// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X87
#include "src/crankshaft/x87/lithium-codegen-x87.h"
#include "src/base/bits.h"
#include "src/builtins/builtins-constructor.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/deoptimizer.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/x87/frames-x87.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator final : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) {}
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const override {}
void AfterCall() const override {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetTotalFrameSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
if (info()->ShouldEnsureSpaceForLazyDeopt()) {
Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
}
}
#ifdef _MSC_VER
void LCodeGen::MakeSureStackPagesMapped(int offset) {
const int kPageSize = 4 * KB;
for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
__ mov(Operand(esp, offset), eax);
}
}
#endif
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
DCHECK(!frame_is_built_);
frame_is_built_ = true;
if (info()->IsStub()) {
__ StubPrologue(StackFrame::STUB);
} else {
__ Prologue(info()->GeneratePreagedPrologue());
}
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
DCHECK(slots != 0 || !info()->IsOptimizing());
if (slots > 0) {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
if (FLAG_debug_code) {
__ push(eax);
__ mov(Operand(eax), Immediate(slots));
Label loop;
__ bind(&loop);
__ mov(MemOperand(esp, eax, times_4, 0), Immediate(kSlotsZapValue));
__ dec(eax);
__ j(not_zero, &loop);
__ pop(eax);
}
}
// Initailize FPU state.
__ fninit();
return !is_aborted();
}
void LCodeGen::DoPrologue(LPrologue* instr) {
Comment(";;; Prologue begin");
// Possibly allocate a local context.
if (info_->scope()->NeedsContext()) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is still in edi.
int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
if (info()->scope()->is_script_scope()) {
__ push(edi);
__ Push(info()->scope()->scope_info());
__ CallRuntime(Runtime::kNewScriptContext);
deopt_mode = Safepoint::kLazyDeopt;
} else {
if (slots <=
ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) {
Callable callable = CodeFactory::FastNewFunctionContext(
isolate(), info()->scope()->scope_type());
__ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
Immediate(slots));
__ Call(callable.code(), RelocInfo::CODE_TARGET);
// Result of the FastNewFunctionContext builtin is always in new space.
need_write_barrier = false;
} else {
__ Push(edi);
__ Push(Smi::FromInt(info()->scope()->scope_type()));
__ CallRuntime(Runtime::kNewFunctionContext);
}
}
RecordSafepoint(deopt_mode);
// Context is returned in eax. It replaces the context passed to us.
// It's saved in the stack and kept live in esi.
__ mov(esi, eax);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
// Copy parameters into context if necessary.
int num_parameters = info()->scope()->num_parameters();
int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? info()->scope()->receiver()
: info()->scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ mov(eax, Operand(ebp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ mov(Operand(esi, context_offset), eax);
// Update the write barrier. This clobbers eax and ebx.
if (need_write_barrier) {
__ RecordWriteContextSlot(esi, context_offset, eax, ebx,
kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
Comment(";;; Prologue end");
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Interpreter is the first tier compiler now. It will run the code generated
// by TurboFan compiler which will always put "1" on x87 FPU stack.
// This behavior will affect crankshaft's x87 FPU stack depth check under
// debug mode.
// Need to reset the FPU stack here for this scenario.
__ fninit();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ sub(esp, Immediate(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
FlushX87StackIfNecessary(instr);
}
void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
// When return from function call, FPU should be initialized again.
if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) {
bool double_result = instr->HasDoubleRegisterResult();
if (double_result) {
__ lea(esp, Operand(esp, -kDoubleSize));
__ fstp_d(Operand(esp, 0));
}
__ fninit();
if (double_result) {
__ fld_d(Operand(esp, 0));
__ lea(esp, Operand(esp, kDoubleSize));
}
}
if (instr->IsGoto()) {
x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this);
} else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
!instr->IsGap() && !instr->IsReturn()) {
if (instr->ClobbersDoubleRegisters(isolate())) {
if (instr->HasDoubleRegisterResult()) {
DCHECK_EQ(1, x87_stack_.depth());
} else {
DCHECK_EQ(0, x87_stack_.depth());
}
}
__ VerifyX87StackDepth(x87_stack_.depth());
}
}
bool LCodeGen::GenerateJumpTable() {
if (!jump_table_.length()) return !is_aborted();
Label needs_frame;
Comment(";;; -------------------- Jump table --------------------");
for (int i = 0; i < jump_table_.length(); i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
Address entry = table_entry->address;
DeoptComment(table_entry->deopt_info);
