// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ParseHelper.h"
#include <limits>
#include <stdarg.h>
#include <stdio.h>
#include "glslang.h"
#include "preprocessor/SourceLocation.h"
#include "ValidateSwitch.h"
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
namespace
{
bool IsVaryingOut(TQualifier qualifier)
{
switch(qualifier)
{
case EvqVaryingOut:
case EvqSmoothOut:
case EvqFlatOut:
case EvqCentroidOut:
case EvqVertexOut:
return true;
default: break;
}
return false;
}
bool IsVaryingIn(TQualifier qualifier)
{
switch(qualifier)
{
case EvqVaryingIn:
case EvqSmoothIn:
case EvqFlatIn:
case EvqCentroidIn:
case EvqFragmentIn:
return true;
default: break;
}
return false;
}
bool IsVarying(TQualifier qualifier)
{
return IsVaryingIn(qualifier) || IsVaryingOut(qualifier);
}
bool IsAssignment(TOperator op)
{
switch(op)
{
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
case EOpAssign:
case EOpAddAssign:
case EOpSubAssign:
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
return true;
default:
return false;
}
}
}
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc &line)
{
fields.num = (int) compString.size();
if (fields.num > 4) {
error(line, "illegal vector field selection", compString.c_str());
return false;
}
enum {
exyzw,
ergba,
estpq
} fieldSet[4];
for (int i = 0; i < fields.num; ++i) {
switch (compString[i]) {
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (int i = 0; i < fields.num; ++i) {
if (fields.offsets[i] >= vecSize) {
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0) {
if (fieldSet[i] != fieldSet[i-1]) {
error(line, "illegal - vector component fields not from the same set", compString.c_str());
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Track whether errors have occurred.
//
void TParseContext::recover()
{
}
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc& loc,
const char* reason, const char* token,
const char* extraInfo)
{
pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
srcLoc, reason, token, extraInfo);
}
void TParseContext::warning(const TSourceLoc& loc,
const char* reason, const char* token,
const char* extraInfo) {
pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
srcLoc, reason, token, extraInfo);
}
void TParseContext::trace(const char* str)
{
mDiagnostics.writeDebug(str);
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line, const char* op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", op, extraInfo.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char* op, TString operand)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
<< " (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand type", op, extraInfo.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line, const char* op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
<< "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand types ", op, extraInfo.c_str());
}
bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type){
if (!mChecksPrecisionErrors)
return false;
switch( type ){
case EbtFloat:
if( precision == EbpUndefined ){
error( line, "No precision specified for (float)", "" );
return true;
}
break;
case EbtInt:
if( precision == EbpUndefined ){
error( line, "No precision specified (int)", "" );
return true;
}
break;
default:
return false;
}
return false;
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char* op, TIntermTyped* node)
{
TIntermSymbol* symNode = node->getAsSymbolNode();
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
bool errorReturn;
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
return lValueErrorCheck(line, op, binaryNode->getLeft());
case EOpVectorSwizzle:
errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
if (!errorReturn) {
int offset[4] = {0,0,0,0};
TIntermTyped* rightNode = binaryNode->getRight();
TIntermAggregate *aggrNode = rightNode->getAsAggregate();
for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
p != aggrNode->getSequence().end(); p++) {
int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
offset[value]++;
if (offset[value] > 1) {
error(line, " l-value of swizzle cannot have duplicate components", op);
return true;
}
}
}
return errorReturn;
case EOpIndexDirectInterfaceBlock:
default:
break;
}
error(line, " l-value required", op);
return true;
}
const char* symbol = 0;
if (symNode != 0)
symbol = symNode->getSymbol().c_str();
const char* message = 0;
switch (node->getQualifier()) {
case EvqConstExpr: message = "can't modify a const"; break;
case EvqConstReadOnly: message = "can't modify a const"; break;
case EvqAttribute: message = "can't modify an attribute"; break;
case EvqFragmentIn: message = "can't modify an input"; break;
case EvqVertexIn: message = "can't modify an input"; break;
case EvqUniform: message = "can't modify a uniform"; break;
case EvqSmoothIn:
case EvqFlatIn:
case EvqCentroidIn:
case EvqVaryingIn: message = "can't modify a varying"; break;
case EvqInput: message = "can't modify an input"; break;
case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
case EvqInstanceID: message = "can't modify gl_InstanceID"; break;
case EvqVertexID: message = "can't modify gl_VertexID"; break;
default:
//
// Type that can't be written to?
//
if(IsSampler(node->getBasicType()))
{
message = "can't modify a sampler";
}
else if(node->getBasicType() == EbtVoid)
{
message = "can't modify void";
}
}
if (message == 0 && binaryNode == 0 && symNode == 0) {
error(line, " l-value required", op);
return true;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode) {
std::stringstream extraInfoStream;
extraInfoStream << "\"" << symbol << "\" (" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
else {
std::stringstream extraInfoStream;
extraInfoStream << "(" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
// Returns true if the was an error.
//
bool TParseContext::constErrorCheck(TIntermTyped* node)
{
if (node->getQualifier() == EvqConstExpr)
return false;
error(node->getLine(), "constant expression required", "");
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
// Returns true if the was an error.
//
bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
{
if (node->isScalarInt())
return false;
error(node->getLine(), "integer expression required", token);
return true;
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
// Returns true if the was an error.
//
bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char* token)
{
if (global)
return false;
error(line, "only allowed at global scope", token);
return true;
}
//
// For now, keep it simple: if it starts "gl_", it's reserved, independent
// of scope. Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
// webgl shader.
//
// Returns true if there was an error.
//
bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString& identifier)
{
static const char* reservedErrMsg = "reserved built-in name";
if (!symbolTable.atBuiltInLevel()) {
if (identifier.compare(0, 3, "gl_") == 0) {
error(line, reservedErrMsg, "gl_");
return true;
}
if (identifier.find("__") != TString::npos) {
error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
return true;
}
}
return false;
}
//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
{
*type = function.getReturnType();
bool constructingMatrix = false;
switch(op) {
case EOpConstructMat2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
size_t size = 0;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (size_t i = 0; i < function.getParamCount(); ++i) {
const TParameter& param = function.getParam(i);
size += param.type->getObjectSize();
if (constructingMatrix && param.type->isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
full = true;
if (param.type->isArray())
arrayArg = true;
}
if(type->isArray()) {
if(type->getArraySize() == 0) {
type->setArraySize(function.getParamCount());
} else if(type->getArraySize() != (int)function.getParamCount()) {
error(line, "array constructor needs one argument per array element", "constructor");
return true;
}
}
if (arrayArg && op != EOpConstructStruct) {
error(line, "constructing from a non-dereferenced array", "constructor");
return true;
}
if (matrixInMatrix && !type->isArray()) {
if (function.getParamCount() != 1) {
error(line, "constructing matrix from matrix can only take one argument", "constructor");
return true;
}
}
if (overFull) {
error(line, "too many arguments", "constructor");
return true;
}
if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
return true;
}
if (!type->isMatrix() || !matrixInMatrix) {
if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
(op == EOpConstructStruct && size < type->getObjectSize())) {
error(line, "not enough data provided for construction", "constructor");
return true;
}
}
TIntermTyped *typed = node ? node->getAsTyped() : 0;
if (typed == 0) {
error(line, "constructor argument does not have a type", "constructor");
return true;
}
if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
error(line, "cannot convert a sampler", "constructor");
return true;
}
if (typed->getBasicType() == EbtVoid) {
error(line, "cannot convert a void", "constructor");
return true;
}
return false;
}
// This function checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString& identifier, const TBasicType& type)
{
if(type == EbtVoid) {
error(line, "illegal use of type 'void'", identifier.c_str());
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped* type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
error(line, "boolean expression expected", "");
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType& pType)
{
if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) {
error(line, "boolean expression expected", "");
return true;
}
return false;
}
bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType& pType, const char* reason)
{
if (pType.type == EbtStruct) {
if (containsSampler(*pType.userDef)) {
error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
return true;
}
return false;
} else if (IsSampler(pType.type)) {
error(line, reason, getBasicString(pType.type));
return true;
}
return false;
}
bool TParseContext::structQualifierErrorCheck(const TSourceLoc &line, const TPublicType& pType)
{
switch(pType.qualifier)
{
case EvqVaryingOut:
case EvqSmooth:
case EvqFlat:
case EvqCentroidOut:
case EvqVaryingIn:
case EvqSmoothIn:
case EvqFlatIn:
case EvqCentroidIn:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
if(pType.type == EbtStruct)
{
error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
return true;
}
break;
default:
break;
}
if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
return true;
// check for layout qualifier issues
if (pType.qualifier != EvqVertexIn && pType.qualifier != EvqFragmentOut &&
layoutLocationErrorCheck(line, pType.layoutQualifier))
{
return true;
}
return false;
}
// These checks are common for all declarations starting a declarator list, and declarators that follow an empty
// declaration.
