普通文本  |  2550行  |  86.95 KB

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/s390/frames-s390.h"

namespace v8 {
namespace internal {
namespace compiler {

enum class OperandMode : uint32_t {
  kNone = 0u,
  // Immediate mode
  kShift32Imm = 1u << 0,
  kShift64Imm = 1u << 1,
  kInt32Imm = 1u << 2,
  kInt32Imm_Negate = 1u << 3,
  kUint32Imm = 1u << 4,
  kInt20Imm = 1u << 5,
  kUint12Imm = 1u << 6,
  // Instr format
  kAllowRRR = 1u << 7,
  kAllowRM = 1u << 8,
  kAllowRI = 1u << 9,
  kAllowRRI = 1u << 10,
  kAllowRRM = 1u << 11,
  // Useful combination
  kAllowImmediate = kAllowRI | kAllowRRI,
  kAllowMemoryOperand = kAllowRM | kAllowRRM,
  kAllowDistinctOps = kAllowRRR | kAllowRRI | kAllowRRM,
  kBitWiseCommonMode = kAllowRI,
  kArithmeticCommonMode = kAllowRM | kAllowRI
};

typedef base::Flags<OperandMode, uint32_t> OperandModes;
DEFINE_OPERATORS_FOR_FLAGS(OperandModes);
OperandModes immediateModeMask =
    OperandMode::kShift32Imm | OperandMode::kShift64Imm |
    OperandMode::kInt32Imm | OperandMode::kInt32Imm_Negate |
    OperandMode::kUint32Imm | OperandMode::kInt20Imm;

#define AndOperandMode                                              \
  ((OperandMode::kBitWiseCommonMode | OperandMode::kUint32Imm |     \
    OperandMode::kAllowRM | (CpuFeatures::IsSupported(DISTINCT_OPS) \
                                 ? OperandMode::kAllowRRR           \
                                 : OperandMode::kBitWiseCommonMode)))

#define OrOperandMode AndOperandMode
#define XorOperandMode AndOperandMode

#define ShiftOperandMode                                         \
  ((OperandMode::kBitWiseCommonMode | OperandMode::kShift64Imm | \
    (CpuFeatures::IsSupported(DISTINCT_OPS)                      \
         ? OperandMode::kAllowRRR                                \
         : OperandMode::kBitWiseCommonMode)))

#define AddOperandMode                                            \
  ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm | \
    (CpuFeatures::IsSupported(DISTINCT_OPS)                       \
         ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI)      \
         : OperandMode::kArithmeticCommonMode)))
#define SubOperandMode                                                   \
  ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm_Negate | \
    (CpuFeatures::IsSupported(DISTINCT_OPS)                              \
         ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI)             \
         : OperandMode::kArithmeticCommonMode)))
#define MulOperandMode \
  (OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm)

// Adds S390-specific methods for generating operands.
class S390OperandGenerator final : public OperandGenerator {
 public:
  explicit S390OperandGenerator(InstructionSelector* selector)
      : OperandGenerator(selector) {}

  InstructionOperand UseOperand(Node* node, OperandModes mode) {
    if (CanBeImmediate(node, mode)) {
      return UseImmediate(node);
    }
    return UseRegister(node);
  }

  InstructionOperand UseAnyExceptImmediate(Node* node) {
    if (NodeProperties::IsConstant(node))
      return UseRegister(node);
    else
      return Use(node);
  }

  int64_t GetImmediate(Node* node) {
    if (node->opcode() == IrOpcode::kInt32Constant)
      return OpParameter<int32_t>(node);
    else if (node->opcode() == IrOpcode::kInt64Constant)
      return OpParameter<int64_t>(node);
    else
      UNIMPLEMENTED();
    return 0L;
  }

  bool CanBeImmediate(Node* node, OperandModes mode) {
    int64_t value;
    if (node->opcode() == IrOpcode::kInt32Constant)
      value = OpParameter<int32_t>(node);
    else if (node->opcode() == IrOpcode::kInt64Constant)
      value = OpParameter<int64_t>(node);
    else
      return false;
    return CanBeImmediate(value, mode);
  }

  bool CanBeImmediate(int64_t value, OperandModes mode) {
    if (mode & OperandMode::kShift32Imm)
      return 0 <= value && value < 32;
    else if (mode & OperandMode::kShift64Imm)
      return 0 <= value && value < 64;
    else if (mode & OperandMode::kInt32Imm)
      return is_int32(value);
    else if (mode & OperandMode::kInt32Imm_Negate)
      return is_int32(-value);
    else if (mode & OperandMode::kUint32Imm)
      return is_uint32(value);
    else if (mode & OperandMode::kInt20Imm)
      return is_int20(value);
    else if (mode & OperandMode::kUint12Imm)
      return is_uint12(value);
    else
      return false;
  }

  bool CanBeMemoryOperand(InstructionCode opcode, Node* user, Node* input,
                          int effect_level) {
    if (input->opcode() != IrOpcode::kLoad ||
        !selector()->CanCover(user, input)) {
      return false;
    }

    if (effect_level != selector()->GetEffectLevel(input)) {
      return false;
    }

    MachineRepresentation rep =
        LoadRepresentationOf(input->op()).representation();
    switch (opcode) {
      case kS390_Cmp64:
      case kS390_LoadAndTestWord64:
        return rep == MachineRepresentation::kWord64 || IsAnyTagged(rep);
      case kS390_LoadAndTestWord32:
      case kS390_Cmp32:
        return rep == MachineRepresentation::kWord32;
      default:
        break;
    }
    return false;
  }

  AddressingMode GenerateMemoryOperandInputs(Node* index, Node* base,
                                             Node* displacement,
                                             DisplacementMode displacement_mode,
                                             InstructionOperand inputs[],
                                             size_t* input_count) {
    AddressingMode mode = kMode_MRI;
    if (base != nullptr) {
      inputs[(*input_count)++] = UseRegister(base);
      if (index != nullptr) {
        inputs[(*input_count)++] = UseRegister(index);
        if (displacement != nullptr) {
          inputs[(*input_count)++] = displacement_mode
                                         ? UseNegatedImmediate(displacement)
                                         : UseImmediate(displacement);
          mode = kMode_MRRI;
        } else {
          mode = kMode_MRR;
        }
      } else {
        if (displacement == nullptr) {
          mode = kMode_MR;
        } else {
          inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
                                         ? UseNegatedImmediate(displacement)
                                         : UseImmediate(displacement);
          mode = kMode_MRI;
        }
      }
    } else {
      DCHECK_NOT_NULL(index);
      inputs[(*input_count)++] = UseRegister(index);
      if (displacement != nullptr) {
        inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
                                       ? UseNegatedImmediate(displacement)
                                       : UseImmediate(displacement);
        mode = kMode_MRI;
      } else {
        mode = kMode_MR;
      }
    }
    return mode;
  }

  AddressingMode GetEffectiveAddressMemoryOperand(
      Node* operand, InstructionOperand inputs[], size_t* input_count,
      OperandModes immediate_mode = OperandMode::kInt20Imm) {
#if V8_TARGET_ARCH_S390X
    BaseWithIndexAndDisplacement64Matcher m(operand,
                                            AddressOption::kAllowInputSwap);
#else
    BaseWithIndexAndDisplacement32Matcher m(operand,
                                            AddressOption::kAllowInputSwap);
#endif
    DCHECK(m.matches());
    if ((m.displacement() == nullptr ||
         CanBeImmediate(m.displacement(), immediate_mode))) {
      DCHECK(m.scale() == 0);
      return GenerateMemoryOperandInputs(m.index(), m.base(), m.displacement(),
                                         m.displacement_mode(), inputs,
                                         input_count);
    } else {
      inputs[(*input_count)++] = UseRegister(operand->InputAt(0));
      inputs[(*input_count)++] = UseRegister(operand->InputAt(1));
      return kMode_MRR;
    }
  }

  bool CanBeBetterLeftOperand(Node* node) const {
    return !selector()->IsLive(node);
  }

  MachineRepresentation GetRepresentation(Node* node) {
    return sequence()->GetRepresentation(selector()->GetVirtualRegister(node));
  }

  bool Is64BitOperand(Node* node) {
    return MachineRepresentation::kWord64 == GetRepresentation(node);
  }
};

namespace {

bool S390OpcodeOnlySupport12BitDisp(ArchOpcode opcode) {
  switch (opcode) {
    case kS390_CmpFloat:
    case kS390_CmpDouble:
      return true;
    default:
      return false;
  }
}

bool S390OpcodeOnlySupport12BitDisp(InstructionCode op) {
  ArchOpcode opcode = ArchOpcodeField::decode(op);
  return S390OpcodeOnlySupport12BitDisp(opcode);
}

#define OpcodeImmMode(op)                                       \
  (S390OpcodeOnlySupport12BitDisp(op) ? OperandMode::kUint12Imm \
                                      : OperandMode::kInt20Imm)