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
__ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
__ call(&needs_frame);
} else {
__ call(entry, RelocInfo::RUNTIME_ENTRY);
}
}
if (needs_frame.is_linked()) {
__ bind(&needs_frame);
/* stack layout
3: entry address
2: return address <-- esp
1: garbage
0: garbage
*/
__ push(MemOperand(esp, 0)); // Copy return address.
__ push(MemOperand(esp, 2 * kPointerSize)); // Copy entry address.
/* stack layout
4: entry address
3: return address
1: return address
0: entry address <-- esp
*/
__ mov(MemOperand(esp, 3 * kPointerSize), ebp); // Save ebp.
// Fill ebp with the right stack frame address.
__ lea(ebp, MemOperand(esp, 3 * kPointerSize));
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ mov(MemOperand(esp, 2 * kPointerSize),
Immediate(Smi::FromInt(StackFrame::STUB)));
/* stack layout
3: old ebp
2: stub marker
1: return address
0: entry address <-- esp
*/
__ ret(0); // Call the continuation without clobbering registers.
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
X87Stack copy(code->x87_stack());
x87_stack_ = copy;
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(value->position());
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
// Build the frame in such a way that esi isn't trashed.
__ push(ebp); // Caller's frame pointer.
__ push(Immediate(Smi::FromInt(StackFrame::STUB)));
__ lea(ebp, Operand(esp, TypedFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
__ bind(code->done());
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
frame_is_built_ = false;
__ mov(esp, ebp);
__ pop(ebp);
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
if (info()->ShouldEnsureSpaceForLazyDeopt()) {
// For lazy deoptimization we need space to patch a call after every call.
// Ensure there is always space for such patching, even if the code ends
// in a call.
int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
while (masm()->pc_offset() < target_offset) {
masm()->nop();
}
}
safepoints_.Emit(masm(), GetTotalFrameSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int code) const {
return Register::from_code(code);
}
X87Register LCodeGen::ToX87Register(int code) const {
return X87Register::from_code(code);
}
void LCodeGen::X87LoadForUsage(X87Register reg) {
DCHECK(x87_stack_.Contains(reg));
x87_stack_.Fxch(reg);
x87_stack_.pop();
}
void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
DCHECK(x87_stack_.Contains(reg1));
DCHECK(x87_stack_.Contains(reg2));
if (reg1.is(reg2) && x87_stack_.depth() == 1) {
__ fld(x87_stack_.st(reg1));
x87_stack_.push(reg1);
x87_stack_.pop();
x87_stack_.pop();
} else {
x87_stack_.Fxch(reg1, 1);
x87_stack_.Fxch(reg2);
x87_stack_.pop();
x87_stack_.pop();
}
}
int LCodeGen::X87Stack::GetLayout() {
int layout = stack_depth_;
for (int i = 0; i < stack_depth_; i++) {
layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3));
}
return layout;
}
void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
DCHECK(is_mutable_);
DCHECK(Contains(reg) && stack_depth_ > other_slot);
int i = ArrayIndex(reg);
int st = st2idx(i);
if (st != other_slot) {
int other_i = st2idx(other_slot);
X87Register other = stack_[other_i];
stack_[other_i] = reg;
stack_[i] = other;
if (st == 0) {
__ fxch(other_slot);
} else if (other_slot == 0) {
__ fxch(st);
} else {
__ fxch(st);
__ fxch(other_slot);
__ fxch(st);
}
}
}
int LCodeGen::X87Stack::st2idx(int pos) {
return stack_depth_ - pos - 1;
}
int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
for (int i = 0; i < stack_depth_; i++) {
if (stack_[i].is(reg)) return i;
}
UNREACHABLE();
return -1;
}
bool LCodeGen::X87Stack::Contains(X87Register reg) {
for (int i = 0; i < stack_depth_; i++) {
if (stack_[i].is(reg)) return true;
}
return false;
}
void LCodeGen::X87Stack::Free(X87Register reg) {
DCHECK(is_mutable_);
DCHECK(Contains(reg));
int i = ArrayIndex(reg);
int st = st2idx(i);
if (st > 0) {
// keep track of how fstp(i) changes the order of elements
int tos_i = st2idx(0);
stack_[i] = stack_[tos_i];
}
pop();
__ fstp(st);
}
void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
if (x87_stack_.Contains(dst)) {