//
bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation)
{
switch(publicType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
if(publicType.type == EbtStruct)
{
error(identifierLocation, "cannot be used with a structure",
getQualifierString(publicType.qualifier));
return true;
}
default: break;
}
if(publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType,
"samplers must be uniform"))
{
return true;
}
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if(layoutQualifier.matrixPacking != EmpUnspecified)
{
error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking),
"only valid for interface blocks");
return true;
}
if(layoutQualifier.blockStorage != EbsUnspecified)
{
error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage),
"only valid for interface blocks");
return true;
}
if(publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut &&
layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
{
return true;
}
return false;
}
bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier)
{
if(layoutQualifier.location != -1)
{
error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
return true;
}
return false;
}
bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
{
if(pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable", "location");
return true;
}
return false;
}
bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType& type)
{
if ((qualifier == EvqOut || qualifier == EvqInOut) &&
type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
error(line, "samplers cannot be output parameters", type.getBasicString());
return true;
}
return false;
}
bool TParseContext::containsSampler(TType& type)
{
if (IsSampler(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
for(const auto &field : type.getStruct()->fields()) {
if (containsSampler(*(field->type())))
return true;
}
}
return false;
}
//
// Do size checking for an array type's size.
//
// Returns true if there was an error.
//
bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped* expr, int& size)
{
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (expr->getQualifier() != EvqConstExpr || constant == 0 || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
size = 1;
return true;
}
if (constant->getBasicType() == EbtUInt)
{
unsigned int uintSize = constant->getUConst(0);
if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max()))
{
error(line, "array size too large", "");
size = 1;
return true;
}
size = static_cast<int>(uintSize);
}
else
{
size = constant->getIConst(0);
if (size < 0)
{
error(line, "array size must be non-negative", "");
size = 1;
return true;
}
}
if(size == 0)
{
error(line, "array size must be greater than zero", "");
return true;
}
return false;
}
//
// See if this qualifier can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, TPublicType type)
{
if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr && mShaderVersion < 300)) {
error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
return true;
}
return false;
}
//
// See if this type can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, TPublicType type)
{
//
// Can the type be an array?
//
if (type.array) {
error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
return true;
}
// In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
// In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section 4.3.4).
if(mShaderVersion >= 300 && type.type == EbtStruct && IsVarying(type.qualifier))
{
error(line, "cannot declare arrays of structs of this qualifier",
TType(type).getCompleteString().c_str());
return true;
}
return false;
}
bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, const TSourceLoc &line)
{
bool builtIn = false;
TSymbol* symbol = symbolTable.find(node->getSymbol(), mShaderVersion, &builtIn);
if (symbol == 0) {
error(line, " undeclared identifier", node->getSymbol().c_str());
return true;
}
TVariable* variable = static_cast<TVariable*>(symbol);
type->setArrayInformationType(variable->getArrayInformationType());
variable->updateArrayInformationType(type);
// special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
// its an error
if (node->getSymbol() == "gl_FragData") {
TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", mShaderVersion, &builtIn);
ASSERT(fragData);
int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
if (fragDataValue <= size) {
error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
return true;
}
}
// we dont want to update the maxArraySize when this flag is not set, we just want to include this
// node type in the chain of node types so that its updated when a higher maxArraySize comes in.
if (!updateFlag)
return false;
size++;
variable->getType().setMaxArraySize(size);
type->setMaxArraySize(size);
TType* tt = type;
while(tt->getArrayInformationType() != 0) {
tt = tt->getArrayInformationType();
tt->setMaxArraySize(size);
}
return false;
}
//
// Enforce non-initializer type/qualifier rules.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitConstErrorCheck(const TSourceLoc &line, TString& identifier, TPublicType& type, bool array)
{
if (type.qualifier == EvqConstExpr)
{
// Make the qualifier make sense.
type.qualifier = EvqTemporary;
if (array)
{
error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
}
else if (type.isStructureContainingArrays())
{
error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return true;
}
return false;
}
//
// Do semantic checking for a variable declaration that has no initializer,
// and update the symbol table.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString& identifier, TPublicType& type)
{
if(type.qualifier == EvqConstExpr)
{
// Make the qualifier make sense.
type.qualifier = EvqTemporary;
// Generate informative error messages for ESSL1.
// In ESSL3 arrays and structures containing arrays can be constant.
if(mShaderVersion < 300 && type.isStructureContainingArrays())
{
error(line,
"structures containing arrays may not be declared constant since they cannot be initialized",
identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return true;
}
if(type.isUnsizedArray())
{
error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
return true;
}
return false;
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type,
TVariable **variable)
{
ASSERT((*variable) == nullptr);
// gl_LastFragData may be redeclared with a new precision qualifier
if(type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
{
const TVariable *maxDrawBuffers =
static_cast<const TVariable *>(symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
if(type.getArraySize() != maxDrawBuffers->getConstPointer()->getIConst())
{
error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str());
return false;
}
}
if(reservedErrorCheck(line, identifier))
return false;
(*variable) = new TVariable(&identifier, type);
if(!symbolTable.declare(*variable))
{
error(line, "redefinition", identifier.c_str());
delete (*variable);
(*variable) = nullptr;
return false;
}
if(voidErrorCheck(line, identifier, type.getBasicType()))
return false;
return true;
}
bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
{
if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) {
error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
return true;
}
if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) {
error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
return true;
}
if (qualifier == EvqConstReadOnly)
type->setQualifier(EvqConstReadOnly);
else
type->setQualifier(paramQualifier);
return false;
}
bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString& extension)
{
const TExtensionBehavior& extBehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
if (iter == extBehavior.end()) {
error(line, "extension", extension.c_str(), "is not supported");
return true;
}
// In GLSL ES, an extension's default behavior is "disable".