ArchOpcode SelectLoadOpcode(Node* node) {
  NodeMatcher m(node);
  DCHECK(m.IsLoad());
  LoadRepresentation load_rep = LoadRepresentationOf(node->op());
  ArchOpcode opcode = kArchNop;
  switch (load_rep.representation()) {
    case MachineRepresentation::kFloat32:
      opcode = kS390_LoadFloat32;
      break;
    case MachineRepresentation::kFloat64:
      opcode = kS390_LoadDouble;
      break;
    case MachineRepresentation::kBit:  // Fall through.
    case MachineRepresentation::kWord8:
      opcode = load_rep.IsSigned() ? kS390_LoadWordS8 : kS390_LoadWordU8;
      break;
    case MachineRepresentation::kWord16:
      opcode = load_rep.IsSigned() ? kS390_LoadWordS16 : kS390_LoadWordU16;
      break;
#if !V8_TARGET_ARCH_S390X
    case MachineRepresentation::kTaggedSigned:   // Fall through.
    case MachineRepresentation::kTaggedPointer:  // Fall through.
    case MachineRepresentation::kTagged:         // Fall through.
#endif
    case MachineRepresentation::kWord32:
      opcode = kS390_LoadWordU32;
      break;
#if V8_TARGET_ARCH_S390X
    case MachineRepresentation::kTaggedSigned:   // Fall through.
    case MachineRepresentation::kTaggedPointer:  // Fall through.
    case MachineRepresentation::kTagged:         // Fall through.
    case MachineRepresentation::kWord64:
      opcode = kS390_LoadWord64;
      break;
#else
    case MachineRepresentation::kWord64:  // Fall through.
#endif
    case MachineRepresentation::kSimd128:  // Fall through.
    case MachineRepresentation::kSimd1x4:  // Fall through.
    case MachineRepresentation::kSimd1x8:  // Fall through.
    case MachineRepresentation::kSimd1x16:  // Fall through.
    case MachineRepresentation::kNone:
    default:
      UNREACHABLE();
  }
  return opcode;
}

bool AutoZeroExtendsWord32ToWord64(Node* node) {
#if !V8_TARGET_ARCH_S390X
  return true;
#else
  switch (node->opcode()) {
    case IrOpcode::kInt32Div:
    case IrOpcode::kUint32Div:
    case IrOpcode::kInt32MulHigh:
    case IrOpcode::kUint32MulHigh:
    case IrOpcode::kInt32Mod:
    case IrOpcode::kUint32Mod:
    case IrOpcode::kWord32Clz:
    case IrOpcode::kWord32Popcnt:
      return true;
    default:
      return false;
  }
  return false;
#endif
}

bool ZeroExtendsWord32ToWord64(Node* node) {
#if !V8_TARGET_ARCH_S390X
  return true;
#else
  switch (node->opcode()) {
    case IrOpcode::kInt32Add:
    case IrOpcode::kInt32Sub:
    case IrOpcode::kWord32And:
    case IrOpcode::kWord32Or:
    case IrOpcode::kWord32Xor:
    case IrOpcode::kWord32Shl:
    case IrOpcode::kWord32Shr:
    case IrOpcode::kWord32Sar:
    case IrOpcode::kInt32Mul:
    case IrOpcode::kWord32Ror:
    case IrOpcode::kInt32Div:
    case IrOpcode::kUint32Div:
    case IrOpcode::kInt32MulHigh:
    case IrOpcode::kInt32Mod:
    case IrOpcode::kUint32Mod:
    case IrOpcode::kWord32Popcnt:
      return true;
    // TODO(john.yan): consider the following case to be valid
    // case IrOpcode::kWord32Equal:
    // case IrOpcode::kInt32LessThan:
    // case IrOpcode::kInt32LessThanOrEqual:
    // case IrOpcode::kUint32LessThan:
    // case IrOpcode::kUint32LessThanOrEqual:
    // case IrOpcode::kUint32MulHigh:
    //   // These 32-bit operations implicitly zero-extend to 64-bit on x64, so
    //   the
    //   // zero-extension is a no-op.
    //   return true;
    // case IrOpcode::kProjection: {
    //   Node* const value = node->InputAt(0);
    //   switch (value->opcode()) {
    //     case IrOpcode::kInt32AddWithOverflow:
    //     case IrOpcode::kInt32SubWithOverflow:
    //     case IrOpcode::kInt32MulWithOverflow:
    //       return true;
    //     default:
    //       return false;
    //   }
    // }
    case IrOpcode::kLoad: {
      LoadRepresentation load_rep = LoadRepresentationOf(node->op());
      switch (load_rep.representation()) {
        case MachineRepresentation::kWord32:
          return true;
        default:
          return false;
      }
    }
    default:
      return false;
  }
#endif
}

void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
  S390OperandGenerator g(selector);
  selector->Emit(opcode, g.DefineAsRegister(node),
                 g.UseRegister(node->InputAt(0)));
}

void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
  S390OperandGenerator g(selector);
  selector->Emit(opcode, g.DefineAsRegister(node),
                 g.UseRegister(node->InputAt(0)),
                 g.UseRegister(node->InputAt(1)));
}

#if V8_TARGET_ARCH_S390X
void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node,
              OperandModes operand_mode) {
  S390OperandGenerator g(selector);
  selector->Emit(opcode, g.DefineAsRegister(node),
                 g.UseRegister(node->InputAt(0)),
                 g.UseOperand(node->InputAt(1), operand_mode));
}

void VisitTryTruncateDouble(InstructionSelector* selector, ArchOpcode opcode,
                            Node* node) {
  S390OperandGenerator g(selector);
  InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
  InstructionOperand outputs[2];
  size_t output_count = 0;
  outputs[output_count++] = g.DefineAsRegister(node);

  Node* success_output = NodeProperties::FindProjection(node, 1);
  if (success_output) {
    outputs[output_count++] = g.DefineAsRegister(success_output);
  }

  selector->Emit(opcode, output_count, outputs, 1, inputs);
}
#endif

// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
                InstructionCode opcode, OperandModes operand_mode,
                FlagsContinuation* cont) {
  S390OperandGenerator g(selector);
  Matcher m(node);
  Node* left = m.left().node();
  Node* right = m.right().node();
  InstructionOperand inputs[4];
  size_t input_count = 0;
  InstructionOperand outputs[2];
  size_t output_count = 0;

  // TODO(turbofan): match complex addressing modes.
  if (left == right) {
    // If both inputs refer to the same operand, enforce allocating a register
    // for both of them to ensure that we don't end up generating code like
    // this:
    //
    //   mov rax, [rbp-0x10]
    //   add rax, [rbp-0x10]
    //   jo label
    InstructionOperand const input = g.UseRegister(left);
    inputs[input_count++] = input;
    inputs[input_count++] = input;
  } else if (g.CanBeImmediate(right, operand_mode)) {
    inputs[input_count++] = g.UseRegister(left);
    inputs[input_count++] = g.UseImmediate(right);
  } else {
    if (node->op()->HasProperty(Operator::kCommutative) &&
        g.CanBeBetterLeftOperand(right)) {
      std::swap(left, right);
    }
    inputs[input_count++] = g.UseRegister(left);
    inputs[input_count++] = g.UseRegister(right);
  }

  if (cont->IsBranch()) {
    inputs[input_count++] = g.Label(cont->true_block());
    inputs[input_count++] = g.Label(cont->false_block());
  }

  if (cont->IsDeoptimize()) {
    // If we can deoptimize as a result of the binop, we need to make sure that
    // the deopt inputs are not overwritten by the binop result. One way
    // to achieve that is to declare the output register as same-as-first.
    outputs[output_count++] = g.DefineSameAsFirst(node);
  } else {
    outputs[output_count++] = g.DefineAsRegister(node);
  }
  if (cont->IsSet()) {
    outputs[output_count++] = g.DefineAsRegister(cont->result());
  }

  DCHECK_NE(0u, input_count);
  DCHECK_NE(0u, output_count);
  DCHECK_GE(arraysize(inputs), input_count);
  DCHECK_GE(arraysize(outputs), output_count);

  opcode = cont->Encode(opcode);
  if (cont->IsDeoptimize()) {
    selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
                             cont->kind(), cont->reason(), cont->frame_state());
  } else if (cont->IsTrap()) {
    inputs[input_count++] = g.UseImmediate(cont->trap_id());
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  } else {
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  }
}

// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode,
                OperandModes operand_mode) {
  FlagsContinuation cont;
  VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}

void VisitBin32op(InstructionSelector* selector, Node* node,
                  InstructionCode opcode, OperandModes operand_mode,
                  FlagsContinuation* cont) {
  S390OperandGenerator g(selector);
  Int32BinopMatcher m(node);
  Node* left = m.left().node();
  Node* right = m.right().node();
  InstructionOperand inputs[8];
  size_t input_count = 0;
  InstructionOperand outputs[2];
  size_t output_count = 0;

  // match left of TruncateInt64ToInt32
  if (m.left().IsTruncateInt64ToInt32() && selector->CanCover(node, left)) {
    left = left->InputAt(0);
  }
  // match right of TruncateInt64ToInt32
  if (m.right().IsTruncateInt64ToInt32() && selector->CanCover(node, right)) {
    right = right->InputAt(0);
  }

#if V8_TARGET_ARCH_S390X
  if ((ZeroExtendsWord32ToWord64(right) || g.CanBeBetterLeftOperand(right)) &&
      node->op()->HasProperty(Operator::kCommutative) &&
      !g.CanBeImmediate(right, operand_mode)) {
    std::swap(left, right);
  }
#else
  if (node->op()->HasProperty(Operator::kCommutative) &&
      !g.CanBeImmediate(right, operand_mode) &&
      (g.CanBeBetterLeftOperand(right))) {
    std::swap(left, right);
  }
#endif

  // left is always register
  InstructionOperand const left_input = g.UseRegister(left);
  inputs[input_count++] = left_input;

