/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBitmapCache.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkImageEncoder.h"
#include "SkImageFilter.h"
#include "SkImageFilterCache.h"
#include "SkImageGenerator.h"
#include "SkImagePriv.h"
#include "SkImageShader.h"
#include "SkImage_Base.h"
#include "SkNextID.h"
#include "SkPicture.h"
#include "SkPixelRef.h"
#include "SkReadPixelsRec.h"
#include "SkSpecialImage.h"
#include "SkString.h"
#include "SkSurface.h"
#if SK_SUPPORT_GPU
#include "GrTexture.h"
#include "GrContext.h"
#include "SkImage_Gpu.h"
#endif
SkImage::SkImage(int width, int height, uint32_t uniqueID)
: fWidth(width)
, fHeight(height)
, fUniqueID(kNeedNewImageUniqueID == uniqueID ? SkNextID::ImageID() : uniqueID)
{
SkASSERT(width > 0);
SkASSERT(height > 0);
}
bool SkImage::peekPixels(SkPixmap* pm) const {
SkPixmap tmp;
if (!pm) {
pm = &tmp;
}
return as_IB(this)->onPeekPixels(pm);
}
bool SkImage::readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
int srcX, int srcY, CachingHint chint) const {
return as_IB(this)->onReadPixels(dstInfo, dstPixels, dstRowBytes, srcX, srcY, chint);
}
bool SkImage::scalePixels(const SkPixmap& dst, SkFilterQuality quality, CachingHint chint) const {
if (this->width() == dst.width() && this->height() == dst.height()) {
return this->readPixels(dst, 0, 0, chint);
}
// Idea: If/when SkImageGenerator supports a native-scaling API (where the generator itself
// can scale more efficiently) we should take advantage of it here.
//
SkBitmap bm;
if (as_IB(this)->getROPixels(&bm, dst.info().colorSpace(), chint)) {
SkPixmap pmap;
// Note: By calling the pixmap scaler, we never cache the final result, so the chint
// is (currently) only being applied to the getROPixels. If we get a request to
// also attempt to cache the final (scaled) result, we would add that logic here.
//
return bm.peekPixels(&pmap) && pmap.scalePixels(dst, quality);
}
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkAlphaType SkImage::alphaType() const {
return as_IB(this)->onAlphaType();
}
SkColorSpace* SkImage::colorSpace() const {
return as_IB(this)->onImageInfo().colorSpace();
}
sk_sp<SkColorSpace> SkImage::refColorSpace() const {
return as_IB(this)->onImageInfo().refColorSpace();
}
sk_sp<SkShader> SkImage::makeShader(SkShader::TileMode tileX, SkShader::TileMode tileY,
const SkMatrix* localMatrix) const {
return SkImageShader::Make(sk_ref_sp(const_cast<SkImage*>(this)), tileX, tileY, localMatrix);
}
sk_sp<SkData> SkImage::encodeToData(SkEncodedImageFormat type, int quality) const {
SkBitmap bm;
SkColorSpace* legacyColorSpace = nullptr;
if (as_IB(this)->getROPixels(&bm, legacyColorSpace)) {
return SkEncodeBitmap(bm, type, quality);
}
return nullptr;
}
sk_sp<SkData> SkImage::encodeToData() const {
if (auto encoded = this->refEncodedData()) {
return encoded;
}
SkBitmap bm;
SkPixmap pmap;
SkColorSpace* legacyColorSpace = nullptr;
if (as_IB(this)->getROPixels(&bm, legacyColorSpace) && bm.peekPixels(&pmap)) {
return SkEncodePixmap(pmap, SkEncodedImageFormat::kPNG, 100);
}
return nullptr;
}
sk_sp<SkData> SkImage::refEncodedData() const {
return sk_sp<SkData>(as_IB(this)->onRefEncoded());
}
sk_sp<SkImage> SkImage::MakeFromEncoded(sk_sp<SkData> encoded, const SkIRect* subset) {
if (nullptr == encoded || 0 == encoded->size()) {
return nullptr;
}
return SkImage::MakeFromGenerator(SkImageGenerator::MakeFromEncoded(encoded), subset);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
const char* SkImage::toString(SkString* str) const {
str->appendf("image: (id:%d (%d, %d) %s)", this->uniqueID(), this->width(), this->height(),
this->isOpaque() ? "opaque" : "");
return str->c_str();
}
sk_sp<SkImage> SkImage::makeSubset(const SkIRect& subset) const {
if (subset.isEmpty()) {
return nullptr;
}
const SkIRect bounds = SkIRect::MakeWH(this->width(), this->height());
if (!bounds.contains(subset)) {
return nullptr;
}
// optimization : return self if the subset == our bounds
if (bounds == subset) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return as_IB(this)->onMakeSubset(subset);
}
#if SK_SUPPORT_GPU
GrTexture* SkImage::getTexture() const {
return as_IB(this)->onGetTexture();
}
