/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointConicalGradient.h"
#include "SkRasterPipeline.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "../../jumper/SkJumper.h"
// Please see https://skia.org/dev/design/conical for how our shader works.
void SkTwoPointConicalGradient::FocalData::set(SkScalar r0, SkScalar r1, SkMatrix& matrix) {
fIsSwapped = false;
fFocalX = r0 / (r0 - r1);
if (SkScalarNearlyZero(fFocalX - 1)) {
// swap r0, r1
matrix.postTranslate(-1, 0);
matrix.postScale(-1, 1);
std::swap(r0, r1);
fFocalX = 0; // because r0 is now 0
fIsSwapped = true;
}
// Map {focal point, (1, 0)} to {(0, 0), (1, 0)}
const SkPoint from[2] = { {fFocalX, 0}, {1, 0} };
const SkPoint to[2] = { {0, 0}, {1, 0} };
SkMatrix focalMatrix;
if (!focalMatrix.setPolyToPoly(from, to, 2)) {
SkDEBUGFAILF("Mapping focal point failed unexpectedly for focalX = %f.\n", fFocalX);
// We won't be able to draw the gradient; at least make sure that we initialize the
// memory to prevent security issues.
focalMatrix = SkMatrix::MakeScale(1, 1);
}
matrix.postConcat(focalMatrix);
fR1 = r1 / SkScalarAbs(1 - fFocalX); // focalMatrix has a scale of 1/(1-f)
// The following transformations are just to accelerate the shader computation by saving
// some arithmatic operations.
if (this->isFocalOnCircle()) {
matrix.postScale(0.5, 0.5);
} else {
matrix.postScale(fR1 / (fR1 * fR1 - 1), 1 / sqrt(SkScalarAbs(fR1 * fR1 - 1)));
}
matrix.postScale(SkScalarAbs(1 - fFocalX), SkScalarAbs(1 - fFocalX)); // scale |1 - f|
}
sk_sp<SkShader> SkTwoPointConicalGradient::Create(const SkPoint& c0, SkScalar r0,
const SkPoint& c1, SkScalar r1,
const Descriptor& desc) {
SkMatrix gradientMatrix;
Type gradientType;
if (SkScalarNearlyZero((c0 - c1).length())) {
// Concentric case: we can pretend we're radial (with a tiny twist).
const SkScalar scale = 1.0f / SkTMax(r0, r1);
gradientMatrix = SkMatrix::MakeTrans(-c1.x(), -c1.y());
gradientMatrix.postScale(scale, scale);
gradientType = Type::kRadial;
} else {
const SkPoint centers[2] = { c0 , c1 };
const SkPoint unitvec[2] = { {0, 0}, {1, 0} };
if (!gradientMatrix.setPolyToPoly(centers, unitvec, 2)) {
// Degenerate case.
return nullptr;
}
gradientType = SkScalarNearlyZero(r1 - r0) ? Type::kStrip : Type::kFocal;
}
FocalData focalData;
if (gradientType == Type::kFocal) {
const auto dCenter = (c0 - c1).length();
focalData.set(r0 / dCenter, r1 / dCenter, gradientMatrix); // this may change gradientMatrix
}
return sk_sp<SkShader>(new SkTwoPointConicalGradient(c0, r0, c1, r1, desc,
gradientType, gradientMatrix, focalData));
}
SkTwoPointConicalGradient::SkTwoPointConicalGradient(
const SkPoint& start, SkScalar startRadius,
const SkPoint& end, SkScalar endRadius,
const Descriptor& desc, Type type, const SkMatrix& gradientMatrix, const FocalData& data)
: SkGradientShaderBase(desc, gradientMatrix)
, fCenter1(start)
, fCenter2(end)
, fRadius1(startRadius)
, fRadius2(endRadius)
, fType(type)
{
// this is degenerate, and should be caught by our caller
SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
if (type == Type::kFocal) {
fFocalData = data;
}
}
bool SkTwoPointConicalGradient::isOpaque() const {
// Because areas outside the cone are left untouched, we cannot treat the
// shader as opaque even if the gradient itself is opaque.
