/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScanPriv.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkAntiRun.h"
#define SHIFT SK_SUPERSAMPLE_SHIFT
#define SCALE (1 << SHIFT)
#define MASK (SCALE - 1)
/** @file
We have two techniques for capturing the output of the supersampler:
- SUPERMASK, which records a large mask-bitmap
this is often faster for small, complex objects
- RLE, which records a rle-encoded scanline
this is often faster for large objects with big spans
These blitters use two coordinate systems:
- destination coordinates, scale equal to the output - often
abbreviated with 'i' or 'I' in variable names
- supersampled coordinates, scale equal to the output * SCALE
*/
//#define FORCE_SUPERMASK
//#define FORCE_RLE
///////////////////////////////////////////////////////////////////////////////
/// Base class for a single-pass supersampled blitter.
class BaseSuperBlitter : public SkBlitter {
public:
BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse);
/// Must be explicitly defined on subclasses.
virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) override {
SkDEBUGFAIL("How did I get here?");
}
/// May not be called on BaseSuperBlitter because it blits out of order.
void blitV(int x, int y, int height, SkAlpha alpha) override {
SkDEBUGFAIL("How did I get here?");
}
protected:
SkBlitter* fRealBlitter;
/// Current y coordinate, in destination coordinates.
int fCurrIY;
/// Widest row of region to be blitted, in destination coordinates.
int fWidth;
/// Leftmost x coordinate in any row, in destination coordinates.
int fLeft;
/// Leftmost x coordinate in any row, in supersampled coordinates.
int fSuperLeft;
SkDEBUGCODE(int fCurrX;)
/// Current y coordinate in supersampled coordinates.
int fCurrY;
/// Initial y coordinate (top of bounds).
int fTop;
SkIRect fSectBounds;
};
BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlit, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse) {
fRealBlitter = realBlit;
SkIRect sectBounds;
if (isInverse) {
// We use the clip bounds instead of the ir, since we may be asked to
//draw outside of the rect when we're a inverse filltype
sectBounds = clipBounds;
} else {
if (!sectBounds.intersect(ir, clipBounds)) {
sectBounds.setEmpty();
}
}
const int left = sectBounds.left();
const int right = sectBounds.right();
fLeft = left;
fSuperLeft = SkLeftShift(left, SHIFT);
fWidth = right - left;
fTop = sectBounds.top();
fCurrIY = fTop - 1;
fCurrY = SkLeftShift(fTop, SHIFT) - 1;
SkDEBUGCODE(fCurrX = -1;)
}
/// Run-length-encoded supersampling antialiased blitter.
class SuperBlitter : public BaseSuperBlitter {
public:
SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
bool isInverse);
~SuperBlitter() override {
this->flush();
}
/// Once fRuns contains a complete supersampled row, flush() blits
/// it out through the wrapped blitter.
void flush();
/// Blits a row of pixels, with location and width specified
/// in supersampled coordinates.
void blitH(int x, int y, int width) override;
/// Blits a rectangle of pixels, with location and size specified
/// in supersampled coordinates.
void blitRect(int x, int y, int width, int height) override;
private:
// The next three variables are used to track a circular buffer that
// contains the values used in SkAlphaRuns. These variables should only
// ever be updated in advanceRuns(), and fRuns should always point to
// a valid SkAlphaRuns...
int fRunsToBuffer;
void* fRunsBuffer;
int fCurrentRun;
SkAlphaRuns fRuns;
// extra one to store the zero at the end
int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
// This function updates the fRuns variable to point to the next buffer space
// with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
// and resets fRuns to point to an empty scanline.
