/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSurface_Gpu.h"
#include "GrBackendSurface.h"
#include "GrContextPriv.h"
#include "GrRenderTarget.h"
#include "GrRenderTargetContextPriv.h"
#include "GrTexture.h"
#include "SkCanvas.h"
#include "SkDeferredDisplayList.h"
#include "SkGpuDevice.h"
#include "SkImage_Base.h"
#include "SkImage_Gpu.h"
#include "SkImagePriv.h"
#include "SkSurface_Base.h"
#include "SkSurfaceCharacterization.h"
#if SK_SUPPORT_GPU
SkSurface_Gpu::SkSurface_Gpu(sk_sp<SkGpuDevice> device)
: INHERITED(device->width(), device->height(), &device->surfaceProps())
, fDevice(std::move(device)) {
SkASSERT(fDevice->accessRenderTargetContext()->asSurfaceProxy()->priv().isExact());
}
SkSurface_Gpu::~SkSurface_Gpu() {
}
static GrRenderTarget* prepare_rt_for_external_access(SkSurface_Gpu* surface,
SkSurface::BackendHandleAccess access) {
switch (access) {
case SkSurface::kFlushRead_BackendHandleAccess:
break;
case SkSurface::kFlushWrite_BackendHandleAccess:
case SkSurface::kDiscardWrite_BackendHandleAccess:
// for now we don't special-case on Discard, but we may in the future.
surface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode);
break;
}
// Grab the render target *after* firing notifications, as it may get switched if CoW kicks in.
surface->getDevice()->flush();
GrRenderTargetContext* rtc = surface->getDevice()->accessRenderTargetContext();
return rtc->accessRenderTarget();
}
GrBackendObject SkSurface_Gpu::onGetTextureHandle(BackendHandleAccess access) {
GrRenderTarget* rt = prepare_rt_for_external_access(this, access);
if (!rt) {
return 0;
}
GrTexture* texture = rt->asTexture();
if (texture) {
return texture->getTextureHandle();
}
return 0;
}
bool SkSurface_Gpu::onGetRenderTargetHandle(GrBackendObject* obj, BackendHandleAccess access) {
GrRenderTarget* rt = prepare_rt_for_external_access(this, access);
if (!rt) {
return false;
}
*obj = rt->getRenderTargetHandle();
return true;
}
SkCanvas* SkSurface_Gpu::onNewCanvas() {
SkCanvas::InitFlags flags = SkCanvas::kDefault_InitFlags;
flags = static_cast<SkCanvas::InitFlags>(flags | SkCanvas::kConservativeRasterClip_InitFlag);
return new SkCanvas(fDevice.get(), flags);
}
sk_sp<SkSurface> SkSurface_Gpu::onNewSurface(const SkImageInfo& info) {
int sampleCount = fDevice->accessRenderTargetContext()->numColorSamples();
GrSurfaceOrigin origin = fDevice->accessRenderTargetContext()->origin();
// TODO: Make caller specify this (change virtual signature of onNewSurface).
static const SkBudgeted kBudgeted = SkBudgeted::kNo;
return SkSurface::MakeRenderTarget(fDevice->context(), kBudgeted, info, sampleCount,
origin, &this->props());
}
sk_sp<SkImage> SkSurface_Gpu::onNewImageSnapshot() {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
if (!rtc) {
return nullptr;
}
GrContext* ctx = fDevice->context();
if (!rtc->asSurfaceProxy()) {
return nullptr;
}
SkBudgeted budgeted = rtc->asSurfaceProxy()->isBudgeted();
sk_sp<GrTextureProxy> srcProxy = rtc->asTextureProxyRef();
// If the original render target is a buffer originally created by the client, then we don't
// want to ever retarget the SkSurface at another buffer we create. Force a copy now to avoid
// copy-on-write.
if (!srcProxy || rtc->priv().refsWrappedObjects()) {
SkASSERT(rtc->origin() == rtc->asSurfaceProxy()->origin());
srcProxy = GrSurfaceProxy::Copy(ctx, rtc->asSurfaceProxy(), rtc->mipMapped(), budgeted);
}
const SkImageInfo info = fDevice->imageInfo();
sk_sp<SkImage> image;
if (srcProxy) {
// The renderTargetContext coming out of SkGpuDevice should always be exact and the
// above copy creates a kExact surfaceContext.