  // TODO(turbofan): match complex addressing modes.
  if (left == right) {
    // If both inputs refer to the same operand, enforce allocating a register
    // for both of them to ensure that we don't end up generating code like
    // this:
    //
    //   mov rax, [rbp-0x10]
    //   add rax, [rbp-0x10]
    //   jo label
    inputs[input_count++] = left_input;
    // Can only be RR or RRR
    operand_mode &= OperandMode::kAllowRRR;
  } else if ((operand_mode & OperandMode::kAllowImmediate) &&
             g.CanBeImmediate(right, operand_mode)) {
    inputs[input_count++] = g.UseImmediate(right);
    // Can only be RI or RRI
    operand_mode &= OperandMode::kAllowImmediate;
  } else if (operand_mode & OperandMode::kAllowMemoryOperand) {
    NodeMatcher mright(right);
    if (mright.IsLoad() && selector->CanCover(node, right) &&
        SelectLoadOpcode(right) == kS390_LoadWordU32) {
      AddressingMode mode =
          g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
      opcode |= AddressingModeField::encode(mode);
      operand_mode &= ~OperandMode::kAllowImmediate;
      if (operand_mode & OperandMode::kAllowRM)
        operand_mode &= ~OperandMode::kAllowDistinctOps;
    } else if (operand_mode & OperandMode::kAllowRM) {
      DCHECK(!(operand_mode & OperandMode::kAllowRRM));
      inputs[input_count++] = g.Use(right);
      // Can not be Immediate
      operand_mode &=
          ~OperandMode::kAllowImmediate & ~OperandMode::kAllowDistinctOps;
    } else if (operand_mode & OperandMode::kAllowRRM) {
      DCHECK(!(operand_mode & OperandMode::kAllowRM));
      inputs[input_count++] = g.Use(right);
      // Can not be Immediate
      operand_mode &= ~OperandMode::kAllowImmediate;
    } else {
      UNREACHABLE();
    }
  } else {
    inputs[input_count++] = g.UseRegister(right);
    // Can only be RR or RRR
    operand_mode &= OperandMode::kAllowRRR;
  }

  bool doZeroExt =
      AutoZeroExtendsWord32ToWord64(node) || !ZeroExtendsWord32ToWord64(left);

  inputs[input_count++] =
      g.TempImmediate(doZeroExt && (!AutoZeroExtendsWord32ToWord64(node)));

  if (cont->IsBranch()) {
    inputs[input_count++] = g.Label(cont->true_block());
    inputs[input_count++] = g.Label(cont->false_block());
  }

  if (doZeroExt && (operand_mode & OperandMode::kAllowDistinctOps) &&
      // If we can deoptimize as a result of the binop, we need to make sure
      // that
      // the deopt inputs are not overwritten by the binop result. One way
      // to achieve that is to declare the output register as same-as-first.
      !cont->IsDeoptimize()) {
    outputs[output_count++] = g.DefineAsRegister(node);
  } else {
    outputs[output_count++] = g.DefineSameAsFirst(node);
  }

  if (cont->IsSet()) {
    outputs[output_count++] = g.DefineAsRegister(cont->result());
  }

  DCHECK_NE(0u, input_count);
  DCHECK_NE(0u, output_count);
  DCHECK_GE(arraysize(inputs), input_count);
  DCHECK_GE(arraysize(outputs), output_count);

  opcode = cont->Encode(opcode);

  if (cont->IsDeoptimize()) {
    selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
                             cont->kind(), cont->reason(), cont->frame_state());
  } else if (cont->IsTrap()) {
    inputs[input_count++] = g.UseImmediate(cont->trap_id());
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  } else {
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  }
}

void VisitBin32op(InstructionSelector* selector, Node* node, ArchOpcode opcode,
                  OperandModes operand_mode) {
  FlagsContinuation cont;
  VisitBin32op(selector, node, opcode, operand_mode, &cont);
}

}  // namespace

void InstructionSelector::VisitLoad(Node* node) {
  S390OperandGenerator g(this);
  ArchOpcode opcode = SelectLoadOpcode(node);
  InstructionOperand outputs[1];
  outputs[0] = g.DefineAsRegister(node);
  InstructionOperand inputs[3];
  size_t input_count = 0;
  AddressingMode mode =
      g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
  InstructionCode code = opcode | AddressingModeField::encode(mode);
  Emit(code, 1, outputs, input_count, inputs);
}

void InstructionSelector::VisitProtectedLoad(Node* node) {
  // TODO(eholk)
  UNIMPLEMENTED();
}

void InstructionSelector::VisitStore(Node* node) {
  S390OperandGenerator g(this);
  Node* base = node->InputAt(0);
  Node* offset = node->InputAt(1);
  Node* value = node->InputAt(2);

  StoreRepresentation store_rep = StoreRepresentationOf(node->op());
  WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
  MachineRepresentation rep = store_rep.representation();

  if (write_barrier_kind != kNoWriteBarrier) {
    DCHECK(CanBeTaggedPointer(rep));
    AddressingMode addressing_mode;
    InstructionOperand inputs[3];
    size_t input_count = 0;
    inputs[input_count++] = g.UseUniqueRegister(base);
    // OutOfLineRecordWrite uses the offset in an 'AddP' instruction as well as
    // for the store itself, so we must check compatibility with both.
    if (g.CanBeImmediate(offset, OperandMode::kInt20Imm)) {
      inputs[input_count++] = g.UseImmediate(offset);
      addressing_mode = kMode_MRI;
    } else {
      inputs[input_count++] = g.UseUniqueRegister(offset);
      addressing_mode = kMode_MRR;
    }
    inputs[input_count++] = g.UseUniqueRegister(value);
    RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
    switch (write_barrier_kind) {
      case kNoWriteBarrier:
        UNREACHABLE();
        break;
      case kMapWriteBarrier:
        record_write_mode = RecordWriteMode::kValueIsMap;
        break;
      case kPointerWriteBarrier:
        record_write_mode = RecordWriteMode::kValueIsPointer;
        break;
      case kFullWriteBarrier:
        record_write_mode = RecordWriteMode::kValueIsAny;
        break;
    }
    InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
    size_t const temp_count = arraysize(temps);
    InstructionCode code = kArchStoreWithWriteBarrier;
    code |= AddressingModeField::encode(addressing_mode);
    code |= MiscField::encode(static_cast<int>(record_write_mode));
    Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
  } else {
    ArchOpcode opcode = kArchNop;
    NodeMatcher m(value);
    switch (rep) {
      case MachineRepresentation::kFloat32:
        opcode = kS390_StoreFloat32;
        break;
      case MachineRepresentation::kFloat64:
        opcode = kS390_StoreDouble;
        break;
      case MachineRepresentation::kBit:  // Fall through.
      case MachineRepresentation::kWord8:
        opcode = kS390_StoreWord8;
        break;
      case MachineRepresentation::kWord16:
        opcode = kS390_StoreWord16;
        break;
#if !V8_TARGET_ARCH_S390X
      case MachineRepresentation::kTaggedSigned:   // Fall through.
      case MachineRepresentation::kTaggedPointer:  // Fall through.
      case MachineRepresentation::kTagged:  // Fall through.
#endif
      case MachineRepresentation::kWord32:
        opcode = kS390_StoreWord32;
        if (m.IsWord32ReverseBytes()) {
          opcode = kS390_StoreReverse32;
          value = value->InputAt(0);
        }
        break;
#if V8_TARGET_ARCH_S390X
      case MachineRepresentation::kTaggedSigned:   // Fall through.
      case MachineRepresentation::kTaggedPointer:  // Fall through.
      case MachineRepresentation::kTagged:  // Fall through.
      case MachineRepresentation::kWord64:
        opcode = kS390_StoreWord64;
        if (m.IsWord64ReverseBytes()) {
          opcode = kS390_StoreReverse64;
          value = value->InputAt(0);
        }
        break;
#else
      case MachineRepresentation::kWord64:  // Fall through.
#endif
      case MachineRepresentation::kSimd128:  // Fall through.
      case MachineRepresentation::kSimd1x4:  // Fall through.
      case MachineRepresentation::kSimd1x8:  // Fall through.
      case MachineRepresentation::kSimd1x16:  // Fall through.
      case MachineRepresentation::kNone:
        UNREACHABLE();
        return;
    }
    InstructionOperand inputs[4];
    size_t input_count = 0;
    AddressingMode addressing_mode =
        g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
    InstructionCode code =
        opcode | AddressingModeField::encode(addressing_mode);
    InstructionOperand value_operand = g.UseRegister(value);
    inputs[input_count++] = value_operand;
    Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count,
         inputs);
  }
}

void InstructionSelector::VisitProtectedStore(Node* node) {
  // TODO(eholk)
  UNIMPLEMENTED();
}

// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }

// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }

void InstructionSelector::VisitCheckedLoad(Node* node) {
  CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
  S390OperandGenerator g(this);
  Node* const base = node->InputAt(0);
  Node* const offset = node->InputAt(1);
  Node* const length = node->InputAt(2);
  ArchOpcode opcode = kArchNop;
  switch (load_rep.representation()) {
    case MachineRepresentation::kWord8:
      opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
      break;
    case MachineRepresentation::kWord16:
      opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
      break;
    case MachineRepresentation::kWord32:
      opcode = kCheckedLoadWord32;
      break;
#if V8_TARGET_ARCH_S390X
    case MachineRepresentation::kWord64:
      opcode = kCheckedLoadWord64;
      break;
#endif
    case MachineRepresentation::kFloat32:
      opcode = kCheckedLoadFloat32;
      break;
    case MachineRepresentation::kFloat64:
      opcode = kCheckedLoadFloat64;
      break;
    case MachineRepresentation::kBit:     // Fall through.
    case MachineRepresentation::kTaggedSigned:   // Fall through.
    case MachineRepresentation::kTaggedPointer:  // Fall through.
    case MachineRepresentation::kTagged:  // Fall through.
#if !V8_TARGET_ARCH_S390X
    case MachineRepresentation::kWord64:  // Fall through.
#endif
    case MachineRepresentation::kSimd128:  // Fall through.
    case MachineRepresentation::kSimd1x4:  // Fall through.
    case MachineRepresentation::kSimd1x8:  // Fall through.
    case MachineRepresentation::kSimd1x16:  // Fall through.
    case MachineRepresentation::kNone:
      UNREACHABLE();
      return;
  }
  AddressingMode addressingMode = kMode_MRR;
  Emit(opcode | AddressingModeField::encode(addressingMode),
       g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset),
       g.UseOperand(length, OperandMode::kUint32Imm));
}

void InstructionSelector::VisitCheckedStore(Node* node) {
  MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
  S390OperandGenerator g(this);
  Node* const base = node->InputAt(0);
  Node* const offset = node->InputAt(1);
  Node* const length = node->InputAt(2);
  Node* const value = node->InputAt(3);
  ArchOpcode opcode = kArchNop;
  switch (rep) {
    case MachineRepresentation::kWord8:
      opcode = kCheckedStoreWord8;
      break;
    case MachineRepresentation::kWord16:
      opcode = kCheckedStoreWord16;
      break;
    case MachineRepresentation::kWord32:
      opcode = kCheckedStoreWord32;
      break;
#if V8_TARGET_ARCH_S390X
    case MachineRepresentation::kWord64:
      opcode = kCheckedStoreWord64;
      break;
#endif
    case MachineRepresentation::kFloat32:
      opcode = kCheckedStoreFloat32;
      break;
    case MachineRepresentation::kFloat64:
      opcode = kCheckedStoreFloat64;
      break;
    case MachineRepresentation::kBit:     // Fall through.
    case MachineRepresentation::kTaggedSigned:   // Fall through.
    case MachineRepresentation::kTaggedPointer:  // Fall through.
    case MachineRepresentation::kTagged:  // Fall through.
#if !V8_TARGET_ARCH_S390X
    case MachineRepresentation::kWord64:  // Fall through.
#endif
    case MachineRepresentation::kSimd128:  // Fall through.
    case MachineRepresentation::kSimd1x4:  // Fall through.
    case MachineRepresentation::kSimd1x8:  // Fall through.
    case MachineRepresentation::kSimd1x16:  // Fall through.
    case MachineRepresentation::kNone:
      UNREACHABLE();
      return;
  }
  AddressingMode addressingMode = kMode_MRR;
  Emit(opcode | AddressingModeField::encode(addressingMode), g.NoOutput(),
       g.UseRegister(base), g.UseRegister(offset),
       g.UseOperand(length, OperandMode::kUint32Imm), g.UseRegister(value));
}