void advanceRuns() {
const size_t kRunsSz = this->getRunsSz();
fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
fRuns.fRuns = reinterpret_cast<int16_t*>(
reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
fRuns.reset(fWidth);
}
int fOffsetX;
};
SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
bool isInverse)
: BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
{
fRunsToBuffer = realBlitter->requestRowsPreserved();
fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
fCurrentRun = -1;
this->advanceRuns();
fOffsetX = 0;
}
void SuperBlitter::flush() {
if (fCurrIY >= fTop) {
SkASSERT(fCurrentRun < fRunsToBuffer);
if (!fRuns.empty()) {
// SkDEBUGCODE(fRuns.dump();)
fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
this->advanceRuns();
fOffsetX = 0;
}
fCurrIY = fTop - 1;
SkDEBUGCODE(fCurrX = -1;)
}
}
/** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
*accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
to produce a final value in [0, 255] and handles clamping 256->255
itself, with the same (alpha - (alpha >> 8)) correction as
coverage_to_exact_alpha().
*/
static inline int coverage_to_partial_alpha(int aa) {
aa <<= 8 - 2*SHIFT;
return aa;
}
/** coverage_to_exact_alpha() is being used by our blitter, which wants
a final value in [0, 255].
*/
static inline int coverage_to_exact_alpha(int aa) {
int alpha = (256 >> SHIFT) * aa;
// clamp 256->255
return alpha - (alpha >> 8);
}
void SuperBlitter::blitH(int x, int y, int width) {
SkASSERT(width > 0);
int iy = y >> SHIFT;
SkASSERT(iy >= fCurrIY);
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
#ifdef SK_DEBUG
SkASSERT(y != fCurrY || x >= fCurrX);
#endif
SkASSERT(y >= fCurrY);
if (fCurrY != y) {
fOffsetX = 0;
fCurrY = y;
}
if (iy != fCurrIY) { // new scanline
this->flush();
fCurrIY = iy;
}
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
// integer-pixel-aligned ends of blit, rounded out
int fb = start & MASK;
int fe = stop & MASK;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0) {
fb = fe - fb;
n = 0;
fe = 0;
} else {
if (fb == 0) {
n += 1;
} else {
fb = SCALE - fb;
}
}
fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
n, coverage_to_partial_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
fOffsetX);
#ifdef SK_DEBUG
fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
fCurrX = x + width;
#endif
}
#if 0 // UNUSED
static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
int n, U8CPU riteA) {
SkASSERT(leftA <= 0xFF);
SkASSERT(riteA <= 0xFF);
int16_t* run = runs.fRuns;
uint8_t* aa = runs.fAlpha;
if (ileft > 0) {
run[0] = ileft;
aa[0] = 0;
run += ileft;
aa += ileft;
}
SkASSERT(leftA < 0xFF);
if (leftA > 0) {
*run++ = 1;
*aa++ = leftA;
}
if (n > 0) {
run[0] = n;
aa[0] = 0xFF;
run += n;
aa += n;
}
SkASSERT(riteA < 0xFF);
if (riteA > 0) {
*run++ = 1;
*aa++ = riteA;
}
run[0] = 0;
}
#endif
void SuperBlitter::blitRect(int x, int y, int width, int height) {
SkASSERT(width > 0);
SkASSERT(height > 0);
// blit leading rows
while ((y & MASK)) {
this->blitH(x, y++, width);
if (--height <= 0) {
return;
}
}
SkASSERT(height > 0);
// Since this is a rect, instead of blitting supersampled rows one at a
// time and then resolving to the destination canvas, we can blit
// directly to the destintion canvas one row per SCALE supersampled rows.
int start_y = y >> SHIFT;
int stop_y = (y + height) >> SHIFT;
int count = stop_y - start_y;
if (count > 0) {
y += count << SHIFT;
height -= count << SHIFT;
// save original X for our tail blitH() loop at the bottom
int origX = x;
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
// There is always a left column, a middle, and a right column.
// ileft is the destination x of the first pixel of the entire rect.
// xleft is (SCALE - # of covered supersampled pixels) in that
// destination pixel.
int ileft = x >> SHIFT;
int xleft = x & MASK;
// irite is the destination x of the last pixel of the OPAQUE section.