if (iter->second == EBhDisable || iter->second == EBhUndefined) {
error(line, "extension", extension.c_str(), "is disabled");
return true;
}
if (iter->second == EBhWarn) {
warning(line, "extension", extension.c_str(), "is being used");
return false;
}
return false;
}
bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate)
{
for(size_t i = 0; i < fnCandidate->getParamCount(); ++i)
{
TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
if(qual == EvqOut || qual == EvqInOut)
{
TIntermTyped *node = (aggregate->getSequence())[i]->getAsTyped();
if(lValueErrorCheck(node->getLine(), "assign", node))
{
error(node->getLine(),
"Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
recover();
return true;
}
}
}
return false;
}
void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation)
{
switch(qualifier)
{
case EvqVaryingOut:
case EvqSmoothOut:
case EvqFlatOut:
case EvqCentroidOut:
case EvqVertexOut:
case EvqFragmentOut:
break;
default:
error(invariantLocation, "Only out variables can be invariant.", "invariant");
recover();
break;
}
}
bool TParseContext::supportsExtension(const char* extension)
{
const TExtensionBehavior& extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
return (iter != extbehavior.end());
}
void TParseContext::handleExtensionDirective(const TSourceLoc &line, const char* extName, const char* behavior)
{
pp::SourceLocation loc(line.first_file, line.first_line);
mDirectiveHandler.handleExtension(loc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &line, const char* name, const char* value, bool stdgl)
{
pp::SourceLocation loc(line.first_file, line.first_line);
mDirectiveHandler.handlePragma(loc, name, value, stdgl);
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = nullptr;
if(!symbol)
{
error(location, "undeclared identifier", name->c_str());
recover();
}
else if(!symbol->isVariable())
{
error(location, "variable expected", name->c_str());
recover();
}
else
{
variable = static_cast<const TVariable*>(symbol);
if(symbolTable.findBuiltIn(variable->getName(), mShaderVersion))
{
recover();
}
// Reject shaders using both gl_FragData and gl_FragColor
TQualifier qualifier = variable->getType().getQualifier();
if(qualifier == EvqFragData)
{
mUsesFragData = true;
}
else if(qualifier == EvqFragColor)
{
mUsesFragColor = true;
}
// This validation is not quite correct - it's only an error to write to
// both FragData and FragColor. For simplicity, and because users shouldn't
// be rewarded for reading from undefined variables, return an error
// if they are both referenced, rather than assigned.
if(mUsesFragData && mUsesFragColor)
{
error(location, "cannot use both gl_FragData and gl_FragColor", name->c_str());
recover();
}
}
if(!variable)
{
TType type(EbtFloat, EbpUndefined);
TVariable *fakeVariable = new TVariable(name, type);
symbolTable.declare(fakeVariable);
variable = fakeVariable;
}
return variable;
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction* TParseContext::findFunction(const TSourceLoc &line, TFunction* call, bool *builtIn)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
const TSymbol* symbol = symbolTable.find(call->getName(), mShaderVersion, builtIn);
if (!symbol || symbol->isFunction()) {
symbol = symbolTable.find(call->getMangledName(), mShaderVersion, builtIn);
}
if (!symbol) {
error(line, "no matching overloaded function found", call->getName().c_str());
return nullptr;
}
if (!symbol->isFunction()) {
error(line, "function name expected", call->getName().c_str());
return nullptr;
}
return static_cast<const TFunction*>(symbol);
}
//
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, const TPublicType& pType,
TIntermTyped *initializer, TIntermNode **intermNode)
{
ASSERT(intermNode != nullptr);
TType type = TType(pType);
if(type.isUnsizedArray())
{
// We have not checked yet whether the initializer actually is an array or not.
if(initializer->isArray())
{
type.setArraySize(initializer->getArraySize());
}
else
{
// Having a non-array initializer for an unsized array will result in an error later,
// so we don't generate an error message here.
type.setArraySize(1u);
}
}
TVariable *variable = nullptr;
if(!declareVariable(line, identifier, type, &variable))
{
return true;
}
if(symbolTable.atGlobalLevel() && initializer->getQualifier() != EvqConstExpr)
{
error(line, "global variable initializers must be constant expressions", "=");
return true;
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = type.getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) {
error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
return true;
}
//
// test for and propagate constant
//
if (qualifier == EvqConstExpr) {
if (qualifier != initializer->getQualifier()) {
std::stringstream extraInfoStream;
extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, " assigning non-constant to", "=", extraInfo.c_str());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (type != initializer->getType()) {
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (initializer->getAsConstantUnion()) {
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
} else if (initializer->getAsSymbolNode()) {
const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable* tVar = static_cast<const TVariable*>(symbol);
ConstantUnion* constArray = tVar->getConstPointer();
variable->shareConstPointer(constArray);
}
}
// Constants which aren't indexable arrays get propagated by value
// and thus don't need to initialize the symbol.
if (variable->isConstant() && !(type.isArray() && type.getArraySize() > 1))
{
*intermNode = nullptr;
}
else
{
TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
*intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
if(*intermNode == nullptr) {
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return true;
}
}
return false;
}
TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier)
{
TPublicType returnType = typeSpecifier;
returnType.qualifier = qualifier;
returnType.invariant = invariant;
returnType.layoutQualifier = layoutQualifier;
if(mShaderVersion < 300)
{
if(typeSpecifier.array)
{
error(typeSpecifier.line, "not supported", "first-class array");
returnType.clearArrayness();
}
if(qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
if((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
(typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
}
else
{
if(!returnType.layoutQualifier.isEmpty())
{
globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout");
}
if(IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut)
{
checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.line);
}
}
return returnType;
}
void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
const TPublicType &type,
const TSourceLoc &qualifierLocation)
{
// An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
if(type.type == EbtBool)
{
error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
}
// Specific restrictions apply for vertex shader inputs and fragment shader outputs.
switch(qualifier)
{
case EvqVertexIn:
// ESSL 3.00 section 4.3.4
if(type.array)
{
error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
}
// Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
case EvqFragmentOut:
// ESSL 3.00 section 4.3.6
if(type.isMatrix())
{
error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
}
// Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
default:
break;
}
// Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
// restrictions.
bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt ||
type.isStructureContainingType(EbtInt) ||
type.isStructureContainingType(EbtUInt));
if(typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
{
error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier));
}
if(type.type == EbtStruct)
{
// ESSL 3.00 sections 4.3.4 and 4.3.6.
// These restrictions are only implied by the ESSL 3.00 spec, but
// the ESSL 3.10 spec lists these restrictions explicitly.
if(type.array)
{
error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier));
}
if(type.isStructureContainingArrays())
{
error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier));
}
if(type.isStructureContainingType(EbtStruct))
{
error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier));
}
if(type.isStructureContainingType(EbtBool))
{
error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier));
}
}
}
TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType,
const TSourceLoc &identifierOrTypeLocation,
const TString &identifier)
{
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation);
bool emptyDeclaration = (identifier == "");
mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
if(emptyDeclaration)
{
if(publicType.isUnsizedArray())
{
// ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an error.