#if 0
static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) {
  int mask_width = base::bits::CountPopulation32(value);
  int mask_msb = base::bits::CountLeadingZeros32(value);
  int mask_lsb = base::bits::CountTrailingZeros32(value);
  if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32))
    return false;
  *mb = mask_lsb + mask_width - 1;
  *me = mask_lsb;
  return true;
}
#endif

#if V8_TARGET_ARCH_S390X
static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) {
  int mask_width = base::bits::CountPopulation64(value);
  int mask_msb = base::bits::CountLeadingZeros64(value);
  int mask_lsb = base::bits::CountTrailingZeros64(value);
  if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64))
    return false;
  *mb = mask_lsb + mask_width - 1;
  *me = mask_lsb;
  return true;
}
#endif

void InstructionSelector::VisitWord32And(Node* node) {
  VisitBin32op(this, node, kS390_And32, AndOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64And(Node* node) {
  S390OperandGenerator g(this);
  Int64BinopMatcher m(node);
  int mb = 0;
  int me = 0;
  if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) {
    int sh = 0;
    Node* left = m.left().node();
    if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) &&
        CanCover(node, left)) {
      Int64BinopMatcher mleft(m.left().node());
      if (mleft.right().IsInRange(0, 63)) {
        left = mleft.left().node();
        sh = mleft.right().Value();
        if (m.left().IsWord64Shr()) {
          // Adjust the mask such that it doesn't include any rotated bits.
          if (mb > 63 - sh) mb = 63 - sh;
          sh = (64 - sh) & 0x3f;
        } else {
          // Adjust the mask such that it doesn't include any rotated bits.
          if (me < sh) me = sh;
        }
      }
    }
    if (mb >= me) {
      bool match = false;
      ArchOpcode opcode;
      int mask;
      if (me == 0) {
        match = true;
        opcode = kS390_RotLeftAndClearLeft64;
        mask = mb;
      } else if (mb == 63) {
        match = true;
        opcode = kS390_RotLeftAndClearRight64;
        mask = me;
      } else if (sh && me <= sh && m.left().IsWord64Shl()) {
        match = true;
        opcode = kS390_RotLeftAndClear64;
        mask = mb;
      }
      if (match) {
        Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left),
             g.TempImmediate(sh), g.TempImmediate(mask));
        return;
      }
    }
  }
  VisitBinop<Int64BinopMatcher>(this, node, kS390_And64,
                                OperandMode::kUint32Imm);
}
#endif

void InstructionSelector::VisitWord32Or(Node* node) {
  VisitBin32op(this, node, kS390_Or32, OrOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Or(Node* node) {
  Int64BinopMatcher m(node);
  VisitBinop<Int64BinopMatcher>(this, node, kS390_Or64,
                                OperandMode::kUint32Imm);
}
#endif

void InstructionSelector::VisitWord32Xor(Node* node) {
  VisitBin32op(this, node, kS390_Xor32, XorOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Xor(Node* node) {
  VisitBinop<Int64BinopMatcher>(this, node, kS390_Xor64,
                                OperandMode::kUint32Imm);
}
#endif

void InstructionSelector::VisitWord32Shl(Node* node) {
  VisitBin32op(this, node, kS390_ShiftLeft32, ShiftOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Shl(Node* node) {
  S390OperandGenerator g(this);
  Int64BinopMatcher m(node);
  // TODO(mbrandy): eliminate left sign extension if right >= 32
  if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
    Int64BinopMatcher mleft(m.left().node());
    int sh = m.right().Value();
    int mb;
    int me;
    if (mleft.right().HasValue() &&
        IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) {
      // Adjust the mask such that it doesn't include any rotated bits.
      if (me < sh) me = sh;
      if (mb >= me) {
        bool match = false;
        ArchOpcode opcode;
        int mask;
        if (me == 0) {
          match = true;
          opcode = kS390_RotLeftAndClearLeft64;
          mask = mb;
        } else if (mb == 63) {
          match = true;
          opcode = kS390_RotLeftAndClearRight64;
          mask = me;
        } else if (sh && me <= sh) {
          match = true;
          opcode = kS390_RotLeftAndClear64;
          mask = mb;
        }
        if (match) {
          Emit(opcode, g.DefineAsRegister(node),
               g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
               g.TempImmediate(mask));
          return;
        }
      }
    }
  }
  VisitRRO(this, kS390_ShiftLeft64, node, OperandMode::kShift64Imm);
}
#endif

void InstructionSelector::VisitWord32Shr(Node* node) {
  VisitBin32op(this, node, kS390_ShiftRight32, ShiftOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Shr(Node* node) {
  S390OperandGenerator g(this);
  Int64BinopMatcher m(node);
  if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
    Int64BinopMatcher mleft(m.left().node());
    int sh = m.right().Value();
    int mb;
    int me;
    if (mleft.right().HasValue() &&
        IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) {
      // Adjust the mask such that it doesn't include any rotated bits.
      if (mb > 63 - sh) mb = 63 - sh;
      sh = (64 - sh) & 0x3f;
      if (mb >= me) {
        bool match = false;
        ArchOpcode opcode;
        int mask;
        if (me == 0) {
          match = true;
          opcode = kS390_RotLeftAndClearLeft64;
          mask = mb;
        } else if (mb == 63) {
          match = true;
          opcode = kS390_RotLeftAndClearRight64;
          mask = me;
        }
        if (match) {
          Emit(opcode, g.DefineAsRegister(node),
               g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
               g.TempImmediate(mask));
          return;
        }
      }
    }
  }
  VisitRRO(this, kS390_ShiftRight64, node, OperandMode::kShift64Imm);
}
#endif

void InstructionSelector::VisitWord32Sar(Node* node) {
  S390OperandGenerator g(this);
  Int32BinopMatcher m(node);
  // Replace with sign extension for (x << K) >> K where K is 16 or 24.
  if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
    Int32BinopMatcher mleft(m.left().node());
    if (mleft.right().Is(16) && m.right().Is(16)) {
      bool doZeroExt = !ZeroExtendsWord32ToWord64(mleft.left().node());
      Emit(kS390_ExtendSignWord16,
           doZeroExt ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
           g.UseRegister(mleft.left().node()), g.TempImmediate(doZeroExt));
      return;
    } else if (mleft.right().Is(24) && m.right().Is(24)) {
      bool doZeroExt = !ZeroExtendsWord32ToWord64(mleft.left().node());
      Emit(kS390_ExtendSignWord8,
           doZeroExt ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
           g.UseRegister(mleft.left().node()), g.TempImmediate(doZeroExt));
      return;
    }
  }
  VisitBin32op(this, node, kS390_ShiftRightArith32, ShiftOperandMode);
}

#if !V8_TARGET_ARCH_S390X
void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode,
                    InstructionCode opcode2, Node* node) {
  S390OperandGenerator g(selector);

  Node* projection1 = NodeProperties::FindProjection(node, 1);
  if (projection1) {
    // We use UseUniqueRegister here to avoid register sharing with the output
    // registers.
    InstructionOperand inputs[] = {
        g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
        g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};

    InstructionOperand outputs[] = {
        g.DefineAsRegister(node),
        g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};

    selector->Emit(opcode, 2, outputs, 4, inputs);
  } else {
    // The high word of the result is not used, so we emit the standard 32 bit
    // instruction.
    selector->Emit(opcode2, g.DefineSameAsFirst(node),
                   g.UseRegister(node->InputAt(0)),
                   g.UseRegister(node->InputAt(2)), g.TempImmediate(0));
  }
}

void InstructionSelector::VisitInt32PairAdd(Node* node) {
  VisitPairBinop(this, kS390_AddPair, kS390_Add32, node);
}

void InstructionSelector::VisitInt32PairSub(Node* node) {
  VisitPairBinop(this, kS390_SubPair, kS390_Sub32, node);
}

void InstructionSelector::VisitInt32PairMul(Node* node) {
  S390OperandGenerator g(this);
  Node* projection1 = NodeProperties::FindProjection(node, 1);
  if (projection1) {
    InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
                                   g.UseUniqueRegister(node->InputAt(1)),
                                   g.UseUniqueRegister(node->InputAt(2)),
                                   g.UseUniqueRegister(node->InputAt(3))};

    InstructionOperand outputs[] = {
        g.DefineAsRegister(node),
        g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};

    Emit(kS390_MulPair, 2, outputs, 4, inputs);
  } else {
    // The high word of the result is not used, so we emit the standard 32 bit
    // instruction.
    Emit(kS390_Mul32, g.DefineSameAsFirst(node),
         g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2)),
         g.TempImmediate(0));
  }
}

namespace {
// Shared routine for multiple shift operations.
void VisitPairShift(InstructionSelector* selector, InstructionCode opcode,
                    Node* node) {
  S390OperandGenerator g(selector);
  // We use g.UseUniqueRegister here to guarantee that there is
  // no register aliasing of input registers with output registers.
  Int32Matcher m(node->InputAt(2));
  InstructionOperand shift_operand;
  if (m.HasValue()) {
    shift_operand = g.UseImmediate(m.node());
  } else {
    shift_operand = g.UseUniqueRegister(m.node());
  }

  InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
                                 g.UseUniqueRegister(node->InputAt(1)),
                                 shift_operand};

  Node* projection1 = NodeProperties::FindProjection(node, 1);

  InstructionOperand outputs[2];
  InstructionOperand temps[1];
  int32_t output_count = 0;
  int32_t temp_count = 0;

  outputs[output_count++] = g.DefineAsRegister(node);
  if (projection1) {
    outputs[output_count++] = g.DefineAsRegister(projection1);
  } else {
    temps[temp_count++] = g.TempRegister();
  }

  selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
}  // namespace

void InstructionSelector::VisitWord32PairShl(Node* node) {
  VisitPairShift(this, kS390_ShiftLeftPair, node);
}

void InstructionSelector::VisitWord32PairShr(Node* node) {
  VisitPairShift(this, kS390_ShiftRightPair, node);
}

void InstructionSelector::VisitWord32PairSar(Node* node) {
  VisitPairShift(this, kS390_ShiftRightArithPair, node);
}
#endif

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Sar(Node* node) {
  VisitRRO(this, kS390_ShiftRightArith64, node, OperandMode::kShift64Imm);
}
#endif

void InstructionSelector::VisitWord32Ror(Node* node) {
  // TODO(john): match dst = ror(src1, src2 + imm)
  VisitBin32op(this, node, kS390_RotRight32,
               OperandMode::kAllowRI | OperandMode::kAllowRRR |
                   OperandMode::kAllowRRI | OperandMode::kShift32Imm);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Ror(Node* node) {
  VisitRRO(this, kS390_RotRight64, node, OperandMode::kShift64Imm);
}
#endif

void InstructionSelector::VisitWord32Clz(Node* node) {
  VisitRR(this, kS390_Cntlz32, node);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Clz(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_Cntlz64, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}
#endif

void InstructionSelector::VisitWord32Popcnt(Node* node) {
  S390OperandGenerator g(this);
  Node* value = node->InputAt(0);
  Emit(kS390_Popcnt32, g.DefineAsRegister(node), g.UseRegister(value));
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Popcnt(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_Popcnt64, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}
#endif

void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); }
#endif

void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
#endif

void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_LoadReverse64RR, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}

void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
  S390OperandGenerator g(this);
  NodeMatcher input(node->InputAt(0));
  if (CanCover(node, input.node()) && input.IsLoad()) {
    LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op());
    if (load_rep.representation() == MachineRepresentation::kWord32) {
      Node* base = input.node()->InputAt(0);
      Node* offset = input.node()->InputAt(1);
      Emit(kS390_LoadReverse32 | AddressingModeField::encode(kMode_MRR),
           // TODO(john.yan): one of the base and offset can be imm.
           g.DefineAsRegister(node), g.UseRegister(base),
           g.UseRegister(offset));
      return;
    }
  }
  Emit(kS390_LoadReverse32RR, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}

void InstructionSelector::VisitInt32Add(Node* node) {
  VisitBin32op(this, node, kS390_Add32, AddOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Add(Node* node) {
  VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64,
                                OperandMode::kInt32Imm);
}
#endif

void InstructionSelector::VisitInt32Sub(Node* node) {
  S390OperandGenerator g(this);
  Int32BinopMatcher m(node);
  if (m.left().Is(0)) {
    Node* right = m.right().node();
    bool doZeroExt = ZeroExtendsWord32ToWord64(right);
    Emit(kS390_Neg32, g.DefineAsRegister(node), g.UseRegister(right),
         g.TempImmediate(doZeroExt));
  } else {
    VisitBin32op(this, node, kS390_Sub32, SubOperandMode);
  }
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Sub(Node* node) {
  S390OperandGenerator g(this);
  Int64BinopMatcher m(node);
  if (m.left().Is(0)) {
    Emit(kS390_Neg64, g.DefineAsRegister(node),
         g.UseRegister(m.right().node()));
  } else {
    VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
                                  OperandMode::kInt32Imm_Negate);
  }
}
#endif

namespace {

void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
                  InstructionOperand left, InstructionOperand right,
                  FlagsContinuation* cont);

#if V8_TARGET_ARCH_S390X
void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
  S390OperandGenerator g(selector);
  Int32BinopMatcher m(node);
  Node* left = m.left().node();
  Node* right = m.right().node();
  if (g.CanBeImmediate(right, OperandMode::kInt32Imm)) {
    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
                   g.UseImmediate(right));
  } else {
    if (g.CanBeBetterLeftOperand(right)) {
      std::swap(left, right);
    }
    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
                   g.Use(right));
  }
}
#endif

}  // namespace

void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
    FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf);
    return VisitBin32op(this, node, kS390_Mul32WithOverflow,
                        OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
                        &cont);
  }
  VisitBin32op(this, node, kS390_Mul32, MulOperandMode);
}

void InstructionSelector::VisitInt32Mul(Node* node) {
  S390OperandGenerator g(this);
  Int32BinopMatcher m(node);
  Node* left = m.left().node();
  Node* right = m.right().node();
  if (g.CanBeImmediate(right, OperandMode::kInt32Imm) &&
      base::bits::IsPowerOfTwo32(g.GetImmediate(right))) {
    int power = 31 - base::bits::CountLeadingZeros32(g.GetImmediate(right));
    bool doZeroExt = !ZeroExtendsWord32ToWord64(left);
    InstructionOperand dst =
        (doZeroExt && CpuFeatures::IsSupported(DISTINCT_OPS))
            ? g.DefineAsRegister(node)
            : g.DefineSameAsFirst(node);

    Emit(kS390_ShiftLeft32, dst, g.UseRegister(left), g.UseImmediate(power),
         g.TempImmediate(doZeroExt));
    return;
  }
  VisitBin32op(this, node, kS390_Mul32, MulOperandMode);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Mul(Node* node) {
  S390OperandGenerator g(this);
  Int64BinopMatcher m(node);
  Node* left = m.left().node();
  Node* right = m.right().node();
  if (g.CanBeImmediate(right, OperandMode::kInt32Imm) &&
      base::bits::IsPowerOfTwo64(g.GetImmediate(right))) {
    int power = 63 - base::bits::CountLeadingZeros64(g.GetImmediate(right));
    Emit(kS390_ShiftLeft64, g.DefineSameAsFirst(node), g.UseRegister(left),
         g.UseImmediate(power));
    return;
  }
  VisitMul(this, node, kS390_Mul64);
}
#endif

void InstructionSelector::VisitInt32MulHigh(Node* node) {
  VisitBin32op(this, node, kS390_MulHigh32,
               OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps);
}

void InstructionSelector::VisitUint32MulHigh(Node* node) {
  VisitBin32op(this, node, kS390_MulHighU32,
               OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}

void InstructionSelector::VisitInt32Div(Node* node) {
  VisitBin32op(this, node, kS390_Div32,
               OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Div(Node* node) {
  VisitRRR(this, kS390_Div64, node);
}
#endif

void InstructionSelector::VisitUint32Div(Node* node) {
  VisitBin32op(this, node, kS390_DivU32,
               OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitUint64Div(Node* node) {
  VisitRRR(this, kS390_DivU64, node);
}
#endif

void InstructionSelector::VisitInt32Mod(Node* node) {
  VisitBin32op(this, node, kS390_Mod32,
               OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Mod(Node* node) {
  VisitRRR(this, kS390_Mod64, node);
}
#endif

void InstructionSelector::VisitUint32Mod(Node* node) {
  VisitBin32op(this, node, kS390_ModU32,
               OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitUint64Mod(Node* node) {
  VisitRRR(this, kS390_ModU64, node);
}
#endif

void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
  VisitRR(this, kS390_Float32ToDouble, node);
}

void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
  VisitRR(this, kS390_Int32ToFloat32, node);
}

void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
  VisitRR(this, kS390_Uint32ToFloat32, node);
}

void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
  VisitRR(this, kS390_Int32ToDouble, node);
}

void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
  VisitRR(this, kS390_Uint32ToDouble, node);
}

void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
  VisitRR(this, kS390_DoubleToInt32, node);
}

void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
  VisitRR(this, kS390_DoubleToUint32, node);
}

void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
  VisitRR(this, kS390_DoubleToUint32, node);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
  VisitTryTruncateDouble(this, kS390_Float32ToInt64, node);
}

void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
  VisitTryTruncateDouble(this, kS390_DoubleToInt64, node);
}

void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
  VisitTryTruncateDouble(this, kS390_Float32ToUint64, node);
}

void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
  VisitTryTruncateDouble(this, kS390_DoubleToUint64, node);
}

void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
  // TODO(mbrandy): inspect input to see if nop is appropriate.
  VisitRR(this, kS390_ExtendSignWord32, node);
}

void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
  S390OperandGenerator g(this);
  Node* value = node->InputAt(0);
  if (ZeroExtendsWord32ToWord64(value)) {
    // These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
    // zero-extension is a no-op.
    return EmitIdentity(node);
  }
  VisitRR(this, kS390_Uint32ToUint64, node);
}
#endif

void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
  VisitRR(this, kS390_DoubleToFloat32, node);
}

void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
  VisitRR(this, kArchTruncateDoubleToI, node);
}

void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
  VisitRR(this, kS390_DoubleToInt32, node);
}

void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
  VisitRR(this, kS390_Float32ToInt32, node);
}

void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
  VisitRR(this, kS390_Float32ToUint32, node);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
  // TODO(mbrandy): inspect input to see if nop is appropriate.
  VisitRR(this, kS390_Int64ToInt32, node);
}

void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
  VisitRR(this, kS390_Int64ToFloat32, node);
}

void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
  VisitRR(this, kS390_Int64ToDouble, node);
}

void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
  VisitRR(this, kS390_Uint64ToFloat32, node);
}

