalCoord", kFloat2_GrVertexAttribType);
this->setHasExplicitLocalCoords();
}
if (fFlags & kCoverageAttribute_GPFlag) {
fInCoverage = &this->addVertexAttrib("inCoverage", kHalf_GrVertexAttribType);
}
}
const Attribute* fInPosition = nullptr;
const Attribute* fInColor = nullptr;
const Attribute* fInLocalCoords = nullptr;
const Attribute* fInCoverage = nullptr;
GrColor fColor;
SkMatrix fViewMatrix;
SkMatrix fLocalMatrix;
uint8_t fCoverage;
uint32_t fFlags;
bool fLocalCoordsWillBeRead;
sk_sp<GrColorSpaceXform> fColorSpaceXform;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DefaultGeoProc);
#if GR_TEST_UTILS
sk_sp<GrGeometryProcessor> DefaultGeoProc::TestCreate(GrProcessorTestData* d) {
uint32_t flags = 0;
if (d->fRandom->nextBool()) {
flags |= kColorAttribute_GPFlag;
}
if (d->fRandom->nextBool()) {
flags |= kColorAttributeIsSkColor_GPFlag;
}
if (d->fRandom->nextBool()) {
flags |= kCoverageAttribute_GPFlag;
}
if (d->fRandom->nextBool()) {
flags |= kLocalCoordAttribute_GPFlag;
}
return DefaultGeoProc::Make(flags,
GrRandomColor(d->fRandom),
GrTest::TestColorXform(d->fRandom),
GrTest::TestMatrix(d->fRandom),
GrTest::TestMatrix(d->fRandom),
d->fRandom->nextBool(),
GrRandomCoverage(d->fRandom));
}
#endif
sk_sp<GrGeometryProcessor> GrDefaultGeoProcFactory::Make(const Color& color,
const Coverage& coverage,
const LocalCoords& localCoords,
const SkMatrix& viewMatrix) {
uint32_t flags = 0;
if (Color::kPremulGrColorAttribute_Type == color.fType) {
flags |= kColorAttribute_GPFlag;
} else if (Color::kUnpremulSkColorAttribute_Type == color.fType) {
flags |= kColorAttribute_GPFlag | kColorAttributeIsSkColor_GPFlag;
}
if (color.fLinearize) {
// It only makes sense to linearize SkColors (which are always sRGB). GrColor values should
// have been linearized and gamut-converted during paint conversion
SkASSERT(Color::kUnpremulSkColorAttribute_Type == color.fType);
flags |= kLinearizeColorAttribute_GPFlag;
}
flags |= coverage.fType == Coverage::kAttribute_Type ? kCoverageAttribute_GPFlag : 0;
flags |= localCoords.fType == LocalCoords::kHasExplicit_Type ? kLocalCoordAttribute_GPFlag : 0;
uint8_t inCoverage = coverage.fCoverage;
bool localCoordsWillBeRead = localCoords.fType != LocalCoords::kUnused_Type;
GrColor inColor = color.fColor;
return DefaultGeoProc::Make(flags,
inColor,
color.fColorSpaceXform,
viewMatrix,
localCoords.fMatrix ? *localCoords.fMatrix : SkMatrix::I(),
localCoordsWillBeRead,
inCoverage);
}
sk_sp<GrGeometryProcessor> GrDefaultGeoProcFactory::MakeForDeviceSpace(
const Color& color,
const Coverage& coverage,
const LocalCoords& localCoords,
const SkMatrix& viewMatrix) {
SkMatrix invert = SkMatrix::I();
if (LocalCoords::kUnused_Type != localCoords.fType) {
SkASSERT(LocalCoords::kUsePosition_Type == localCoords.fType);
if (!viewMatrix.isIdentity() && !viewMatrix.invert(&invert)) {
return nullptr;
}
if (localCoords.hasLocalMatrix()) {
invert.preConcat(*localCoords.fMatrix);
}
}
LocalCoords inverted(LocalCoords::kUsePosition_Type, &invert);
return Make(color, coverage, inverted, SkMatrix::I());
}