/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCQuadraticShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
using Shader = GrCCCoverageProcessor::Shader;
void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* repetitionID, const char* wind,
GeometryVars* vars) const {
s->declareGlobal(fCanonicalMatrix);
s->codeAppendf("%s = float3x3(0.0, 0, 1, "
"0.5, 0, 1, "
"1.0, 1, 1) * "
"inverse(float3x3(%s[0], 1, "
"%s[1], 1, "
"%s[2], 1));",
fCanonicalMatrix.c_str(), pts, pts, pts);
s->declareGlobal(fEdgeDistanceEquation);
s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind);
s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind);
Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
this->onEmitSetupCode(s, pts, repetitionID, vars);
}
void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* inputCoverage,
const char* wind) {
SkASSERT(!inputCoverage);
fXYDW.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("xydw", &fXYDW);
code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
OutName(fXYDW), fCanonicalMatrix.c_str(), position);
code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
OutName(fXYDW), fEdgeDistanceEquation.c_str(), position,
fEdgeDistanceEquation.c_str());
code->appendf("%s.w = %s;", OutName(fXYDW), wind);
this->onEmitVaryings(varyingHandler, scope, code);
}
void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
this->emitCoverage(f, outputCoverage);
f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind.
}
void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* /*repetitionID*/,
GeometryVars* vars) const {
// Find the T value whose tangent is halfway between the tangents at the endpionts.
s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts);
s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts);
s->codeAppend ("float2 midnorm = normalize(tan0) - normalize(tan1);");
s->codeAppend ("float2 T = midnorm * float2x2(tan0 - tan1, tan0);");
s->codeAppend ("float t = clamp(T.t / T.s, 0, 1);"); // T.s != 0; we cull flat curves on CPU.
// Clip the bezier triangle by the tangent at our new t value. This is a simple application for
// De Casteljau's algorithm.
s->codeAppendf("float4x2 quadratic_hull = float4x2(%s[0], "
"%s[0] + tan0 * t, "
"%s[1] + tan1 * t, "
"%s[2]);", pts, pts, pts, pts);
vars->fHullVars.fAlternatePoints = "quadratic_hull";
}
void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fGrad.reset(kFloat2_GrSLType, scope);
varyingHandler->addVarying("grad", &fGrad);
code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str());
}
void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn());
f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge.
}
void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* repetitionID,
GeometryVars* vars) const {
s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID);
vars->fCornerVars.fPoint = "corner";
}
void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
fdXYDdx.reset(kFloat3_GrSLType, scope);
varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat);
code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
fdXYDdy.reset(kFloat3_GrSLType, scope);
varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat);
code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
}
void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn());
f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
// Erase what the previous hull shader wrote. We don't worry about the two corners falling on
// the same pixel because those cases should have been weeded out by this point.
f->codeAppend ("float f = x*x - y;");
f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
f->codeAppendf("%s -= d;", outputCoverage);
// Use software msaa to approximate coverage at the corner pixels.
int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;");
f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
outputCoverage, 1.0 / sampleCount);
f->codeAppendf("}");
}