void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
  VisitRR(this, kS390_Uint64ToDouble, node);
}
#endif

void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
  VisitRR(this, kS390_BitcastFloat32ToInt32, node);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
  VisitRR(this, kS390_BitcastDoubleToInt64, node);
}
#endif

void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
  VisitRR(this, kS390_BitcastInt32ToFloat32, node);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
  VisitRR(this, kS390_BitcastInt64ToDouble, node);
}
#endif

void InstructionSelector::VisitFloat32Add(Node* node) {
  VisitRRR(this, kS390_AddFloat, node);
}

void InstructionSelector::VisitFloat64Add(Node* node) {
  // TODO(mbrandy): detect multiply-add
  VisitRRR(this, kS390_AddDouble, node);
}

void InstructionSelector::VisitFloat32Sub(Node* node) {
  VisitRRR(this, kS390_SubFloat, node);
}

void InstructionSelector::VisitFloat64Sub(Node* node) {
  // TODO(mbrandy): detect multiply-subtract
  VisitRRR(this, kS390_SubDouble, node);
}

void InstructionSelector::VisitFloat32Mul(Node* node) {
  VisitRRR(this, kS390_MulFloat, node);
}

void InstructionSelector::VisitFloat64Mul(Node* node) {
  // TODO(mbrandy): detect negate
  VisitRRR(this, kS390_MulDouble, node);
}

void InstructionSelector::VisitFloat32Div(Node* node) {
  VisitRRR(this, kS390_DivFloat, node);
}

void InstructionSelector::VisitFloat64Div(Node* node) {
  VisitRRR(this, kS390_DivDouble, node);
}

void InstructionSelector::VisitFloat64Mod(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_ModDouble, g.DefineAsFixed(node, d1),
       g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))
      ->MarkAsCall();
}

void InstructionSelector::VisitFloat32Max(Node* node) {
  VisitRRR(this, kS390_MaxFloat, node);
}

void InstructionSelector::VisitFloat64Max(Node* node) {
  VisitRRR(this, kS390_MaxDouble, node);
}

void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
  VisitRR(this, kS390_Float64SilenceNaN, node);
}

void InstructionSelector::VisitFloat32Min(Node* node) {
  VisitRRR(this, kS390_MinFloat, node);
}

void InstructionSelector::VisitFloat64Min(Node* node) {
  VisitRRR(this, kS390_MinDouble, node);
}

void InstructionSelector::VisitFloat32Abs(Node* node) {
  VisitRR(this, kS390_AbsFloat, node);
}

void InstructionSelector::VisitFloat64Abs(Node* node) {
  VisitRR(this, kS390_AbsDouble, node);
}

void InstructionSelector::VisitFloat32Sqrt(Node* node) {
  VisitRR(this, kS390_SqrtFloat, node);
}

void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
                                                  InstructionCode opcode) {
  S390OperandGenerator g(this);
  Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1))
      ->MarkAsCall();
}

void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
                                                   InstructionCode opcode) {
  S390OperandGenerator g(this);
  Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1),
       g.UseFixed(node->InputAt(1), d2))
      ->MarkAsCall();
}

void InstructionSelector::VisitFloat64Sqrt(Node* node) {
  VisitRR(this, kS390_SqrtDouble, node);
}

void InstructionSelector::VisitFloat32RoundDown(Node* node) {
  VisitRR(this, kS390_FloorFloat, node);
}

void InstructionSelector::VisitFloat64RoundDown(Node* node) {
  VisitRR(this, kS390_FloorDouble, node);
}

void InstructionSelector::VisitFloat32RoundUp(Node* node) {
  VisitRR(this, kS390_CeilFloat, node);
}

void InstructionSelector::VisitFloat64RoundUp(Node* node) {
  VisitRR(this, kS390_CeilDouble, node);
}

void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
  VisitRR(this, kS390_TruncateFloat, node);
}

void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
  VisitRR(this, kS390_TruncateDouble, node);
}

void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
  VisitRR(this, kS390_RoundDouble, node);
}

void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
  UNREACHABLE();
}

void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
  UNREACHABLE();
}

void InstructionSelector::VisitFloat32Neg(Node* node) {
  VisitRR(this, kS390_NegFloat, node);
}

void InstructionSelector::VisitFloat64Neg(Node* node) {
  VisitRR(this, kS390_NegDouble, node);
}

void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
  OperandModes mode = AddOperandMode;
  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
    FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
    return VisitBin32op(this, node, kS390_Add32, mode, &cont);
  }
  FlagsContinuation cont;
  VisitBin32op(this, node, kS390_Add32, mode, &cont);
}

void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
  OperandModes mode = SubOperandMode;
  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
    FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
    return VisitBin32op(this, node, kS390_Sub32, mode, &cont);
  }
  FlagsContinuation cont;
  VisitBin32op(this, node, kS390_Sub32, mode, &cont);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
    FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
    return VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64,
                                         OperandMode::kInt32Imm, &cont);
  }
  FlagsContinuation cont;
  VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64, OperandMode::kInt32Imm,
                                &cont);
}

void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
    FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
    return VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
                                         OperandMode::kInt32Imm_Negate, &cont);
  }
  FlagsContinuation cont;
  VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
                                OperandMode::kInt32Imm_Negate, &cont);
}
#endif

static bool CompareLogical(FlagsContinuation* cont) {
  switch (cont->condition()) {
    case kUnsignedLessThan:
    case kUnsignedGreaterThanOrEqual:
    case kUnsignedLessThanOrEqual:
    case kUnsignedGreaterThan:
      return true;
    default:
      return false;
  }
  UNREACHABLE();
  return false;
}

namespace {

// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
                  InstructionOperand left, InstructionOperand right,
                  FlagsContinuation* cont) {
  S390OperandGenerator g(selector);
  opcode = cont->Encode(opcode);
  if (cont->IsBranch()) {
    selector->Emit(opcode, g.NoOutput(), left, right,
                   g.Label(cont->true_block()), g.Label(cont->false_block()));
  } else if (cont->IsDeoptimize()) {
    selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
                             cont->reason(), cont->frame_state());
  } else if (cont->IsSet()) {
    selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
  } else {
    DCHECK(cont->IsTrap());
    selector->Emit(opcode, g.NoOutput(), left, right,
                   g.UseImmediate(cont->trap_id()));
  }
}

void VisitWordCompareZero(InstructionSelector* selector, Node* user,
                          Node* value, InstructionCode opcode,
                          FlagsContinuation* cont);

void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
                      Node* node, Node* value, FlagsContinuation* cont,
                      bool discard_output = false);

// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
                      InstructionCode opcode, FlagsContinuation* cont,
                      OperandModes immediate_mode) {
  S390OperandGenerator g(selector);
  Node* left = node->InputAt(0);
  Node* right = node->InputAt(1);

  DCHECK(IrOpcode::IsComparisonOpcode(node->opcode()) ||
         node->opcode() == IrOpcode::kInt32Sub ||
         node->opcode() == IrOpcode::kInt64Sub);

  InstructionOperand inputs[8];
  InstructionOperand outputs[1];
  size_t input_count = 0;
  size_t output_count = 0;

  // If one of the two inputs is an immediate, make sure it's on the right, or
  // if one of the two inputs is a memory operand, make sure it's on the left.
  int effect_level = selector->GetEffectLevel(node);
  if (cont->IsBranch()) {
    effect_level = selector->GetEffectLevel(
        cont->true_block()->PredecessorAt(0)->control_input());
  }

  if ((!g.CanBeImmediate(right, immediate_mode) &&
       g.CanBeImmediate(left, immediate_mode)) ||
      (!g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
       g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
    if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
    std::swap(left, right);
  }

  // check if compare with 0
  if (g.CanBeImmediate(right, immediate_mode) && g.GetImmediate(right) == 0) {
    DCHECK(opcode == kS390_Cmp32 || opcode == kS390_Cmp64);
    ArchOpcode load_and_test = (opcode == kS390_Cmp32)
                                   ? kS390_LoadAndTestWord32
                                   : kS390_LoadAndTestWord64;
    return VisitLoadAndTest(selector, load_and_test, node, left, cont, true);
  }

  inputs[input_count++] = g.UseRegister(left);
  if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
    // generate memory operand
    AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(
        right, inputs, &input_count, OpcodeImmMode(opcode));
    opcode |= AddressingModeField::encode(addressing_mode);
  } else if (g.CanBeImmediate(right, immediate_mode)) {
    inputs[input_count++] = g.UseImmediate(right);
  } else {
    inputs[input_count++] = g.UseAnyExceptImmediate(right);
  }

  opcode = cont->Encode(opcode);
  if (cont->IsBranch()) {
    inputs[input_count++] = g.Label(cont->true_block());
    inputs[input_count++] = g.Label(cont->false_block());
  } else if (cont->IsSet()) {
    outputs[output_count++] = g.DefineAsRegister(cont->result());
  } else if (cont->IsTrap()) {
    inputs[input_count++] = g.UseImmediate(cont->trap_id());
  } else {
    DCHECK(cont->IsDeoptimize());
    // nothing to do
  }

  DCHECK(input_count <= 8 && output_count <= 1);
  if (cont->IsDeoptimize()) {
    selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs,
                             cont->kind(), cont->reason(), cont->frame_state());
  } else {
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  }
}

void VisitWord32Compare(InstructionSelector* selector, Node* node,
                        FlagsContinuation* cont) {
  OperandModes mode =
      (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
  VisitWordCompare(selector, node, kS390_Cmp32, cont, mode);
}

#if V8_TARGET_ARCH_S390X
void VisitWord64Compare(InstructionSelector* selector, Node* node,
                        FlagsContinuation* cont) {
  OperandModes mode =
      (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
  VisitWordCompare(selector, node, kS390_Cmp64, cont, mode);
}
#endif

// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
                         FlagsContinuation* cont) {
  VisitWordCompare(selector, node, kS390_CmpFloat, cont, OperandMode::kNone);
}

// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
                         FlagsContinuation* cont) {
  VisitWordCompare(selector, node, kS390_CmpDouble, cont, OperandMode::kNone);
}

void VisitTestUnderMask(InstructionSelector* selector, Node* node,
                        FlagsContinuation* cont) {
  DCHECK(node->opcode() == IrOpcode::kWord32And ||
         node->opcode() == IrOpcode::kWord64And);
  ArchOpcode opcode =
      (node->opcode() == IrOpcode::kWord32And) ? kS390_Tst32 : kS390_Tst64;
  S390OperandGenerator g(selector);
  Node* left = node->InputAt(0);
  Node* right = node->InputAt(1);
  if (!g.CanBeImmediate(right, OperandMode::kUint32Imm) &&
      g.CanBeImmediate(left, OperandMode::kUint32Imm)) {
    std::swap(left, right);
  }
  VisitCompare(selector, opcode, g.UseRegister(left),
               g.UseOperand(right, OperandMode::kUint32Imm), cont);
}

void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
                      Node* node, Node* value, FlagsContinuation* cont,
                      bool discard_output) {
  static_assert(kS390_LoadAndTestFloat64 - kS390_LoadAndTestWord32 == 3,
                "LoadAndTest Opcode shouldn't contain other opcodes.");

  // TODO(john.yan): Add support for Float32/Float64.
  DCHECK(opcode >= kS390_LoadAndTestWord32 ||
         opcode <= kS390_LoadAndTestWord64);

  S390OperandGenerator g(selector);
  InstructionOperand inputs[8];
  InstructionOperand outputs[2];
  size_t input_count = 0;
  size_t output_count = 0;
  bool use_value = false;

  int effect_level = selector->GetEffectLevel(node);
  if (cont->IsBranch()) {
    effect_level = selector->GetEffectLevel(
        cont->true_block()->PredecessorAt(0)->control_input());
  }

  if (g.CanBeMemoryOperand(opcode, node, value, effect_level)) {
    // generate memory operand
    AddressingMode addressing_mode =
        g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count);
    opcode |= AddressingModeField::encode(addressing_mode);
  } else {
    inputs[input_count++] = g.UseAnyExceptImmediate(value);
    use_value = true;
  }

  if (!discard_output && !use_value) {
    outputs[output_count++] = g.DefineAsRegister(value);
  }

  opcode = cont->Encode(opcode);
  if (cont->IsBranch()) {
    inputs[input_count++] = g.Label(cont->true_block());
    inputs[input_count++] = g.Label(cont->false_block());
  } else if (cont->IsSet()) {
    outputs[output_count++] = g.DefineAsRegister(cont->result());
  } else if (cont->IsTrap()) {
    inputs[input_count++] = g.UseImmediate(cont->trap_id());
  } else {
    DCHECK(cont->IsDeoptimize());
    // nothing to do
  }

  DCHECK(input_count <= 8 && output_count <= 2);
  opcode = cont->Encode(opcode);
  if (cont->IsDeoptimize()) {
    selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
                             cont->kind(), cont->reason(), cont->frame_state());
  } else {
    selector->Emit(opcode, output_count, outputs, input_count, inputs);
  }
}

// Shared routine for word comparisons against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
                          Node* value, InstructionCode opcode,
                          FlagsContinuation* cont) {
  // Try to combine with comparisons against 0 by simply inverting the branch.
  while (value->opcode() == IrOpcode::kWord32Equal &&
         selector->CanCover(user, value)) {
    Int32BinopMatcher m(value);
    if (!m.right().Is(0)) break;

    user = value;
    value = m.left().node();
    cont->Negate();
  }

  FlagsCondition fc = cont->condition();
  if (selector->CanCover(user, value)) {
    switch (value->opcode()) {
      case IrOpcode::kWord32Equal: {
        cont->OverwriteAndNegateIfEqual(kEqual);
        Int32BinopMatcher m(value);
        if (m.right().Is(0)) {
          // Try to combine the branch with a comparison.
          Node* const user = m.node();
          Node* const value = m.left().node();
          if (selector->CanCover(user, value)) {
            switch (value->opcode()) {
              case IrOpcode::kInt32Sub:
                return VisitWord32Compare(selector, value, cont);
              case IrOpcode::kWord32And:
                return VisitTestUnderMask(selector, value, cont);
              default:
                break;
            }
          }
        }
        return VisitWord32Compare(selector, value, cont);
      }
      case IrOpcode::kInt32LessThan:
        cont->OverwriteAndNegateIfEqual(kSignedLessThan);
        return VisitWord32Compare(selector, value, cont);
      case IrOpcode::kInt32LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
        return VisitWord32Compare(selector, value, cont);
      case IrOpcode::kUint32LessThan:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
        return VisitWord32Compare(selector, value, cont);
      case IrOpcode::kUint32LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
        return VisitWord32Compare(selector, value, cont);
#if V8_TARGET_ARCH_S390X
      case IrOpcode::kWord64Equal: {
        cont->OverwriteAndNegateIfEqual(kEqual);
        Int64BinopMatcher m(value);
        if (m.right().Is(0)) {
          // Try to combine the branch with a comparison.
          Node* const user = m.node();
          Node* const value = m.left().node();
          if (selector->CanCover(user, value)) {
            switch (value->opcode()) {
              case IrOpcode::kInt64Sub:
                return VisitWord64Compare(selector, value, cont);
              case IrOpcode::kWord64And:
                return VisitTestUnderMask(selector, value, cont);
              default:
                break;
            }
          }
        }
        return VisitWord64Compare(selector, value, cont);
      }
      case IrOpcode::kInt64LessThan:
        cont->OverwriteAndNegateIfEqual(kSignedLessThan);
        return VisitWord64Compare(selector, value, cont);
      case IrOpcode::kInt64LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
        return VisitWord64Compare(selector, value, cont);
      case IrOpcode::kUint64LessThan:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
        return VisitWord64Compare(selector, value, cont);
      case IrOpcode::kUint64LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
        return VisitWord64Compare(selector, value, cont);
#endif
      case IrOpcode::kFloat32Equal:
        cont->OverwriteAndNegateIfEqual(kEqual);
        return VisitFloat32Compare(selector, value, cont);
      case IrOpcode::kFloat32LessThan:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
        return VisitFloat32Compare(selector, value, cont);
      case IrOpcode::kFloat32LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
        return VisitFloat32Compare(selector, value, cont);
      case IrOpcode::kFloat64Equal:
        cont->OverwriteAndNegateIfEqual(kEqual);
        return VisitFloat64Compare(selector, value, cont);
      case IrOpcode::kFloat64LessThan:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
        return VisitFloat64Compare(selector, value, cont);
      case IrOpcode::kFloat64LessThanOrEqual:
        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
        return VisitFloat64Compare(selector, value, cont);
      case IrOpcode::kProjection:
        // Check if this is the overflow output projection of an
        // <Operation>WithOverflow node.
        if (ProjectionIndexOf(value->op()) == 1u) {
          // We cannot combine the <Operation>WithOverflow with this branch
          // unless the 0th projection (the use of the actual value of the
          // <Operation> is either nullptr, which means there's no use of the
          // actual value, or was already defined, which means it is scheduled
          // *AFTER* this branch).
          Node* const node = value->InputAt(0);
          Node* const result = NodeProperties::FindProjection(node, 0);
          if (result == nullptr || selector->IsDefined(result)) {
            switch (node->opcode()) {
              case IrOpcode::kInt32AddWithOverflow:
                cont->OverwriteAndNegateIfEqual(kOverflow);
                return VisitBin32op(selector, node, kS390_Add32, AddOperandMode,
                                    cont);
              case IrOpcode::kInt32SubWithOverflow:
                cont->OverwriteAndNegateIfEqual(kOverflow);
                return VisitBin32op(selector, node, kS390_Sub32, SubOperandMode,
                                    cont);
              case IrOpcode::kInt32MulWithOverflow:
                cont->OverwriteAndNegateIfEqual(kNotEqual);
                return VisitBin32op(
                    selector, node, kS390_Mul32WithOverflow,
                    OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
                    cont);
#if V8_TARGET_ARCH_S390X
              case IrOpcode::kInt64AddWithOverflow:
                cont->OverwriteAndNegateIfEqual(kOverflow);
                return VisitBinop<Int64BinopMatcher>(
                    selector, node, kS390_Add64, OperandMode::kInt32Imm, cont);
              case IrOpcode::kInt64SubWithOverflow:
                cont->OverwriteAndNegateIfEqual(kOverflow);
                return VisitBinop<Int64BinopMatcher>(
                    selector, node, kS390_Sub64, OperandMode::kInt32Imm_Negate,
                    cont);
#endif
              default:
                break;
            }
          }
        }
        break;
      case IrOpcode::kInt32Sub:
        if (fc == kNotEqual || fc == kEqual)
          return VisitWord32Compare(selector, value, cont);
        break;
      case IrOpcode::kWord32And:
        return VisitTestUnderMask(selector, value, cont);
      case IrOpcode::kLoad: {
        LoadRepresentation load_rep = LoadRepresentationOf(value->op());
        switch (load_rep.representation()) {
          case MachineRepresentation::kWord32:
            if (opcode == kS390_LoadAndTestWord32) {
              return VisitLoadAndTest(selector, opcode, user, value, cont);
            }
          default:
            break;
        }
        break;
      }
      case IrOpcode::kInt32Add:
        // can't handle overflow case.
        break;
      case IrOpcode::kWord32Or:
        return VisitBin32op(selector, value, kS390_Or32, OrOperandMode, cont);
      case IrOpcode::kWord32Xor:
        return VisitBin32op(selector, value, kS390_Xor32, XorOperandMode, cont);
      case IrOpcode::kWord32Sar:
      case IrOpcode::kWord32Shl:
      case IrOpcode::kWord32Shr:
      case IrOpcode::kWord32Ror:
        // doesn't generate cc, so ignore.
        break;
#if V8_TARGET_ARCH_S390X
      case IrOpcode::kInt64Sub:
        if (fc == kNotEqual || fc == kEqual)
          return VisitWord64Compare(selector, value, cont);
        break;
      case IrOpcode::kWord64And:
        return VisitTestUnderMask(selector, value, cont);
      case IrOpcode::kInt64Add:
        // can't handle overflow case.
        break;
      case IrOpcode::kWord64Or:
        // TODO(john.yan): need to handle
        break;
      case IrOpcode::kWord64Xor:
        // TODO(john.yan): need to handle
        break;
      case IrOpcode::kWord64Sar:
      case IrOpcode::kWord64Shl:
      case IrOpcode::kWord64Shr:
      case IrOpcode::kWord64Ror:
        // doesn't generate cc, so ignore
        break;
#endif
      default:
        break;
    }
  }