x87_stack_.Fxch(dst);
__ fstp(0);
} else {
x87_stack_.push(dst);
}
X87Fld(src, opts);
}
void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) {
if (x87_stack_.Contains(dst)) {
x87_stack_.Fxch(dst);
__ fstp(0);
x87_stack_.pop();
// Push ST(i) onto the FPU register stack
__ fld(x87_stack_.st(src));
x87_stack_.push(dst);
} else {
// Push ST(i) onto the FPU register stack
__ fld(x87_stack_.st(src));
x87_stack_.push(dst);
}
}
void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
DCHECK(!src.is_reg_only());
switch (opts) {
case kX87DoubleOperand:
__ fld_d(src);
break;
case kX87FloatOperand:
__ fld_s(src);
break;
case kX87IntOperand:
__ fild_s(src);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
DCHECK(!dst.is_reg_only());
x87_stack_.Fxch(src);
switch (opts) {
case kX87DoubleOperand:
__ fst_d(dst);
break;
case kX87FloatOperand:
__ fst_s(dst);
break;
case kX87IntOperand:
__ fist_s(dst);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
DCHECK(is_mutable_);
if (Contains(reg)) {
Free(reg);
}
// Mark this register as the next register to write to
stack_[stack_depth_] = reg;
}
void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
DCHECK(is_mutable_);
// Assert the reg is prepared to write, but not on the virtual stack yet
DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) &&
stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
stack_depth_++;
}
void LCodeGen::X87PrepareBinaryOp(
X87Register left, X87Register right, X87Register result) {
// You need to use DefineSameAsFirst for x87 instructions
DCHECK(result.is(left));
x87_stack_.Fxch(right, 1);
x87_stack_.Fxch(left);
}
void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
bool double_inputs = instr->HasDoubleRegisterInput();
// Flush stack from tos down, since FreeX87() will mess with tos
for (int i = stack_depth_-1; i >= 0; i--) {
X87Register reg = stack_[i];
// Skip registers which contain the inputs for the next instruction
// when flushing the stack
if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
continue;
}
Free(reg);
if (i < stack_depth_-1) i++;
}
}
if (instr->IsReturn()) {
while (stack_depth_ > 0) {
__ fstp(0);
stack_depth_--;
}
if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
}
}
void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr,
LCodeGen* cgen) {
// For going to a joined block, an explicit LClobberDoubles is inserted before
// LGoto. Because all used x87 registers are spilled to stack slots. The
// ResolvePhis phase of register allocator could guarantee the two input's x87
// stacks have the same layout. So don't check stack_depth_ <= 1 here.
int goto_block_id = goto_instr->block_id();
if (current_block_id + 1 != goto_block_id) {
// If we have a value on the x87 stack on leaving a block, it must be a
// phi input. If the next block we compile is not the join block, we have
// to discard the stack state.
// Before discarding the stack state, we need to save it if the "goto block"
// has unreachable last predecessor when FLAG_unreachable_code_elimination.
if (FLAG_unreachable_code_elimination) {
int length = goto_instr->block()->predecessors()->length();
bool has_unreachable_last_predecessor = false;
for (int i = 0; i < length; i++) {
HBasicBlock* block = goto_instr->block()->predecessors()->at(i);
if (block->IsUnreachable() &&
(block->block_id() + 1) == goto_block_id) {
has_unreachable_last_predecessor = true;
}
}
if (has_unreachable_last_predecessor) {
if (cgen->x87_stack_map_.find(goto_block_id) ==
cgen->x87_stack_map_.end()) {
X87Stack* stack = new (cgen->zone()) X87Stack(*this);
cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack));
}
}
}
// Discard the stack state.
stack_depth_ = 0;
}
}
void LCodeGen::EmitFlushX87ForDeopt() {
// The deoptimizer does not support X87 Registers. But as long as we
// deopt from a stub its not a problem, since we will re-materialize the
// original stub inputs, which can't be double registers.
// DCHECK(info()->IsStub());
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
__ pushfd();
__ VerifyX87StackDepth(x87_stack_.depth());
__ popfd();
}
// Flush X87 stack in the deoptimizer entry.