// It is assumed that this applies to empty declarations as well.
error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str());
}
}
else
{
if(singleDeclarationErrorCheck(publicType, identifierOrTypeLocation))
recover();
if(nonInitErrorCheck(identifierOrTypeLocation, identifier, publicType))
recover();
TVariable *variable = nullptr;
if(!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable))
recover();
if(variable && symbol)
symbol->setId(variable->getUniqueId());
}
return intermediate.makeAggregate(symbol, identifierOrTypeLocation);
}
TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression)
{
mDeferredSingleDeclarationErrorCheck = false;
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
if(nonInitErrorCheck(identifierLocation, identifier, publicType))
recover();
if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TType arrayType(publicType);
int size = 0;
if(arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TVariable *variable = nullptr;
if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
recover();
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if(variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.makeAggregate(symbol, identifierLocation);
}
TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
TIntermNode *intermNode = nullptr;
if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
{
//
// Build intermediate representation
//
return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr;
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TPublicType arrayType(publicType);
int size = 0;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArray(true, size);
// initNode will correspond to the whole of "type b[n] = initializer".
TIntermNode *initNode = nullptr;
if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr;
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc,
const TSourceLoc &identifierLoc,
const TString *identifier,
const TSymbol *symbol)
{
// invariant declaration
if(globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying"))
{
recover();
}
if(!symbol)
{
error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
recover();
return nullptr;
}
else
{
const TString kGlFrontFacing("gl_FrontFacing");
if(*identifier == kGlFrontFacing)
{
error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str());
recover();
return nullptr;
}
symbolTable.addInvariantVarying(std::string(identifier->c_str()));
const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
ASSERT(variable);
const TType &type = variable->getType();
TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(),
*identifier, type, identifierLoc);
TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc);
aggregate->setOp(EOpInvariantDeclaration);
return aggregate;
}
}
TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation, const TString &identifier)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
if(mDeferredSingleDeclarationErrorCheck)
{
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if(locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if(nonInitErrorCheck(identifierLocation, identifier, publicType))
recover();
TVariable *variable = nullptr;
if(!declareVariable(identifierLocation, identifier, TType(publicType), &variable))
recover();
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
if(variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
}
TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation, const TString &identifier,
const TSourceLoc &arrayLocation, TIntermTyped *indexExpression)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
if(mDeferredSingleDeclarationErrorCheck)
{
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if(locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if(nonInitErrorCheck(identifierLocation, identifier, publicType))
recover();
if(arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
{
recover();
}
else
{
TType arrayType = TType(publicType);
int size = 0;
if(arraySizeErrorCheck(arrayLocation, indexExpression, size))
{
recover();
}
arrayType.setArraySize(size);
TVariable *variable = nullptr;
if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
recover();
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if(variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
}
return nullptr;
}
TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation, const TString &identifier,
const TSourceLoc &initLocation, TIntermTyped *initializer)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
if(mDeferredSingleDeclarationErrorCheck)
{
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if(locationDeclaratorListCheck(identifierLocation, publicType))
recover();
TIntermNode *intermNode = nullptr;
if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
{
//
// build the intermediate representation
//
if(intermNode)
{
return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation);
}
else
{
return aggregateDeclaration;
}
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation, TIntermTyped *initializer)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
if(mDeferredSingleDeclarationErrorCheck)
{
if(singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if(locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TPublicType arrayType(publicType);
int size = 0;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArray(true, size);
// initNode will correspond to the whole of "b[n] = initializer".
TIntermNode *initNode = nullptr;
if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if(initNode)
{
return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation);
}
else
{
return aggregateDeclaration;
}
}
else
{
recover();
return nullptr;
}
}
void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
{
if(mShaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
recover();
return;
}
if(typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
recover();
return;
}
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
ASSERT(!layoutQualifier.isEmpty());
if(layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
{
recover();
return;
}
if(layoutQualifier.matrixPacking != EmpUnspecified)
{
mDefaultMatrixPacking = layoutQualifier.matrixPacking;
}
if(layoutQualifier.blockStorage != EbsUnspecified)
{
mDefaultBlockStorage = layoutQualifier.blockStorage;
}
}
TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location)
{
// Note: symbolTableFunction could be the same as function if this is the first declaration.
// Either way the instance in the symbol table is used to track whether the function is declared
// multiple times.
TFunction *symbolTableFunction =
static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion()));
if(symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100)
{
// ESSL 1.00.17 section 4.2.7.
// Doesn't apply to ESSL 3.00.4: see section 4.2.3.
error(location, "duplicate function prototype declarations are not allowed", "function");
recover();
}
symbolTableFunction->setHasPrototypeDeclaration();
TIntermAggregate *prototype = new TIntermAggregate;
prototype->setType(function.getReturnType());
prototype->setName(function.getMangledName());
for(size_t i = 0; i < function.getParamCount(); i++)
{
const TParameter ¶m = function.getParam(i);
if(param.name != 0)
{
TVariable variable(param.name, *param.type);
TIntermSymbol *paramSymbol = intermediate.addSymbol(
variable.getUniqueId(), variable.getName(), variable.getType(), location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
else
{
TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
}
prototype->setOp(EOpPrototype);
symbolTable.pop();
if(!symbolTable.atGlobalLevel())
{
// ESSL 3.00.4 section 4.2.4.
error(location, "local function prototype declarations are not allowed", "function");
recover();
}
return prototype;
}
TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location)
{
//?? Check that all paths return a value if return type != void ?
// May be best done as post process phase on intermediate code
if(mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
{
error(location, "function does not return a value:", "", function.getName().c_str());
recover();
}
TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location);
intermediate.setAggregateOperator(aggregate, EOpFunction, location);
aggregate->setName(function.getMangledName().c_str());
aggregate->setType(function.getReturnType());
// store the pragma information for debug and optimize and other vendor specific
// information. This information can be queried from the parse tree
aggregate->setOptimize(pragma().optimize);
aggregate->setDebug(pragma().debug);
if(functionBody && functionBody->getAsAggregate())
aggregate->setEndLine(functionBody->getAsAggregate()->getEndLine());
symbolTable.pop();
return aggregate;
}
void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut)
{
const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
if(builtIn)
{
error(location, "built-in functions cannot be redefined", function->getName().c_str());
recover();
}
TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
//
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurance.
//
if(prevDec->isDefined())
{
// Then this function already has a body.
error(location, "function already has a body", function->getName().c_str());
recover();
}
prevDec->setDefined();
//
// Overload the unique ID of the definition to be the same unique ID as the declaration.
// Eventually we will probably want to have only a single definition and just swap the
// arguments to be the definition's arguments.
//
function->setUniqueId(prevDec->getUniqueId());
// Raise error message if main function takes any parameters or return anything other than void
if(function->getName() == "main")
{
if(function->getParamCount() > 0)
{
error(location, "function cannot take any parameter(s)", function->getName().c_str());
recover();
}
if(function->getReturnType().getBasicType() != EbtVoid)
{
error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value");
recover();
}
}
//
// Remember the return type for later checking for RETURN statements.
//
mCurrentFunctionType = &(prevDec->getReturnType());
mFunctionReturnsValue = false;
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate *paramNodes = new TIntermAggregate;
for(size_t i = 0; i < function->getParamCount(); i++)
{
const TParameter ¶m = function->getParam(i);
if(param.name != 0)
{
TVariable *variable = new TVariable(param.name, *param.type);
//
// Insert the parameters with name in the symbol table.
//
if(!symbolTable.declare(variable))
{
error(location, "redefinition", variable->getName().c_str());
recover();
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
continue;
}
//
// Add the parameter to the HIL
//
TIntermSymbol *symbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), location);
paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
}
else
{
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
}
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
*aggregateOut = paramNodes;
setLoopNestingLevel(0);
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
//
// We don't know at this point whether this is a function definition or a prototype.