// xrite is the number of supersampled pixels extending beyond irite;
// xrite/SCALE should give us alpha.
int irite = (x + width) >> SHIFT;
int xrite = (x + width) & MASK;
if (!xrite) {
xrite = SCALE;
irite--;
}
// Need to call flush() to clean up pending draws before we
// even consider blitV(), since otherwise it can look nonmonotonic.
SkASSERT(start_y > fCurrIY);
this->flush();
int n = irite - ileft - 1;
if (n < 0) {
// If n < 0, we'll only have a single partially-transparent column
// of pixels to render.
xleft = xrite - xleft;
SkASSERT(xleft <= SCALE);
SkASSERT(xleft > 0);
fRealBlitter->blitV(ileft + fLeft, start_y, count,
coverage_to_exact_alpha(xleft));
} else {
// With n = 0, we have two possibly-transparent columns of pixels
// to render; with n > 0, we have opaque columns between them.
xleft = SCALE - xleft;
// Using coverage_to_exact_alpha is not consistent with blitH()
const int coverageL = coverage_to_exact_alpha(xleft);
const int coverageR = coverage_to_exact_alpha(xrite);
SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
coverageL, coverageR);
}
// preamble for our next call to blitH()
fCurrIY = stop_y - 1;
fOffsetX = 0;
fCurrY = y - 1;
fRuns.reset(fWidth);
x = origX;
}
// catch any remaining few rows
SkASSERT(height <= MASK);
while (--height >= 0) {
this->blitH(x, y++, width);
}
}
///////////////////////////////////////////////////////////////////////////////
/// Masked supersampling antialiased blitter.
class MaskSuperBlitter : public BaseSuperBlitter {
public:
MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect&, bool isInverse);
~MaskSuperBlitter() override {
fRealBlitter->blitMask(fMask, fClipRect);
}
void blitH(int x, int y, int width) override;
static bool CanHandleRect(const SkIRect& bounds) {
#ifdef FORCE_RLE
return false;
#endif
int width = bounds.width();
int64_t rb = SkAlign4(width);
// use 64bits to detect overflow
int64_t storage = rb * bounds.height();
return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
(storage <= MaskSuperBlitter::kMAX_STORAGE);
}
private:
enum {
#ifdef FORCE_SUPERMASK
kMAX_WIDTH = 2048,
kMAX_STORAGE = 1024 * 1024 * 2
#else
kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
kMAX_STORAGE = 1024
#endif
};
SkMask fMask;
SkIRect fClipRect;
// we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
// perform a test to see if stopAlpha != 0
uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
};
MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse)
: BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
{
SkASSERT(CanHandleRect(ir));
SkASSERT(!isInverse);
fMask.fImage = (uint8_t*)fStorage;
fMask.fBounds = ir;
fMask.fRowBytes = ir.width();
fMask.fFormat = SkMask::kA8_Format;
fClipRect = ir;
if (!fClipRect.intersect(clipBounds)) {
SkASSERT(0);
fClipRect.setEmpty();
}
// For valgrind, write 1 extra byte at the end so we don't read
// uninitialized memory. See comment in add_aa_span and fStorage[].
memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha = SkToU8(tmp - (tmp >> 8));
}
static inline uint32_t quadplicate_byte(U8CPU value) {
uint32_t pair = (value << 8) | value;
return (pair << 16) | pair;
}
// Perform this tricky subtract, to avoid overflowing to 256. Our caller should
// only ever call us with at most enough to hit 256 (never larger), so it is
// enough to just subtract the high-bit. Actually clamping with a branch would
// be slower (e.g. if (tmp > 255) tmp = 255;)
//
static inline void saturated_add(uint8_t* ptr, U8CPU add) {
unsigned tmp = *ptr + add;
SkASSERT(tmp <= 256);
*ptr = SkToU8(tmp - (tmp >> 8));
}
// minimum count before we want to setup an inner loop, adding 4-at-a-time
#define MIN_COUNT_FOR_QUAD_LOOP 16
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
U8CPU stopAlpha, U8CPU maxValue) {
SkASSERT(middleCount >= 0);
saturated_add(alpha, startAlpha);
alpha += 1;
if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
// loop until we're quad-byte aligned
while (SkTCast<intptr_t>(alpha) & 0x3) {
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
middleCount -= 1;
}
int bigCount = middleCount >> 2;
uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
uint32_t qval = quadplicate_byte(maxValue);
do {
*qptr++ += qval;
} while (--bigCount > 0);
middleCount &= 3;
alpha = reinterpret_cast<uint8_t*> (qptr);
// fall through to the following while-loop
}
while (--middleCount >= 0) {
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
}
// potentially this can be off the end of our "legal" alpha values, but that
// only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
// every time (slow), we just do it, and ensure that we've allocated extra space
// (see the + 1 comment in fStorage[]
saturated_add(alpha, stopAlpha);
}
void MaskSuperBlitter::blitH(int x, int y, int width) {
int iy = (y >> SHIFT);
SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
iy -= fMask.fBounds.fTop; // make it relative to 0
// This should never happen, but it does. Until the true cause is
// discovered, let's skip this span instead of crashing.
// See http://crbug.com/17569.
if (iy < 0) {
return;
}
#ifdef SK_DEBUG
{
int ix = x >> SHIFT;
SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
}
#endif
x -= SkLeftShift(fMask.fBounds.fLeft, SHIFT);
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & MASK;
int fe = stop & MASK;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0) {
SkASSERT(row >= fMask.fImage);
SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_partial_alpha(fe - fb));
} else {
fb = SCALE - fb;
SkASSERT(row >= fMask.fImage);
SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_partial_alpha(fb),
n, coverage_to_partial_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#ifdef SK_DEBUG
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
static bool ShouldUseDAA(const SkPath& path) {
if (gSkForceDeltaAA) {
return true;
}
if (!gSkUseDeltaAA) {
return false;
}
const SkRect& bounds = path.getBounds();
return !path.isConvex() && path.countPoints() >= SkTMax(bounds.width(), bounds.height()) / 8;
}
static bool ShouldUseAAA(const SkPath& path) {
if (gSkForceAnalyticAA) {
return true;
}
if (!gSkUseAnalyticAA) {
return false;
}
if (path.isRect(nullptr)) {
return true;
}
const SkRect& bounds = path.getBounds();
// When the path have so many points compared to the size of its bounds/resolution,
// it indicates that the path is not quite smooth in the current resolution:
// the expected number of turning points in every pixel row/column is significantly greater than
// zero. Hence Aanlytic AA is not likely to produce visible quality improvements, and Analytic
// AA might be slower than supersampling.
return path.countPoints() < SkTMax(bounds.width(), bounds.height()) / 2 - 10;
}
void SkScan::SAAFillPath(const SkPath& path, SkBlitter* blitter, const SkIRect& ir,
const SkIRect& clipBounds, bool forceRLE) {
bool containedInClip = clipBounds.contains(ir);
bool isInverse = path.isInverseFillType();
// MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
// if we're an inverse filltype
if (!isInverse && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
MaskSuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
} else {
SuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
}
}
static int overflows_short_shift(int value, int shift) {
const int s = 16 + shift;
return (SkLeftShift(value, s) >> s) - value;
}
/**
Would any of the coordinates of this rectangle not fit in a short,
when left-shifted by shift?
*/
static int rect_overflows_short_shift(SkIRect rect, int shift) {
SkASSERT(!overflows_short_shift(8191, shift));
SkASSERT(overflows_short_shift(8192, shift));
SkASSERT(!overflows_short_shift(32767, 0));
SkASSERT(overflows_short_shift(32768, 0));
// Since we expect these to succeed, we bit-or together
// for a tiny extra bit of speed.