SkASSERT(srcProxy->priv().isExact());
image = sk_make_sp<SkImage_Gpu>(ctx, kNeedNewImageUniqueID,
info.alphaType(), std::move(srcProxy),
info.refColorSpace(), budgeted);
}
return image;
}
void SkSurface_Gpu::onWritePixels(const SkPixmap& src, int x, int y) {
fDevice->writePixels(src, x, y);
}
// Create a new render target and, if necessary, copy the contents of the old
// render target into it. Note that this flushes the SkGpuDevice but
// doesn't force an OpenGL flush.
void SkSurface_Gpu::onCopyOnWrite(ContentChangeMode mode) {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
// are we sharing our backing proxy with the image? Note this call should never create a new
// image because onCopyOnWrite is only called when there is a cached image.
sk_sp<SkImage> image(this->refCachedImage());
SkASSERT(image);
GrSurfaceProxy* imageProxy = ((SkImage_Base*) image.get())->peekProxy();
SkASSERT(imageProxy);
if (rtc->asSurfaceProxy()->underlyingUniqueID() == imageProxy->underlyingUniqueID()) {
fDevice->replaceRenderTargetContext(SkSurface::kRetain_ContentChangeMode == mode);
} else if (kDiscard_ContentChangeMode == mode) {
this->SkSurface_Gpu::onDiscard();
}
}
void SkSurface_Gpu::onDiscard() {
fDevice->accessRenderTargetContext()->discard();
}
GrSemaphoresSubmitted SkSurface_Gpu::onFlush(int numSemaphores,
GrBackendSemaphore signalSemaphores[]) {
return fDevice->flushAndSignalSemaphores(numSemaphores, signalSemaphores);
}
bool SkSurface_Gpu::onWait(int numSemaphores, const GrBackendSemaphore* waitSemaphores) {
return fDevice->wait(numSemaphores, waitSemaphores);
}
bool SkSurface_Gpu::onCharacterize(SkSurfaceCharacterization* data) const {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
int maxResourceCount;
size_t maxResourceBytes;
ctx->getResourceCacheLimits(&maxResourceCount, &maxResourceBytes);
bool mipmapped = rtc->asTextureProxy() ? GrMipMapped::kYes == rtc->asTextureProxy()->mipMapped()
: false;
data->set(ctx->threadSafeProxy(), maxResourceBytes,
rtc->origin(), rtc->width(), rtc->height(),
rtc->colorSpaceInfo().config(), rtc->fsaaType(), rtc->numStencilSamples(),
SkSurfaceCharacterization::Textureable(SkToBool(rtc->asTextureProxy())),
SkSurfaceCharacterization::MipMapped(mipmapped),
rtc->colorSpaceInfo().refColorSpace(), this->props());
return true;
}
bool SkSurface_Gpu::isCompatible(const SkSurfaceCharacterization& data) const {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
if (!data.isValid()) {
return false;
}
// As long as the current state if the context allows for greater or equal resources,
// we allow the DDL to be replayed.
// DDL TODO: should we just remove the resource check and ignore the cache limits on playback?
int maxResourceCount;
size_t maxResourceBytes;
ctx->getResourceCacheLimits(&maxResourceCount, &maxResourceBytes);
if (data.isTextureable()) {
if (!rtc->asTextureProxy()) {
// If the characterization was textureable we require the replay dest to also be
// textureable. If the characterized surface wasn't textureable we allow the replay
// dest to be textureable.
return false;
}
if (data.isMipMapped() && GrMipMapped::kNo == rtc->asTextureProxy()->mipMapped()) {
// Fail if the DDL's surface was mipmapped but the replay surface is not.