// The definition production code will check for redefinitions.
// In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
//
// Return types and parameter qualifiers must match in all redeclarations, so those are checked
// here.
//
TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
if(getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
{
// With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
// Therefore overloading or redefining builtin functions is an error.
error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str());
}
else if(prevDec)
{
if(prevDec->getReturnType() != function->getReturnType())
{
error(location, "overloaded functions must have the same return type",
function->getReturnType().getBasicString());
recover();
}
for(size_t i = 0; i < prevDec->getParamCount(); ++i)
{
if(prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier())
{
error(location, "overloaded functions must have the same parameter qualifiers",
function->getParam(i).type->getQualifierString());
recover();
}
}
}
//
// Check for previously declared variables using the same name.
//
TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
if(prevSym)
{
if(!prevSym->isFunction())
{
error(location, "redefinition", function->getName().c_str(), "function");
recover();
}
}
else
{
// Insert the unmangled name to detect potential future redefinition as a variable.
TFunction *unmangledFunction = new TFunction(NewPoolTString(function->getName().c_str()), function->getReturnType());
symbolTable.getOuterLevel()->insertUnmangled(unmangledFunction);
}
// We're at the inner scope level of the function's arguments and body statement.
// Add the function prototype to the surrounding scope instead.
symbolTable.getOuterLevel()->insert(function);
//
// If this is a redeclaration, it could also be a definition, in which case, we want to use the
// variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
return function;
}
TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
{
TPublicType publicType = publicTypeIn;
TOperator op = EOpNull;
if(publicType.userDef)
{
op = EOpConstructStruct;
}
else
{
op = TypeToConstructorOperator(TType(publicType));
if(op == EOpNull)
{
error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
recover();
publicType.type = EbtFloat;
op = EOpConstructFloat;
}
}
TString tempString;
TType type(publicType);
return new TFunction(&tempString, type, op);
}
// This function is used to test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right datatype if it is allowed and required.
//
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc &line)
{
TIntermAggregate *aggregateArguments = arguments->getAsAggregate();
if(!aggregateArguments)
{
aggregateArguments = new TIntermAggregate;
aggregateArguments->getSequence().push_back(arguments);
}
if(type->isArray())
{
// GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
// the array.
for(TIntermNode *&argNode : aggregateArguments->getSequence())
{
const TType &argType = argNode->getAsTyped()->getType();
// It has already been checked that the argument is not an array.
ASSERT(!argType.isArray());
if(!argType.sameElementType(*type))
{
error(line, "Array constructor argument has an incorrect type", "Error");
return nullptr;
}
}
}
else if(op == EOpConstructStruct)
{
const TFieldList &fields = type->getStruct()->fields();
TIntermSequence &args = aggregateArguments->getSequence();
for(size_t i = 0; i < fields.size(); i++)
{
if(args[i]->getAsTyped()->getType() != *fields[i]->type())
{
error(line, "Structure constructor arguments do not match structure fields", "Error");
recover();
return nullptr;
}
}
}
// Turn the argument list itself into a constructor
TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line);
TIntermTyped *constConstructor = foldConstConstructor(constructor, *type);
if(constConstructor)
{
return constConstructor;
}
return constructor;
}
TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
{
aggrNode->setType(type);
if (aggrNode->isConstantFoldable()) {
bool returnVal = false;
ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
if (aggrNode->getSequence().size() == 1) {
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
}
else {
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
}
if (returnVal)
return nullptr;
return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
}
return nullptr;
}
//
// This function returns the tree representation for the vector field(s) being accessed from contant vector.
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
// a constant matrix.
//
TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc &line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
ConstantUnion *unionArray;
if (tempConstantNode) {
unionArray = tempConstantNode->getUnionArrayPointer();
if (!unionArray) {
return node;
}
} else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
error(line, "Cannot offset into the vector", "Error");
recover();
return nullptr;
}
ConstantUnion* constArray = new ConstantUnion[fields.num];
int objSize = static_cast<int>(node->getType().getObjectSize());
for (int i = 0; i < fields.num; i++) {
if (fields.offsets[i] >= objSize) {
std::stringstream extraInfoStream;
extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
fields.offsets[i] = 0;
}
constArray[i] = unionArray[fields.offsets[i]];
}
TType type(node->getType().getBasicType(), node->getType().getPrecision(), EvqConstExpr, fields.num);
typedNode = intermediate.addConstantUnion(constArray, type, line);
return typedNode;
}
//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc &line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
if (index >= node->getType().getNominalSize()) {
std::stringstream extraInfoStream;
extraInfoStream << "matrix field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
index = 0;
}
if (tempConstantNode) {
ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
int size = tempConstantNode->getType().getNominalSize();
typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
} else {
error(line, "Cannot offset into the matrix", "Error");
recover();
return nullptr;
}
return typedNode;
}
//
// This function returns an element of an array accessed from a constant array. The values are retrieved from
// the symbol table and parse-tree is built for the type of the element. The input
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc &line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
TType arrayElementType = node->getType();
arrayElementType.clearArrayness();
if (index >= node->getType().getArraySize()) {
std::stringstream extraInfoStream;
extraInfoStream << "array field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
index = 0;
}
size_t arrayElementSize = arrayElementType.getObjectSize();
if (tempConstantNode) {
ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
} else {
error(line, "Cannot offset into the array", "Error");
recover();
return nullptr;
}
return typedNode;
}
//
// This function returns the value of a particular field inside a constant structure from the symbol table.
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
// function and returns the parse-tree with the values of the embedded/nested struct.
//
TIntermTyped* TParseContext::addConstStruct(const TString& identifier, TIntermTyped* node, const TSourceLoc &line)
{
const TFieldList &fields = node->getType().getStruct()->fields();
TIntermTyped *typedNode;
size_t instanceSize = 0;
TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
for(const auto &field : fields) {
if (field->name() == identifier) {
break;
} else {
instanceSize += field->type()->getObjectSize();
}
}
if (tempConstantNode) {
ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
} else {
error(line, "Cannot offset into the structure", "Error");
recover();
return nullptr;
}
return typedNode;
}
//
// Interface/uniform blocks
//
TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
{
if(reservedErrorCheck(nameLine, blockName))
recover();
if(typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
recover();
}
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
if(layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
{
recover();
}
if(blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
}
if(blockLayoutQualifier.blockStorage == EbsUnspecified)
{
blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
}
TSymbol* blockNameSymbol = new TSymbol(&blockName);
if(!symbolTable.declare(blockNameSymbol)) {
error(nameLine, "redefinition", blockName.c_str(), "interface block name");
recover();
}
// check for sampler types and apply layout qualifiers
for(const auto &field : *fieldList) {
TType* fieldType = field->type();
if(IsSampler(fieldType->getBasicType())) {
error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
recover();
}
const TQualifier qualifier = fieldType->getQualifier();
switch(qualifier)
{
case EvqGlobal:
case EvqUniform:
break;
default:
error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
recover();
break;
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
if(layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
{
recover();
}
if(fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
recover();
}
if(fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if(!fieldType->isMatrix() && (fieldType->getBasicType() != EbtStruct))
{
warning(field->line(), "extraneous layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "only has an effect on matrix types");
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
// Recursively propagate the matrix packing setting down to all block/structure members
fieldType->setMatrixPackingIfUnspecified(fieldLayoutQualifier.matrixPacking);
}
// add array index
int arraySize = 0;
if(arrayIndex)
{
if(arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
recover();
}
TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
TString symbolName = "";
int symbolId = 0;
if(!instanceName)
{
// define symbols for the members of the interface block
for(const auto &field : *fieldList)
{
TType* fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
fieldVariable->setQualifier(typeQualifier.qualifier);
if(!symbolTable.declare(fieldVariable)) {
error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
recover();
}
}
}
else
{
if(reservedErrorCheck(nameLine, *instanceName))
recover();
// add a symbol for this interface block
TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
instanceTypeDef->setQualifier(typeQualifier.qualifier);
if(!symbolTable.declare(instanceTypeDef)) {
error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
recover();
}
symbolId = instanceTypeDef->getUniqueId();
symbolName = instanceTypeDef->getName();
}
TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
aggregate->setOp(EOpDeclaration);
exitStructDeclaration();
return aggregate;
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression)
{
TIntermTyped *indexedExpression = nullptr;
if(!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if(baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ",
baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
recover();
}
TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
if(indexExpression->getQualifier() == EvqConstExpr && indexConstantUnion) // TODO: Qualifier check redundant?