return overflows_short_shift(rect.fLeft, shift) |
overflows_short_shift(rect.fRight, shift) |
overflows_short_shift(rect.fTop, shift) |
overflows_short_shift(rect.fBottom, shift);
}
static SkIRect safeRoundOut(const SkRect& src) {
// roundOut will pin huge floats to max/min int
SkIRect dst = src.roundOut();
// intersect with a smaller huge rect, so the rect will not be considered empty for being
// too large. e.g. { -SK_MaxS32 ... SK_MaxS32 } is considered empty because its width
// exceeds signed 32bit.
const int32_t limit = SK_MaxS32 >> SK_SUPERSAMPLE_SHIFT;
(void)dst.intersect({ -limit, -limit, limit, limit});
return dst;
}
void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
SkBlitter* blitter, bool forceRLE, bool forceDAA) {
if (origClip.isEmpty()) {
return;
}
const bool isInverse = path.isInverseFillType();
SkIRect ir = safeRoundOut(path.getBounds());
if (ir.isEmpty()) {
if (isInverse) {
blitter->blitRegion(origClip);
}
return;
}
// If the intersection of the path bounds and the clip bounds
// will overflow 32767 when << by SHIFT, we can't supersample,
// so draw without antialiasing.
SkIRect clippedIR;
if (isInverse) {
// If the path is an inverse fill, it's going to fill the entire
// clip, and we care whether the entire clip exceeds our limits.
clippedIR = origClip.getBounds();
} else {
if (!clippedIR.intersect(ir, origClip.getBounds())) {
return;
}
}
if (rect_overflows_short_shift(clippedIR, SHIFT)) {
SkScan::FillPath(path, origClip, blitter);
return;
}
// Our antialiasing can't handle a clip larger than 32767, so we restrict
// the clip to that limit here. (the runs[] uses int16_t for its index).
//
// A more general solution (one that could also eliminate the need to
// disable aa based on ir bounds (see overflows_short_shift) would be
// to tile the clip/target...
SkRegion tmpClipStorage;
const SkRegion* clipRgn = &origClip;
{
static const int32_t kMaxClipCoord = 32767;
const SkIRect& bounds = origClip.getBounds();
if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
clipRgn = &tmpClipStorage;
}
}
// for here down, use clipRgn, not origClip
SkScanClipper clipper(blitter, clipRgn, ir);
if (clipper.getBlitter() == nullptr) { // clipped out
if (isInverse) {
blitter->blitRegion(*clipRgn);
}
return;
}
SkASSERT(clipper.getClipRect() == nullptr ||
*clipper.getClipRect() == clipRgn->getBounds());
// now use the (possibly wrapped) blitter
blitter = clipper.getBlitter();
if (isInverse) {
sk_blit_above(blitter, ir, *clipRgn);
}
if (forceDAA || ShouldUseDAA(path)) {
SkScan::DAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
} else if (ShouldUseAAA(path)) {
// Do not use AAA if path is too complicated:
// there won't be any speedup or significant visual improvement.
SkScan::AAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
} else {
SkScan::SAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
}
if (isInverse) {
sk_blit_below(blitter, ir, *clipRgn);
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkRasterClip.h"
void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
if (clip.isEmpty() || !path.isFinite()) {
return;
}
if (clip.isBW()) {
FillPath(path, clip.bwRgn(), blitter);
} else {
SkRegion tmp;
SkAAClipBlitter aaBlitter;
tmp.setRect(clip.getBounds());
aaBlitter.init(blitter, &clip.aaRgn());
SkScan::FillPath(path, tmp, &aaBlitter);
}
}
void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
SkBlitter* blitter, bool forceDAA) {
if (clip.isEmpty() || !path.isFinite()) {
return;
}
if (clip.isBW()) {
AntiFillPath(path, clip.bwRgn(), blitter, false, forceDAA);
} else {
SkRegion tmp;
SkAAClipBlitter aaBlitter;
tmp.setRect(clip.getBounds());
aaBlitter.init(blitter, &clip.aaRgn());
AntiFillPath(path, tmp, &aaBlitter, true, forceDAA); // SkAAClipBlitter can blitMask, why forceRLE?
}
}