// Allow drawing to proceed if the DDL was not mipmapped but the replay surface is.
return false;
}
}
return data.contextInfo() && data.contextInfo()->matches(ctx) &&
data.cacheMaxResourceBytes() <= maxResourceBytes &&
data.origin() == rtc->origin() && data.width() == rtc->width() &&
data.height() == rtc->height() && data.config() == rtc->colorSpaceInfo().config() &&
data.fsaaType() == rtc->fsaaType() && data.stencilCount() == rtc->numStencilSamples() &&
SkColorSpace::Equals(data.colorSpace(), rtc->colorSpaceInfo().colorSpace()) &&
data.surfaceProps() == rtc->surfaceProps();
}
bool SkSurface_Gpu::onDraw(const SkDeferredDisplayList* ddl) {
if (!ddl || !this->isCompatible(ddl->characterization())) {
return false;
}
#ifdef SK_RASTER_RECORDER_IMPLEMENTATION
// Ultimately need to pass opLists from the DeferredDisplayList on to the
// SkGpuDevice's renderTargetContext.
return ddl->draw(this);
#else
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
ctx->contextPriv().copyOpListsFromDDL(ddl, rtc->asRenderTargetProxy());
return true;
#endif
}
///////////////////////////////////////////////////////////////////////////////
bool SkSurface_Gpu::Valid(const SkImageInfo& info) {
switch (info.colorType()) {
case kRGBA_F16_SkColorType:
return (!info.colorSpace()) || info.colorSpace()->gammaIsLinear();
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
return !info.colorSpace() || info.colorSpace()->gammaCloseToSRGB();
default:
return !info.colorSpace();
}
}
bool SkSurface_Gpu::Valid(GrContext* context, GrPixelConfig config, SkColorSpace* colorSpace) {
switch (config) {
case kRGBA_half_GrPixelConfig:
return (!colorSpace) || colorSpace->gammaIsLinear();
case kSRGBA_8888_GrPixelConfig:
case kSBGRA_8888_GrPixelConfig:
return context->caps()->srgbSupport() && colorSpace && colorSpace->gammaCloseToSRGB();
case kRGBA_8888_GrPixelConfig:
case kBGRA_8888_GrPixelConfig:
// We may get here with either a linear-gamma color space or with a sRGB-gamma color
// space when we lack GPU sRGB support.
return !colorSpace ||
(colorSpace->gammaCloseToSRGB() && !context->caps()->srgbSupport()) ||
colorSpace->gammaIsLinear();
default:
return !colorSpace;
}
}
sk_sp<SkSurface> SkSurface::MakeRenderTarget(GrContext* ctx, SkBudgeted budgeted,
const SkImageInfo& info, int sampleCount,
GrSurfaceOrigin origin, const SkSurfaceProps* props,
bool shouldCreateWithMips) {
if (!ctx) {
return nullptr;
}
if (!SkSurface_Gpu::Valid(info)) {
return nullptr;
}
sampleCount = SkTMax(1, sampleCount);
GrMipMapped mipMapped = shouldCreateWithMips ? GrMipMapped::kYes : GrMipMapped::kNo;
if (!ctx->caps()->mipMapSupport()) {
mipMapped = GrMipMapped::kNo;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(
ctx, budgeted, info, sampleCount, origin, props, mipMapped,
SkGpuDevice::kClear_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface_Gpu::MakeWrappedRenderTarget(GrContext* context,
sk_sp<GrRenderTargetContext> rtc) {
if (!context) {
return nullptr;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(context, std::move(rtc),
rtc->width(), rtc->height(),
SkGpuDevice::kUninit_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTexture(GrContext* context, const GrBackendTexture& tex,
GrSurfaceOrigin origin, int sampleCnt,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
if (!SkSurface_Gpu::Valid(context, tex.config(), colorSpace.get())) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
sk_sp<GrRenderTargetContext> rtc(context->contextPriv().makeBackendTextureRenderTargetContext(
tex,
origin,
sampleCnt,
std::move(colorSpace),
props));
if (!rtc) {
return nullptr;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(context, std::move(rtc), tex.width(), tex.height(),
SkGpuDevice::kUninit_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
bool validate_backend_texture(GrContext* ctx, const GrBackendTexture& tex, GrPixelConfig* config,
int sampleCnt, SkColorType ct, sk_sp<SkColorSpace> cs,
bool texturable) {
// TODO: Create a SkImageColorInfo struct for color, alpha, and color space so we don't need to
// create a fake image info here.