// TODO(junov): Compute whether the cone fills the plane crbug.com/222380
return false;
}
// Returns the original non-sorted version of the gradient
SkShader::GradientType SkTwoPointConicalGradient::asAGradient(GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fCenter1;
info->fPoint[1] = fCenter2;
info->fRadius[0] = fRadius1;
info->fRadius[1] = fRadius2;
}
return kConical_GradientType;
}
sk_sp<SkFlattenable> SkTwoPointConicalGradient::CreateProc(SkReadBuffer& buffer) {
DescriptorScope desc;
if (!desc.unflatten(buffer)) {
return nullptr;
}
SkPoint c1 = buffer.readPoint();
SkPoint c2 = buffer.readPoint();
SkScalar r1 = buffer.readScalar();
SkScalar r2 = buffer.readScalar();
if (buffer.isVersionLT(SkReadBuffer::k2PtConicalNoFlip_Version) && buffer.readBool()) {
// legacy flipped gradient
SkTSwap(c1, c2);
SkTSwap(r1, r2);
SkColor4f* colors = desc.mutableColors();
SkScalar* pos = desc.mutablePos();
const int last = desc.fCount - 1;
const int half = desc.fCount >> 1;
for (int i = 0; i < half; ++i) {
SkTSwap(colors[i], colors[last - i]);
if (pos) {
SkScalar tmp = pos[i];
pos[i] = SK_Scalar1 - pos[last - i];
pos[last - i] = SK_Scalar1 - tmp;
}
}
if (pos) {
if (desc.fCount & 1) {
pos[half] = SK_Scalar1 - pos[half];
}
}
}
return SkGradientShader::MakeTwoPointConical(c1, r1, c2, r2, desc.fColors,
std::move(desc.fColorSpace), desc.fPos,
desc.fCount, desc.fTileMode, desc.fGradFlags,
desc.fLocalMatrix);
}
void SkTwoPointConicalGradient::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fCenter1);
buffer.writePoint(fCenter2);
buffer.writeScalar(fRadius1);
buffer.writeScalar(fRadius2);
}
#if SK_SUPPORT_GPU
#include "SkGr.h"
#include "SkTwoPointConicalGradient_gpu.h"
std::unique_ptr<GrFragmentProcessor> SkTwoPointConicalGradient::asFragmentProcessor(
const GrFPArgs& args) const {
SkASSERT(args.fContext);
return Gr2PtConicalGradientEffect::Make(
GrGradientEffect::CreateArgs(args.fContext, this, args.fLocalMatrix, fTileMode,
args.fDstColorSpaceInfo->colorSpace()));
}
#endif
sk_sp<SkShader> SkTwoPointConicalGradient::onMakeColorSpace(SkColorSpaceXformer* xformer) const {
const AutoXformColors xformedColors(*this, xformer);
return SkGradientShader::MakeTwoPointConical(fCenter1, fRadius1, fCenter2, fRadius2,
xformedColors.fColors.get(), fOrigPos, fColorCount,
fTileMode, fGradFlags, &this->getLocalMatrix());
}
#ifndef SK_IGNORE_TO_STRING
void SkTwoPointConicalGradient::toString(SkString* str) const {
str->append("SkTwoPointConicalGradient: (");
str->append("center1: (");
str->appendScalar(fCenter1.fX);
str->append(", ");
str->appendScalar(fCenter1.fY);
str->append(") radius1: ");
str->appendScalar(fRadius1);
str->append(" ");
str->append("center2: (");
str->appendScalar(fCenter2.fX);
str->append(", ");
str->appendScalar(fCenter2.fY);
str->append(") radius2: ");
str->appendScalar(fRadius2);
str->append(" ");
this->INHERITED::toString(str);
str->append(")");
}
#endif
void SkTwoPointConicalGradient::appendGradientStages(SkArenaAlloc* alloc, SkRasterPipeline* p,
SkRasterPipeline* postPipeline) const {
const auto dRadius = fRadius2 - fRadius1;
if (fType == Type::kRadial) {
p->append(SkRasterPipeline::xy_to_radius);
// Tiny twist: radial computes a t for [0, r2], but we want a t for [r1, r2].
auto scale = SkTMax(fRadius1, fRadius2) / dRadius;
auto bias = -fRadius1 / dRadius;
p->append_matrix(alloc, SkMatrix::Concat(SkMatrix::MakeTrans(bias, 0),
SkMatrix::MakeScale(scale, 1)));
return;
}
if (fType == Type::kStrip) {
auto* ctx = alloc->make<SkJumper_2PtConicalCtx>();
SkScalar scaledR0 = fRadius1 / this->getCenterX1();
ctx->fP0 = scaledR0 * scaledR0;
p->append(SkRasterPipeline::xy_to_2pt_conical_strip, ctx);
p->append(SkRasterPipeline::mask_2pt_conical_nan, ctx);
postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask);
return;
}
auto* ctx = alloc->make<SkJumper_2PtConicalCtx>();
ctx->fP0 = 1/fFocalData.fR1;
ctx->fP1 = fFocalData.fFocalX;
if (fFocalData.isFocalOnCircle()) {
p->append(SkRasterPipeline::xy_to_2pt_conical_focal_on_circle);
} else if (fFocalData.isWellBehaved()) {
p->append(SkRasterPipeline::xy_to_2pt_conical_well_behaved, ctx);
} else if (fFocalData.isSwapped() || 1 - fFocalData.fFocalX < 0) {
p->append(SkRasterPipeline::xy_to_2pt_conical_smaller, ctx);
} else {
p->append(SkRasterPipeline::xy_to_2pt_conical_greater, ctx);
}
if (!fFocalData.isWellBehaved()) {
p->append(SkRasterPipeline::mask_2pt_conical_degenerates, ctx);
}
if (1 - fFocalData.fFocalX < 0) {
p->append(SkRasterPipeline::negate_x);
}
if (!fFocalData.isNativelyFocal()) {
p->append(SkRasterPipeline::alter_2pt_conical_compensate_focal, ctx);
}
if (fFocalData.isSwapped()) {
p->append(SkRasterPipeline::alter_2pt_conical_unswap);
}
if (!fFocalData.isWellBehaved()) {
postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask);
}
}