{
int index = indexConstantUnion->getIConst(0);
if(index < 0)
{
std::stringstream infoStream;
infoStream << index;
std::string info = infoStream.str();
error(location, "negative index", info.c_str());
recover();
index = 0;
}
if(baseExpression->getType().getQualifier() == EvqConstExpr && baseExpression->getAsConstantUnion()) // TODO: Qualifier check redundant?
{
if(baseExpression->isArray())
{
// constant folding for arrays
indexedExpression = addConstArrayNode(index, baseExpression, location);
}
else if(baseExpression->isVector())
{
// constant folding for vectors
TVectorFields fields;
fields.num = 1;
fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
indexedExpression = addConstVectorNode(fields, baseExpression, location);
}
else if(baseExpression->isMatrix())
{
// constant folding for matrices
indexedExpression = addConstMatrixNode(index, baseExpression, location);
}
}
else
{
int safeIndex = -1;
if(baseExpression->isArray())
{
if(index >= baseExpression->getType().getArraySize())
{
std::stringstream extraInfoStream;
extraInfoStream << "array index out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(location, "", "[", extraInfo.c_str());
recover();
safeIndex = baseExpression->getType().getArraySize() - 1;
}
}
else if((baseExpression->isVector() || baseExpression->isMatrix()) &&
baseExpression->getType().getNominalSize() <= index)
{
std::stringstream extraInfoStream;
extraInfoStream << "field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(location, "", "[", extraInfo.c_str());
recover();
safeIndex = baseExpression->getType().getNominalSize() - 1;
}
// Don't modify the data of the previous constant union, because it can point
// to builtins, like gl_MaxDrawBuffers. Instead use a new sanitized object.
if(safeIndex != -1)
{
ConstantUnion *safeConstantUnion = new ConstantUnion();
safeConstantUnion->setIConst(safeIndex);
indexConstantUnion->replaceConstantUnion(safeConstantUnion);
}
indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
}
}
else
{
if(baseExpression->isInterfaceBlock())
{
error(location, "",
"[", "array indexes for interface blocks arrays must be constant integral expressions");
recover();
}
else if(baseExpression->getQualifier() == EvqFragmentOut)
{
error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
recover();
}
indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
}
if(indexedExpression == 0)
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst(0.0f);
indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConstExpr), location);
}
else if(baseExpression->isArray())
{
const TType &baseType = baseExpression->getType();
if(baseType.getStruct())
{
TType copyOfType(baseType.getStruct());
indexedExpression->setType(copyOfType);
}
else if(baseType.isInterfaceBlock())
{
TType copyOfType(baseType.getInterfaceBlock(), EvqTemporary, baseType.getLayoutQualifier(), 0);
indexedExpression->setType(copyOfType);
}
else
{
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()),
static_cast<unsigned char>(baseExpression->getSecondarySize())));
}
if(baseExpression->getType().getQualifier() == EvqConstExpr)
{
indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
}
}
else if(baseExpression->isMatrix())
{
TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
qualifier, static_cast<unsigned char>(baseExpression->getSecondarySize())));
}
else if(baseExpression->isVector())
{
TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
}
else
{
indexedExpression->setType(baseExpression->getType());
}
return indexedExpression;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation,
const TString &fieldString, const TSourceLoc &fieldLocation)
{
TIntermTyped *indexedExpression = nullptr;
if(baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
recover();
}
if(baseExpression->isVector())
{
TVectorFields fields;
if(!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
{
fields.num = 1;
fields.offsets[0] = 0;
recover();
}
if(baseExpression->getAsConstantUnion())
{
// constant folding for vector fields
indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
if(indexedExpression == 0)
{
recover();
indexedExpression = baseExpression;
}
}
else
{
TString vectorString = fieldString;
TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation);
indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
baseExpression->getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary, (unsigned char)vectorString.size()));
}
}
else if(baseExpression->getBasicType() == EbtStruct)
{
bool fieldFound = false;
const TFieldList &fields = baseExpression->getType().getStruct()->fields();
if(fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for(i = 0; i < fields.size(); ++i)
{
if(fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if(fieldFound)
{
if(baseExpression->getType().getQualifier() == EvqConstExpr)
{
indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
if(indexedExpression == 0)
{
recover();
indexedExpression = baseExpression;
}
else
{
indexedExpression->setType(*fields[i]->type());
// change the qualifier of the return type, not of the structure field
// as the structure definition is shared between various structures.
indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
}
}
else
{
TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
index->setLine(fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
indexedExpression->setType(*fields[i]->type());
}
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else if(baseExpression->isInterfaceBlock())
{
bool fieldFound = false;
const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
if(fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for(i = 0; i < fields.size(); ++i)
{
if(fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if(fieldFound)
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
dotLocation);
indexedExpression->setType(*fields[i]->type());
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else
{
if(mShaderVersion < 300)
{
error(dotLocation, " field selection requires structure or vector on left hand side",
fieldString.c_str());
}
else
{
error(dotLocation,
" field selection requires structure, vector, or interface block on left hand side",
fieldString.c_str());
}
recover();
indexedExpression = baseExpression;
}
return indexedExpression;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1;
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if(qualifierType == "shared")
{
qualifier.blockStorage = EbsShared;
}
else if(qualifierType == "packed")
{
qualifier.blockStorage = EbsPacked;
}
else if(qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if(qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if(qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if(qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
recover();
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
recover();
}
return qualifier;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1; // -1 isn't a valid location, it means the value isn't set. Negative values are checked lower in this function.