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
X87Register LCodeGen::ToX87Register(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToX87Register(op->index());
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
if (r.IsExternal()) {
return reinterpret_cast<int32_t>(
constant->ExternalReferenceValue().address());
}
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasExternalReferenceValue());
return constant->ExternalReferenceValue();
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize + kPCOnStackSize;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
if (op->IsRegister()) return Operand(ToRegister(op));
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, FrameSlotToFPOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
Operand LCodeGen::HighOperand(LOperand* op) {
DCHECK(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, FrameSlotToFPOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(
esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
WriteTranslation(environment->outer(), translation);
WriteTranslationFrame(environment, translation);
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i),
&object_index,
&dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
int index = op->index();
if (is_tagged) {
translation->StoreStackSlot(index);
} else if (is_uint32) {
translation->StoreUint32StackSlot(index);
} else {
translation->StoreInt32StackSlot(index);
}
} else if (op->IsDoubleStackSlot()) {
int index = op->index();
translation->StoreDoubleStackSlot(index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
X87Register reg = ToX87Register(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
DCHECK(instr != NULL);
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc,
LInstruction* instr, SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
DCHECK(instr->HasPointerMap());
__ CallRuntime(fun, argc, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
DCHECK(info()->is_calling());
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
if (!ToRegister(context).is(esi)) {
__ mov(esi, ToRegister(context));
}
} else if (context->IsStackSlot()) {
__ mov(esi, ToOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
DCHECK(info()->is_calling());
}
void LCodeGen::RegisterEnvironmentForDeoptimization(
LEnvironment* environment, Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason,
Deoptimizer::BailoutType bailout_type) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (DeoptEveryNTimes()) {
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ pushfd();
__ push(eax);
__ mov(eax, Operand::StaticVariable(count));
__ sub(eax, Immediate(1));
__ j(not_zero, &no_deopt, Label::kNear);
if (FLAG_trap_on_deopt) __ int3();
__ mov(eax, Immediate(FLAG_deopt_every_n_times));
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
DCHECK(frame_is_built_);
// Put the x87 stack layout in TOS.
if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
__ push(Immediate(x87_stack_.GetLayout()));
__ fild_s(MemOperand(esp, 0));
// Don't touch eflags.
__ lea(esp, Operand(esp, kPointerSize));
__ call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
}
// Put the x87 stack layout in TOS, so that we can save x87 fp registers in
// the correct location.
{
Label done;
if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
int x87_stack_layout = x87_stack_.GetLayout();
__ push(Immediate(x87_stack_layout));
__ fild_s(MemOperand(esp, 0));
// Don't touch eflags.
__ lea(esp, Operand(esp, kPointerSize));
__ bind(&done);
}
if (info()->ShouldTrapOnDeopt()) {
Label done;
if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
}
Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
DCHECK(info()->IsStub() || frame_is_built_);
if (cc == no_condition && frame_is_built_) {
DeoptComment(deopt_info);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (FLAG_trace_deopt || isolate()->is_profiling() ||
jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
if (cc == no_condition) {
__ jmp(&jump_table_.last().label);
} else {
__ j(cc, &jump_table_.last().label);
}
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint =
safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
if (label->block()->predecessors()->length() > 1) {
// A join block's x87 stack is that of its last visited predecessor.
// If the last visited predecessor block is unreachable, the stack state
// will be wrong. In such case, use the x87 stack of reachable predecessor.
X87StackMap::const_iterator it = x87_stack_map_.find(current_block_);
// Restore x87 stack.
if (it != x87_stack_map_.end()) {
x87_stack_ = *(it->second);
}
}
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ test(dividend, dividend);
__ j(not_sign, ÷nd_is_not_negative, Label::kNear);
// Note that this is correct even for kMinInt operands.
__ neg(dividend);
__ and_(dividend, mask);
__ neg(dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ jmp(&done, Label::kNear);
}
__ bind(÷nd_is_not_negative);
__ and_(dividend, mask);
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(eax));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
__ TruncatingDiv(dividend, Abs(divisor));
__ imul(edx, edx, Abs(divisor));
__ mov(eax, dividend);
__ sub(eax, edx);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ j(not_zero, &remainder_not_zero, Label::kNear);
__ cmp(dividend, Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
DCHECK(left_reg.is(eax));
Register right_reg = ToRegister(instr->right());
DCHECK(!right_reg.is(eax));
DCHECK(!right_reg.is(edx));
Register result_reg = ToRegister(instr->result());
DCHECK(result_reg.is(edx));
Label done;
// Check for x % 0, idiv would signal a divide error. We have to
// deopt in this case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(right_reg, Operand(right_reg));
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for kMinInt % -1, idiv would signal a divide error. We
// have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmp(left_reg, kMinInt);
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ cmp(right_reg, -1);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero);
} else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ Move(result_reg, Immediate(0));
__ jmp(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Sign extend dividend in eax into edx:eax.
__ cdq();
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
__ test(left_reg, Operand(left_reg));
__ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
__ test(result_reg, Operand(result_reg));
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
__ jmp(&done, Label::kNear);
__ bind(&positive_left);
}
__ idiv(right_reg);
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmp(dividend, kMinInt);
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ test(dividend, Immediate(mask));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
__ Move(result, dividend);
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift > 0) {
// The arithmetic shift is always OK, the 'if' is an optimization only.