bool SkImage::isTextureBacked() const { return SkToBool(as_IB(this)->peekProxy()); }
GrBackendObject SkImage::getTextureHandle(bool flushPendingGrContextIO,
GrSurfaceOrigin* origin) const {
return as_IB(this)->onGetTextureHandle(flushPendingGrContextIO, origin);
}
bool SkImage::isValid(GrContext* context) const {
if (context && context->abandoned()) {
return false;
}
return as_IB(this)->onIsValid(context);
}
#else
GrTexture* SkImage::getTexture() const { return nullptr; }
bool SkImage::isTextureBacked() const { return false; }
GrBackendObject SkImage::getTextureHandle(bool, GrSurfaceOrigin*) const { return 0; }
bool SkImage::isValid(GrContext* context) const {
if (context) {
return false;
}
return as_IB(this)->onIsValid(context);
}
#endif
///////////////////////////////////////////////////////////////////////////////
SkImage_Base::SkImage_Base(int width, int height, uint32_t uniqueID)
: INHERITED(width, height, uniqueID)
, fAddedToCache(false)
{}
SkImage_Base::~SkImage_Base() {
if (fAddedToCache.load()) {
SkNotifyBitmapGenIDIsStale(this->uniqueID());
}
}
bool SkImage::readPixels(const SkPixmap& pmap, int srcX, int srcY, CachingHint chint) const {
return this->readPixels(pmap.info(), pmap.writable_addr(), pmap.rowBytes(), srcX, srcY, chint);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::MakeFromBitmap(const SkBitmap& bm) {
SkPixelRef* pr = bm.pixelRef();
if (nullptr == pr) {
return nullptr;
}
return SkMakeImageFromRasterBitmap(bm, kIfMutable_SkCopyPixelsMode);
}
bool SkImage::asLegacyBitmap(SkBitmap* bitmap, LegacyBitmapMode mode) const {
return as_IB(this)->onAsLegacyBitmap(bitmap, mode);
}
bool SkImage_Base::onAsLegacyBitmap(SkBitmap* bitmap, LegacyBitmapMode mode) const {
// As the base-class, all we can do is make a copy (regardless of mode).
// Subclasses that want to be more optimal should override.
SkImageInfo info = this->onImageInfo().makeColorType(kN32_SkColorType).makeColorSpace(nullptr);
if (!bitmap->tryAllocPixels(info)) {
return false;
}
if (!this->readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(), 0, 0)) {
bitmap->reset();
return false;
}
if (kRO_LegacyBitmapMode == mode) {
bitmap->setImmutable();
}
return true;
}
sk_sp<SkImage> SkImage::MakeFromPicture(sk_sp<SkPicture> picture, const SkISize& dimensions,
const SkMatrix* matrix, const SkPaint* paint,
BitDepth bitDepth, sk_sp<SkColorSpace> colorSpace) {
return MakeFromGenerator(SkImageGenerator::MakeFromPicture(dimensions, std::move(picture),
matrix, paint, bitDepth,
std::move(colorSpace)));
}
sk_sp<SkImage> SkImage::makeWithFilter(const SkImageFilter* filter, const SkIRect& subset,
const SkIRect& clipBounds, SkIRect* outSubset,
SkIPoint* offset) const {
if (!filter || !outSubset || !offset || !this->bounds().contains(subset)) {
return nullptr;
}
SkColorSpace* colorSpace = as_IB(this)->onImageInfo().colorSpace();
sk_sp<SkSpecialImage> srcSpecialImage = SkSpecialImage::MakeFromImage(
subset, sk_ref_sp(const_cast<SkImage*>(this)), colorSpace);
if (!srcSpecialImage) {
return nullptr;
}
sk_sp<SkImageFilterCache> cache(
SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize));
SkImageFilter::OutputProperties outputProperties(colorSpace);
SkImageFilter::Context context(SkMatrix::I(), clipBounds, cache.get(), outputProperties);
sk_sp<SkSpecialImage> result = filter->filterImage(srcSpecialImage.get(), context, offset);
if (!result) {
return nullptr;
}
*outSubset = SkIRect::MakeWH(result->width(), result->height());
if (!outSubset->intersect(clipBounds.makeOffset(-offset->x(), -offset->y()))) {
return nullptr;
}
offset->fX += outSubset->x();
offset->fY += outSubset->y();
// Note that here we're returning the special image's entire backing store, loose padding
// and all!
return result->asImage();
}
bool SkImage::isLazyGenerated() const {
return as_IB(this)->onIsLazyGenerated();
}
bool SkImage::isAlphaOnly() const {
return as_IB(this)->onImageInfo().colorType() == kAlpha_8_SkColorType;
}
sk_sp<SkImage> SkImage::makeColorSpace(sk_sp<SkColorSpace> target,
SkTransferFunctionBehavior premulBehavior) const {
SkColorSpaceTransferFn fn;
if (!target || !target->isNumericalTransferFn(&fn)) {
return nullptr;
}
// No need to create a new image if:
// (1) The color spaces are equal.