  // Branch could not be combined with a compare, emit LoadAndTest
  VisitLoadAndTest(selector, opcode, user, value, cont, true);
}

void VisitWord32CompareZero(InstructionSelector* selector, Node* user,
                            Node* value, FlagsContinuation* cont) {
  VisitWordCompareZero(selector, user, value, kS390_LoadAndTestWord32, cont);
}

#if V8_TARGET_ARCH_S390X
void VisitWord64CompareZero(InstructionSelector* selector, Node* user,
                            Node* value, FlagsContinuation* cont) {
  VisitWordCompareZero(selector, user, value, kS390_LoadAndTestWord64, cont);
}
#endif

}  // namespace

void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
                                      BasicBlock* fbranch) {
  FlagsContinuation cont(kNotEqual, tbranch, fbranch);
  VisitWord32CompareZero(this, branch, branch->InputAt(0), &cont);
}

void InstructionSelector::VisitDeoptimizeIf(Node* node) {
  DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
  FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
      kNotEqual, p.kind(), p.reason(), node->InputAt(1));
  VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}

void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
  DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
  FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
      kEqual, p.kind(), p.reason(), node->InputAt(1));
  VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}

void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
  FlagsContinuation cont =
      FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
  VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}

void InstructionSelector::VisitTrapUnless(Node* node,
                                          Runtime::FunctionId func_id) {
  FlagsContinuation cont =
      FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
  VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}

void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
  S390OperandGenerator g(this);
  InstructionOperand value_operand = g.UseRegister(node->InputAt(0));

  // Emit either ArchTableSwitch or ArchLookupSwitch.
  size_t table_space_cost = 4 + sw.value_range;
  size_t table_time_cost = 3;
  size_t lookup_space_cost = 3 + 2 * sw.case_count;
  size_t lookup_time_cost = sw.case_count;
  if (sw.case_count > 0 &&
      table_space_cost + 3 * table_time_cost <=
          lookup_space_cost + 3 * lookup_time_cost &&
      sw.min_value > std::numeric_limits<int32_t>::min()) {
    InstructionOperand index_operand = value_operand;
    if (sw.min_value) {
      index_operand = g.TempRegister();
      Emit(kS390_Lay | AddressingModeField::encode(kMode_MRI), index_operand,
           value_operand, g.TempImmediate(-sw.min_value));
    }
#if V8_TARGET_ARCH_S390X
    InstructionOperand index_operand_zero_ext = g.TempRegister();
    Emit(kS390_Uint32ToUint64, index_operand_zero_ext, index_operand);
    index_operand = index_operand_zero_ext;
#endif
    // Generate a table lookup.
    return EmitTableSwitch(sw, index_operand);
  }

  // Generate a sequence of conditional jumps.
  return EmitLookupSwitch(sw, value_operand);
}

void InstructionSelector::VisitWord32Equal(Node* const node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
  Int32BinopMatcher m(node);
  if (m.right().Is(0)) {
    return VisitWord32CompareZero(this, m.node(), m.left().node(), &cont);
  }
  VisitWord32Compare(this, node, &cont);
}

void InstructionSelector::VisitInt32LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
  VisitWord32Compare(this, node, &cont);
}

void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
  VisitWord32Compare(this, node, &cont);
}

void InstructionSelector::VisitUint32LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
  VisitWord32Compare(this, node, &cont);
}

void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
  VisitWord32Compare(this, node, &cont);
}

#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Equal(Node* const node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
  Int64BinopMatcher m(node);
  if (m.right().Is(0)) {
    return VisitWord64CompareZero(this, m.node(), m.left().node(), &cont);
  }
  VisitWord64Compare(this, node, &cont);
}

void InstructionSelector::VisitInt64LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
  VisitWord64Compare(this, node, &cont);
}

void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
  VisitWord64Compare(this, node, &cont);
}

void InstructionSelector::VisitUint64LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
  VisitWord64Compare(this, node, &cont);
}

void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
  VisitWord64Compare(this, node, &cont);
}
#endif

void InstructionSelector::VisitFloat32Equal(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
  VisitFloat32Compare(this, node, &cont);
}

void InstructionSelector::VisitFloat32LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
  VisitFloat32Compare(this, node, &cont);
}

void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
  VisitFloat32Compare(this, node, &cont);
}

void InstructionSelector::VisitFloat64Equal(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
  VisitFloat64Compare(this, node, &cont);
}

void InstructionSelector::VisitFloat64LessThan(Node* node) {
  FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
  VisitFloat64Compare(this, node, &cont);
}

void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
  FlagsContinuation cont =
      FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
  VisitFloat64Compare(this, node, &cont);
}

void InstructionSelector::EmitPrepareArguments(
    ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
    Node* node) {
  S390OperandGenerator g(this);

  // Prepare for C function call.
  if (descriptor->IsCFunctionCall()) {
    Emit(kArchPrepareCallCFunction |
             MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
         0, nullptr, 0, nullptr);

    // Poke any stack arguments.
    int slot = kStackFrameExtraParamSlot;
    for (PushParameter input : (*arguments)) {
      Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
           g.TempImmediate(slot));
      ++slot;
    }
  } else {
    // Push any stack arguments.
    int num_slots = static_cast<int>(descriptor->StackParameterCount());
    int slot = 0;
    for (PushParameter input : (*arguments)) {
      if (slot == 0) {
        DCHECK(input.node());
        Emit(kS390_PushFrame, g.NoOutput(), g.UseRegister(input.node()),
             g.TempImmediate(num_slots));
      } else {
        // Skip any alignment holes in pushed nodes.
        if (input.node()) {
          Emit(kS390_StoreToStackSlot, g.NoOutput(),
               g.UseRegister(input.node()), g.TempImmediate(slot));
        }
      }
      ++slot;
    }
  }
}

bool InstructionSelector::IsTailCallAddressImmediate() { return false; }

int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }

void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_DoubleExtractLowWord32, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}

void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
  S390OperandGenerator g(this);
  Emit(kS390_DoubleExtractHighWord32, g.DefineAsRegister(node),
       g.UseRegister(node->InputAt(0)));
}

void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
  S390OperandGenerator g(this);
  Node* left = node->InputAt(0);
  Node* right = node->InputAt(1);
  if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 &&
      CanCover(node, left)) {
    left = left->InputAt(1);
    Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left),
         g.UseRegister(right));
    return;
  }
  Emit(kS390_DoubleInsertLowWord32, g.DefineSameAsFirst(node),
       g.UseRegister(left), g.UseRegister(right));
}

void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
  S390OperandGenerator g(this);
  Node* left = node->InputAt(0);
  Node* right = node->InputAt(1);
  if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 &&
      CanCover(node, left)) {
    left = left->InputAt(1);
    Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right),
         g.UseRegister(left));
    return;
  }
  Emit(kS390_DoubleInsertHighWord32, g.DefineSameAsFirst(node),
       g.UseRegister(left), g.UseRegister(right));
}

void InstructionSelector::VisitAtomicLoad(Node* node) {
  LoadRepresentation load_rep = LoadRepresentationOf(node->op());
  S390OperandGenerator g(this);
  Node* base = node->InputAt(0);
  Node* index = node->InputAt(1);
  ArchOpcode opcode = kArchNop;
  switch (load_rep.representation()) {
    case MachineRepresentation::kWord8:
      opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
      break;
    case MachineRepresentation::kWord16:
      opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
      break;
    case MachineRepresentation::kWord32:
      opcode = kAtomicLoadWord32;
      break;
    default:
      UNREACHABLE();
      return;
  }
  Emit(opcode | AddressingModeField::encode(kMode_MRR),
       g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
}

void InstructionSelector::VisitAtomicStore(Node* node) {
  MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
  S390OperandGenerator g(this);
  Node* base = node->InputAt(0);
  Node* index = node->InputAt(1);
  Node* value = node->InputAt(2);
  ArchOpcode opcode = kArchNop;
  switch (rep) {
    case MachineRepresentation::kWord8:
      opcode = kAtomicStoreWord8;
      break;
    case MachineRepresentation::kWord16:
      opcode = kAtomicStoreWord16;
      break;
    case MachineRepresentation::kWord32:
      opcode = kAtomicStoreWord32;
      break;
    default:
      UNREACHABLE();
      return;
  }

  InstructionOperand inputs[4];
  size_t input_count = 0;
  inputs[input_count++] = g.UseUniqueRegister(value);
  inputs[input_count++] = g.UseUniqueRegister(base);
  inputs[input_count++] = g.UseUniqueRegister(index);
  Emit(opcode | AddressingModeField::encode(kMode_MRR), 0, nullptr, input_count,
       inputs);
}

// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
  return MachineOperatorBuilder::kFloat32RoundDown |
         MachineOperatorBuilder::kFloat64RoundDown |
         MachineOperatorBuilder::kFloat32RoundUp |
         MachineOperatorBuilder::kFloat64RoundUp |
         MachineOperatorBuilder::kFloat32RoundTruncate |
         MachineOperatorBuilder::kFloat64RoundTruncate |
         MachineOperatorBuilder::kFloat64RoundTiesAway |
         MachineOperatorBuilder::kWord32Popcnt |
         MachineOperatorBuilder::kWord32ReverseBytes |
         MachineOperatorBuilder::kWord64ReverseBytes |
         MachineOperatorBuilder::kWord64Popcnt;
}

// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
  return MachineOperatorBuilder::AlignmentRequirements::
      FullUnalignedAccessSupport();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8