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if (qualifierType != "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
recover();
}
else
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
recover();
}
else
{
qualifier.location = intValue;
}
}
return qualifier;
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
{
TLayoutQualifier joinedQualifier = leftQualifier;
if (rightQualifier.location != -1)
{
joinedQualifier.location = rightQualifier.location;
}
if(rightQualifier.matrixPacking != EmpUnspecified)
{
joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
}
if(rightQualifier.blockStorage != EbsUnspecified)
{
joinedQualifier.blockStorage = rightQualifier.blockStorage;
}
return joinedQualifier;
}
TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
const TSourceLoc &storageLoc, TQualifier storageQualifier)
{
TQualifier mergedQualifier = EvqSmoothIn;
if(storageQualifier == EvqFragmentIn) {
if(interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothIn;
else if(interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else UNREACHABLE(interpolationQualifier);
}
else if(storageQualifier == EvqCentroidIn) {
if(interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidIn;
else if(interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else UNREACHABLE(interpolationQualifier);
}
else if(storageQualifier == EvqVertexOut) {
if(interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothOut;
else if(interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else UNREACHABLE(interpolationQualifier);
}
else if(storageQualifier == EvqCentroidOut) {
if(interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidOut;
else if(interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else UNREACHABLE(interpolationQualifier);
}
else {
error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier));
recover();
mergedQualifier = storageQualifier;
}
TPublicType type;
type.setBasic(EbtVoid, mergedQualifier, storageLoc);
return type;
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList)
{
if(voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type))
{
recover();
}
for(const auto &field : *fieldList)
{
//
// Careful not to replace already known aspects of type, like array-ness
//
TType *type = field->type();
type->setBasicType(typeSpecifier.type);
type->setNominalSize(typeSpecifier.primarySize);
type->setSecondarySize(typeSpecifier.secondarySize);
type->setPrecision(typeSpecifier.precision);
type->setQualifier(typeSpecifier.qualifier);
type->setLayoutQualifier(typeSpecifier.layoutQualifier);
// don't allow arrays of arrays
if(type->isArray())
{
if(arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
recover();
}
if(typeSpecifier.array)
type->setArraySize(typeSpecifier.arraySize);
if(typeSpecifier.userDef)
{
type->setStruct(typeSpecifier.userDef->getStruct());
}
if(structNestingErrorCheck(typeSpecifier.line, *field))
{
recover();
}
}
return fieldList;
}
TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine,
const TString *structName, TFieldList *fieldList)
{
TStructure *structure = new TStructure(structName, fieldList);
TType *structureType = new TType(structure);
// Store a bool in the struct if we're at global scope, to allow us to
// skip the local struct scoping workaround in HLSL.
structure->setUniqueId(TSymbolTableLevel::nextUniqueId());
structure->setAtGlobalScope(symbolTable.atGlobalLevel());
if(!structName->empty())
{
if(reservedErrorCheck(nameLine, *structName))
{
recover();
}
TVariable *userTypeDef = new TVariable(structName, *structureType, true);
if(!symbolTable.declare(userTypeDef))
{
error(nameLine, "redefinition", structName->c_str(), "struct");
recover();
}
}
// ensure we do not specify any storage qualifiers on the struct members
for(const auto &field : *fieldList)
{
const TQualifier qualifier = field->type()->getQualifier();
switch(qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field->line(), "invalid qualifier on struct member", getQualifierString(qualifier));
recover();
break;
}
}
TPublicType publicType;
publicType.setBasic(EbtStruct, EvqTemporary, structLine);
publicType.userDef = structureType;
exitStructDeclaration();
return publicType;
}
bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString& identifier)
{
++mStructNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// They aren't allowed in GLSL either, but we need to detect this here
// so we don't rely on the GLSL compiler to catch it.
if (mStructNestingLevel > 1) {
error(line, "", "Embedded struct definitions are not allowed");
return true;
}
return false;
}
void TParseContext::exitStructDeclaration()
{
--mStructNestingLevel;
}
bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field)
{
static const int kWebGLMaxStructNesting = 4;
if(field.type()->getBasicType() != EbtStruct)
{
return false;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if(1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
{
std::stringstream reasonStream;
reasonStream << "Reference of struct type "
<< field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of "
<< kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str(), "");
return true;
}
return false;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType)
{
if(child == nullptr)
{
return nullptr;
}
switch(op)
{
case EOpLogicalNot:
if(child->getBasicType() != EbtBool ||
child->isMatrix() ||
child->isArray() ||
child->isVector())
{
return nullptr;
}
break;
case EOpBitwiseNot:
if((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() ||
child->isArray())
{
return nullptr;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
if(child->getBasicType() == EbtStruct ||
child->getBasicType() == EbtBool ||
child->isArray())
{
return nullptr;
}
// Operators for built-ins are already type checked against their prototype.
default:
break;
}
return intermediate.addUnaryMath(op, child, loc, funcReturnType);
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
if(node == nullptr)
{
unaryOpError(loc, getOperatorString(op), child->getCompleteString());
recover();
return child;
}
return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
if(lValueErrorCheck(loc, getOperatorString(op), child))
recover();
return addUnaryMath(op, child, loc);
}
bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
{
if(left->isArray() || right->isArray())
{
if(mShaderVersion < 300)
{
error(loc, "Invalid operation for arrays", getOperatorString(op));
return false;
}
if(left->isArray() != right->isArray())
{
error(loc, "array / non-array mismatch", getOperatorString(op));
return false;
}
switch(op)
{
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
break;
default:
error(loc, "Invalid operation for arrays", getOperatorString(op));
return false;
}
// At this point, size of implicitly sized arrays should be resolved.
if(left->getArraySize() != right->getArraySize())
{
error(loc, "array size mismatch", getOperatorString(op));
return false;
}
}
// Check ops which require integer / ivec parameters
bool isBitShift = false;
switch(op)
{
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
// Unsigned can be bit-shifted by signed and vice versa, but we need to
// check that the basic type is an integer type.
isBitShift = true;
if(!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
{
return false;
}
break;
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
// It is enough to check the type of only one operand, since later it
// is checked that the operand types match.
if(!IsInteger(left->getBasicType()))
{
return false;
}
break;
default:
break;
}
// GLSL ES 1.00 and 3.00 do not support implicit type casting.
// So the basic type should usually match.
if(!isBitShift && left->getBasicType() != right->getBasicType())
{
return false;
}
// Check that type sizes match exactly on ops that require that.
// Also check restrictions for structs that contain arrays or samplers.
switch(op)
{
case EOpAssign:
case EOpInitialize:
case EOpEqual:
case EOpNotEqual:
// ESSL 1.00 sections 5.7, 5.8, 5.9
if(mShaderVersion < 300 && left->getType().isStructureContainingArrays())
{
error(loc, "undefined operation for structs containing arrays", getOperatorString(op));
return false;
}
// Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
// we interpret the spec so that this extends to structs containing samplers,
// similarly to ESSL 1.00 spec.
if((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingSamplers())
{
error(loc, "undefined operation for structs containing samplers", getOperatorString(op));
return false;
}
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if((left->getNominalSize() != right->getNominalSize()) ||
(left->getSecondarySize() != right->getSecondarySize()))
{
return false;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpIMod:
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
if((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
{
return false;
}
// Are the sizes compatible?
if(left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize())
{
// If the nominal sizes of operands do not match:
// One of them must be a scalar.
if(!left->isScalar() && !right->isScalar())
return false;
// In the case of compound assignment other than multiply-assign,
// the right side needs to be a scalar. Otherwise a vector/matrix
// would be assigned to a scalar. A scalar can't be shifted by a
// vector either.