// (2) The color type is kAlpha8.
if (SkColorSpace::Equals(this->colorSpace(), target.get()) ||
kAlpha_8_SkColorType == as_IB(this)->onImageInfo().colorType()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
SkColorType targetColorType = kN32_SkColorType;
if (SkTransferFunctionBehavior::kRespect == premulBehavior && target->gammaIsLinear()) {
targetColorType = kRGBA_F16_SkColorType;
}
// TODO: We might consider making this a deferred conversion?
return as_IB(this)->onMakeColorSpace(std::move(target), targetColorType, premulBehavior);
}
sk_sp<SkImage> SkImage::makeNonTextureImage() const {
if (!this->isTextureBacked()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return this->makeRasterImage();
}
sk_sp<SkImage> SkImage::makeRasterImage() const {
SkPixmap pm;
if (this->peekPixels(&pm)) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
const SkImageInfo info = as_IB(this)->onImageInfo();
const size_t rowBytes = info.minRowBytes();
size_t size = info.computeByteSize(rowBytes);
if (SkImageInfo::ByteSizeOverflowed(size)) {
return nullptr;
}
sk_sp<SkData> data = SkData::MakeUninitialized(size);
pm = { info.makeColorSpace(nullptr), data->writable_data(), info.minRowBytes() };
if (!this->readPixels(pm, 0, 0)) {
return nullptr;
}
return SkImage::MakeRasterData(info, std::move(data), rowBytes);
}
//////////////////////////////////////////////////////////////////////////////////////
#if !SK_SUPPORT_GPU
sk_sp<SkImage> MakeTextureFromMipMap(GrContext*, const SkImageInfo&, const GrMipLevel texels[],
int mipLevelCount, SkBudgeted, SkDestinationSurfaceColorMode) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkAlphaType at, sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP, ReleaseContext releaseC) {
return nullptr;
}
size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy&,
const DeferredTextureImageUsageParams[],
int paramCnt, void* buffer,
SkColorSpace* dstColorSpace,
SkColorType dstColorType) const {
return 0;
}
sk_sp<SkImage> SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void*,
SkBudgeted) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkColorType ct, SkAlphaType at, sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP, ReleaseContext releaseC) {
return nullptr;
}
bool SkImage::MakeBackendTextureFromSkImage(GrContext*,
sk_sp<SkImage>,
GrBackendTexture*,
BackendTextureReleaseProc*) {
return false;
}
sk_sp<SkImage> SkImage::MakeFromAdoptedTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkAlphaType at, sk_sp<SkColorSpace> cs) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromAdoptedTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkColorType ct, SkAlphaType at,
sk_sp<SkColorSpace> cs) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace space,
const GrBackendObject yuvTextureHandles[3],
const SkISize yuvSizes[3],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace space,
const GrBackendTexture yuvTextureHandles[3],
const SkISize yuvSizes[3],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return nullptr;
}
sk_sp<SkImage> SkImage::makeTextureImage(GrContext*, SkColorSpace* dstColorSpace) const {
return nullptr;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> MakeTextureFromMipMap(GrContext*, const SkImageInfo&, const GrMipLevel texels[],
int mipLevelCount, SkBudgeted) {
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_pinAsTexture(const SkImage* image, GrContext* ctx) {
SkASSERT(image);
SkASSERT(ctx);
return as_IB(image)->onPinAsTexture(ctx);
}
void SkImage_unpinAsTexture(const SkImage* image, GrContext* ctx) {
SkASSERT(image);
SkASSERT(ctx);
as_IB(image)->onUnpinAsTexture(ctx);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImageMakeRasterCopyAndAssignColorSpace(const SkImage* src,
SkColorSpace* colorSpace) {
// Read the pixels out of the source image, with no conversion
SkImageInfo info = as_IB(src)->onImageInfo();
if (kUnknown_SkColorType == info.colorType()) {
SkDEBUGFAIL("Unexpected color type");
return nullptr;
}
size_t rowBytes = info.minRowBytes();
size_t size = info.computeByteSize(rowBytes);
if (SkImageInfo::ByteSizeOverflowed(size)) {
return nullptr;
}
auto data = SkData::MakeUninitialized(size);
if (!data) {
return nullptr;
}
SkPixmap pm(info, data->writable_data(), rowBytes);
if (!src->readPixels(pm, 0, 0, SkImage::kDisallow_CachingHint)) {
return nullptr;
}
// Wrap them in a new image with a different color space
return SkImage::MakeRasterData(info.makeColorSpace(sk_ref_sp(colorSpace)), data, rowBytes);
}