C++程序  |  142行  |  7.08 KB

/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCCQuadraticShader.h"

#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"

using Shader = GrCCCoverageProcessor::Shader;

void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
                                        const char* repetitionID, const char* wind,
                                        GeometryVars* vars) const {
    s->declareGlobal(fCanonicalMatrix);
    s->codeAppendf("%s = float3x3(0.0, 0, 1, "
                                 "0.5, 0, 1, "
                                 "1.0, 1, 1) * "
                        "inverse(float3x3(%s[0], 1, "
                                         "%s[1], 1, "
                                         "%s[2], 1));",
                   fCanonicalMatrix.c_str(), pts, pts, pts);

    s->declareGlobal(fEdgeDistanceEquation);
    s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind);
    s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind);
    Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());

    this->onEmitSetupCode(s, pts, repetitionID, vars);
}

void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
                                         GrGLSLVarying::Scope scope, SkString* code,
                                         const char* position, const char* inputCoverage,
                                         const char* wind) {
    SkASSERT(!inputCoverage);

    fXYDW.reset(kFloat4_GrSLType, scope);
    varyingHandler->addVarying("xydw", &fXYDW);
    code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
                  OutName(fXYDW), fCanonicalMatrix.c_str(), position);
    code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
                  OutName(fXYDW), fEdgeDistanceEquation.c_str(), position,
                  fEdgeDistanceEquation.c_str());
    code->appendf("%s.w = %s;", OutName(fXYDW), wind);

    this->onEmitVaryings(varyingHandler, scope, code);
}

void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
                                             const char* outputCoverage) const {
    this->emitCoverage(f, outputCoverage);
    f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind.
}

void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
                                              const char* /*repetitionID*/,
                                              GeometryVars* vars) const {
    // Find the T value whose tangent is halfway between the tangents at the endpionts.
    s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts);
    s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts);
    s->codeAppend ("float2 midnorm = normalize(tan0) - normalize(tan1);");
    s->codeAppend ("float2 T = midnorm * float2x2(tan0 - tan1, tan0);");
    s->codeAppend ("float t = clamp(T.t / T.s, 0, 1);"); // T.s != 0; we cull flat curves on CPU.

    // Clip the bezier triangle by the tangent at our new t value. This is a simple application for
    // De Casteljau's algorithm.
    s->codeAppendf("float4x2 quadratic_hull = float4x2(%s[0], "
                                                      "%s[0] + tan0 * t, "
                                                      "%s[1] + tan1 * t, "
                                                      "%s[2]);", pts, pts, pts, pts);
    vars->fHullVars.fAlternatePoints = "quadratic_hull";
}

void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
                                             GrGLSLVarying::Scope scope, SkString* code) {
    fGrad.reset(kFloat2_GrSLType, scope);
    varyingHandler->addVarying("grad", &fGrad);
    code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
                  OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str());
}

void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
                                           const char* outputCoverage) const {
    f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
                   fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn());
    f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
    f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge.
}

void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
                                                const char* repetitionID,
                                                GeometryVars* vars) const {
    s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID);
    vars->fCornerVars.fPoint = "corner";
}

void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
                                               GrGLSLVarying::Scope scope, SkString* code) {
    using Interpolation = GrGLSLVaryingHandler::Interpolation;

    fdXYDdx.reset(kFloat3_GrSLType, scope);
    varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat);
    code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
                  OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
                  fEdgeDistanceEquation.c_str());

    fdXYDdy.reset(kFloat3_GrSLType, scope);
    varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat);
    code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
                  OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
                  fEdgeDistanceEquation.c_str());
}

void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
                                             const char* outputCoverage) const {
    f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
                   fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn());
    f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());

    // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
    // the same pixel because those cases should have been weeded out by this point.
    f->codeAppend ("float f = x*x - y;");
    f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
    f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
    f->codeAppendf("%s -= d;", outputCoverage);

    // Use software msaa to approximate coverage at the corner pixels.
    int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
    f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn());
    f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
    f->codeAppend (    "float3 xyd = grad_xyd * samples[i] + xyd_center;");
    f->codeAppend (    "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
    f->codeAppendf(    "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
                       outputCoverage, 1.0 / sampleCount);
    f->codeAppendf("}");
}