if(!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
return false;
}
break;
default:
break;
}
return true;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc)
{
TBasicType switchType = init->getBasicType();
if((switchType != EbtInt && switchType != EbtUInt) ||
init->isMatrix() ||
init->isArray() ||
init->isVector())
{
error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch");
recover();
return nullptr;
}
if(statementList)
{
if(!ValidateSwitch::validate(switchType, this, statementList, loc))
{
recover();
return nullptr;
}
}
TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
if(node == nullptr)
{
error(loc, "erroneous switch statement", "switch");
recover();
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
if(mSwitchNestingLevel == 0)
{
error(loc, "case labels need to be inside switch statements", "case");
recover();
return nullptr;
}
if(condition == nullptr)
{
error(loc, "case label must have a condition", "case");
recover();
return nullptr;
}
if((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
condition->isMatrix() ||
condition->isArray() ||
condition->isVector())
{
error(condition->getLine(), "case label must be a scalar integer", "case");
recover();
}
TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
if(conditionConst == nullptr)
{
error(condition->getLine(), "case label must be constant", "case");
recover();
}
TIntermCase *node = intermediate.addCase(condition, loc);
if(node == nullptr)
{
error(loc, "erroneous case statement", "case");
recover();
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
if(mSwitchNestingLevel == 0)
{
error(loc, "default labels need to be inside switch statements", "default");
recover();
return nullptr;
}
TIntermCase *node = intermediate.addCase(nullptr, loc);
if(node == nullptr)
{
error(loc, "erroneous default statement", "default");
recover();
return nullptr;
}
return node;
}
TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
{
if(binaryOpCommonCheck(op, left, right, loc))
{
return intermediate.addAssign(op, left, right, loc);
}
return nullptr;
}
TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
{
TIntermTyped *node = createAssign(op, left, right, loc);
if(node == nullptr)
{
assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
recover();
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right,
const TSourceLoc &loc)
{
if(!binaryOpCommonCheck(op, left, right, loc))
return nullptr;
switch(op)
{
case EOpEqual:
case EOpNotEqual:
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
ASSERT(!left->isArray() && !right->isArray());
if(left->isMatrix() || left->isVector() ||
left->getBasicType() == EbtStruct)
{
return nullptr;
}
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
ASSERT(!left->isArray() && !right->isArray());
if(left->getBasicType() != EbtBool ||
left->isMatrix() || left->isVector())
{
return nullptr;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
ASSERT(!left->isArray() && !right->isArray());
if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
{
return nullptr;
}
break;
case EOpIMod:
ASSERT(!left->isArray() && !right->isArray());
// Note that this is only for the % operator, not for mod()
if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
{
return nullptr;
}
break;
// Note that for bitwise ops, type checking is done in promote() to
// share code between ops and compound assignment
default:
break;
}
return intermediate.addBinaryMath(op, left, right, loc);
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if(node == 0)
{
binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
recover();
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if(node == 0)
{
binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConstExpr), loc);
}
return node;
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
switch(op)
{
case EOpContinue:
if(mLoopNestingLevel <= 0)
{
error(loc, "continue statement only allowed in loops", "");
recover();
}
break;
case EOpBreak:
if(mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
{
error(loc, "break statement only allowed in loops and switch statements", "");
recover();
}
break;
case EOpReturn:
if(mCurrentFunctionType->getBasicType() != EbtVoid)
{
error(loc, "non-void function must return a value", "return");
recover();
}
break;
default:
// No checks for discard
break;
}
return intermediate.addBranch(op, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc)
{
ASSERT(op == EOpReturn);
mFunctionReturnsValue = true;
if(mCurrentFunctionType->getBasicType() == EbtVoid)
{
error(loc, "void function cannot return a value", "return");
recover();
}
else if(*mCurrentFunctionType != returnValue->getType())
{
error(loc, "function return is not matching type:", "return");
recover();
}
return intermediate.addBranch(op, returnValue, loc);
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError)
{
*fatalError = false;
TOperator op = fnCall->getBuiltInOp();
TIntermTyped *callNode = nullptr;
if(thisNode != nullptr)
{
ConstantUnion *unionArray = new ConstantUnion[1];
int arraySize = 0;
TIntermTyped *typedThis = thisNode->getAsTyped();
if(fnCall->getName() != "length")
{
error(loc, "invalid method", fnCall->getName().c_str());
recover();
}
else if(paramNode != nullptr)
{
error(loc, "method takes no parameters", "length");
recover();
}
else if(typedThis == nullptr || !typedThis->isArray())
{
error(loc, "length can only be called on arrays", "length");
recover();
}
else
{
arraySize = typedThis->getArraySize();
}
unionArray->setIConst(arraySize);
callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), loc);
}
else if(op != EOpNull)
{
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid, EbpUndefined); // use this to get the type back
if(!constructorErrorCheck(loc, paramNode, *fnCall, op, &type))
{
//
// It's a constructor, of type 'type'.
//
callNode = addConstructor(paramNode, &type, op, fnCall, loc);
}
if(callNode == nullptr)
{
recover();
callNode = intermediate.setAggregateOperator(nullptr, op, loc);
}
}
else
{
//
// Not a constructor. Find it in the symbol table.
//
const TFunction *fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, fnCall, &builtIn);
if(fnCandidate)
{
//
// A declared function.
//
if(builtIn && !fnCandidate->getExtension().empty() &&
extensionErrorCheck(loc, fnCandidate->getExtension()))
{
recover();
}
op = fnCandidate->getBuiltInOp();
if(builtIn && op != EOpNull)
{
//
// A function call mapped to a built-in operation.
//
if(fnCandidate->getParamCount() == 1)
{
//
// Treat it like a built-in unary operator.
//
callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType());
if(callNode == nullptr)
{
std::stringstream extraInfoStream;
extraInfoStream << "built in unary operator function. Type: "
<< static_cast<TIntermTyped*>(paramNode)->getCompleteString();
std::string extraInfo = extraInfoStream.str();
error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str());
*fatalError = true;
return nullptr;
}
}
else
{
TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc);
aggregate->setType(fnCandidate->getReturnType());
// Some built-in functions have out parameters too.
functionCallLValueErrorCheck(fnCandidate, aggregate);
callNode = aggregate;
if(fnCandidate->getParamCount() == 2)
{
TIntermSequence ¶meters = paramNode->getAsAggregate()->getSequence();
TIntermTyped *left = parameters[0]->getAsTyped();
TIntermTyped *right = parameters[1]->getAsTyped();
TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
if (leftTempConstant && rightTempConstant)
{
TIntermTyped *typedReturnNode = leftTempConstant->fold(op, rightTempConstant, infoSink());
if(typedReturnNode)
{
callNode = typedReturnNode;
}
}
}
}
}
else
{
// This is a real function call
TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
aggregate->setType(fnCandidate->getReturnType());
// this is how we know whether the given function is a builtIn function or a user defined function
// if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also
// if builtIn == true, it's definitely a builtIn function with EOpNull
if(!builtIn)
aggregate->setUserDefined();
aggregate->setName(fnCandidate->getMangledName());
callNode = aggregate;
functionCallLValueErrorCheck(fnCandidate, aggregate);
}
}
else
{
// error message was put out by findFunction()
// Put on a dummy node for error recovery
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst(0.0f);
callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConstExpr), loc);
recover();
}
}
delete fnCall;
return callNode;
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc)
{
if(boolErrorCheck(loc, cond))
recover();
if(trueBlock->getType() != falseBlock->getType())
{
binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString());
recover();
return falseBlock;
}
// ESSL1 sections 5.2 and 5.7:
// ESSL3 section 5.7:
// Ternary operator is not among the operators allowed for structures/arrays.
if(trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct)
{
error(loc, "ternary operator is not allowed for structures or arrays", ":");
recover();
return falseBlock;
}
return intermediate.addSelection(cond, trueBlock, falseBlock, loc);
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(int count, const char* const string[], const int length[],
TParseContext* context) {
if ((count == 0) || !string)
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}