SkImageInfo info = SkImageInfo::Make(1, 1, ct, kPremul_SkAlphaType, cs);
if (!SkSurface_Gpu::Valid(info)) {
return false;
}
if (!ctx->caps()->validateBackendTexture(tex, ct, config)) {
return false;
}
// We don't require that the client gave us an exact valid sample cnt. However, it must be
// less than the max supported sample count and 1 if MSAA is unsupported for the color type.
if (!ctx->caps()->getRenderTargetSampleCount(sampleCnt, *config)) {
return false;
}
if (texturable && !ctx->caps()->isConfigTexturable(*config)) {
return false;
}
return true;
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTexture(GrContext* context, const GrBackendTexture& tex,
GrSurfaceOrigin origin, int sampleCnt,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
GrBackendTexture texCopy = tex;
if (!validate_backend_texture(context, texCopy, &texCopy.fConfig,
sampleCnt, colorType, colorSpace, true)) {
return nullptr;
}
return MakeFromBackendTexture(context, texCopy, origin, sampleCnt, colorSpace, props);
}
sk_sp<SkSurface> SkSurface::MakeFromBackendRenderTarget(GrContext* context,
const GrBackendRenderTarget& backendRT,
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
if (!SkSurface_Gpu::Valid(context, backendRT.config(), colorSpace.get())) {
return nullptr;
}
sk_sp<GrRenderTargetContext> rtc(
context->contextPriv().makeBackendRenderTargetRenderTargetContext(backendRT,
origin,
std::move(colorSpace),
props));
if (!rtc) {
return nullptr;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(context, std::move(rtc),
backendRT.width(), backendRT.height(),
SkGpuDevice::kUninit_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
bool validate_backend_render_target(GrContext* ctx, const GrBackendRenderTarget& rt,
GrPixelConfig* config, SkColorType ct, sk_sp<SkColorSpace> cs) {
// TODO: Create a SkImageColorInfo struct for color, alpha, and color space so we don't need to
// create a fake image info here.
SkImageInfo info = SkImageInfo::Make(1, 1, ct, kPremul_SkAlphaType, cs);
if (!SkSurface_Gpu::Valid(info)) {
return false;
}
if (!ctx->caps()->validateBackendRenderTarget(rt, ct, config)) {
return false;
}
if (rt.sampleCnt() > 1) {
if (ctx->caps()->maxRenderTargetSampleCount(*config) <= 1) {
return false;
}
} else if (!ctx->caps()->isConfigRenderable(*config)) {
return false;
}
return true;
}
sk_sp<SkSurface> SkSurface::MakeFromBackendRenderTarget(GrContext* context,
const GrBackendRenderTarget& rt,
GrSurfaceOrigin origin,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
GrBackendRenderTarget rtCopy = rt;
if (!validate_backend_render_target(context, rtCopy, &rtCopy.fConfig, colorType, colorSpace)) {
return nullptr;
}
return MakeFromBackendRenderTarget(context, rtCopy, origin, colorSpace, props);
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTextureAsRenderTarget(GrContext* context,
const GrBackendTexture& tex,
GrSurfaceOrigin origin,
int sampleCnt,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
if (!SkSurface_Gpu::Valid(context, tex.config(), colorSpace.get())) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
sk_sp<GrRenderTargetContext> rtc(
context->contextPriv().makeBackendTextureAsRenderTargetRenderTargetContext(
tex,
origin,
sampleCnt,
std::move(colorSpace),
props));
if (!rtc) {
return nullptr;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(context, std::move(rtc), tex.width(), tex.height(),
SkGpuDevice::kUninit_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTextureAsRenderTarget(GrContext* context,
const GrBackendTexture& tex,
GrSurfaceOrigin origin,
int sampleCnt,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
GrBackendTexture texCopy = tex;
if (!validate_backend_texture(context, texCopy, &texCopy.fConfig,
sampleCnt, colorType, colorSpace, false)) {
return nullptr;
}
return MakeFromBackendTextureAsRenderTarget(context, texCopy, origin, sampleCnt, colorSpace,
props);
}
#endif