if (shift > 1) __ sar(result, 31);
__ shr(result, 32 - shift);
__ add(result, dividend);
__ sar(result, shift);
}
if (divisor < 0) __ neg(result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ mov(eax, edx);
__ imul(eax, eax, divisor);
__ sub(eax, dividend);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
DCHECK(dividend.is(eax));
DCHECK(remainder.is(edx));
DCHECK(ToRegister(instr->result()).is(eax));
DCHECK(!divisor.is(eax));
DCHECK(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(÷nd_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ test(remainder, remainder);
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
if (divisor == 1) return;
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sar(dividend, shift);
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ neg(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sar(dividend, shift);
return;
}
Label not_kmin_int, done;
__ j(no_overflow, ¬_kmin_int, Label::kNear);
__ mov(dividend, Immediate(kMinInt / divisor));
__ jmp(&done, Label::kNear);
__ bind(¬_kmin_int);
__ sar(dividend, shift);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp3());
DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
Label needs_adjustment, done;
__ cmp(dividend, Immediate(0));
__ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ jmp(&done, Label::kNear);
__ bind(&needs_adjustment);
__ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
__ TruncatingDiv(temp, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ dec(edx);
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
DCHECK(dividend.is(eax));
DCHECK(remainder.is(edx));
DCHECK(result.is(eax));
DCHECK(!divisor.is(eax));
DCHECK(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(÷nd_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
Label done;
__ test(remainder, remainder);
__ j(zero, &done, Label::kNear);
__ xor_(remainder, divisor);
__ sar(remainder, 31);
__ add(result, remainder);
__ bind(&done);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->left());
LOperand* right = instr->right();
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ mov(ToRegister(instr->temp()), left);
}
if (right->IsConstantOperand()) {
// Try strength reductions on the multiplication.
// All replacement instructions are at most as long as the imul
// and have better latency.
int constant = ToInteger32(LConstantOperand::cast(right));
if (constant == -1) {
__ neg(left);
} else if (constant == 0) {
__ xor_(left, Operand(left));
} else if (constant == 2) {
__ add(left, Operand(left));
} else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
// If we know that the multiplication can't overflow, it's safe to
// use instructions that don't set the overflow flag for the
// multiplication.
switch (constant) {
case 1:
// Do nothing.
break;
case 3:
__ lea(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shl(left, 2);
break;
case 5:
__ lea(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shl(left, 3);
break;
case 9:
__ lea(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shl(left, 4);
break;
default:
__ imul(left, left, constant);
break;
}
} else {
__ imul(left, left, constant);
}
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(left);
}
__ imul(left, ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ test(left, Operand(left));
__ j(not_zero, &done);
if (right->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(right)) < 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
} else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
__ cmp(ToRegister(instr->temp()), Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
}
} else {
// Test the non-zero operand for negative sign.
__ or_(ToRegister(instr->temp()), ToOperand(right));
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), right_operand);
break;
case Token::BIT_OR:
__ or_(ToRegister(left), right_operand);
break;
case Token::BIT_XOR:
if (right_operand == int32_t(~0)) {
__ not_(ToRegister(left));
} else {
__ xor_(ToRegister(left), right_operand);
}
break;
default:
UNREACHABLE();
break;
}
} else {
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_OR:
__ or_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_XOR:
__ xor_(ToRegister(left), ToOperand(right));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsRegister()) {
DCHECK(ToRegister(right).is(ecx));
switch (instr->op()) {
case Token::ROR:
__ ror_cl(ToRegister(left));
break;
case Token::SAR:
__ sar_cl(ToRegister(left));
break;
case Token::SHR:
__ shr_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
__ shl_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count == 0 && instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
} else {
__ ror(ToRegister(left), shift_count);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sar(ToRegister(left), shift_count);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ shr(ToRegister(left), shift_count);
} else if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ shl(ToRegister(left), shift_count - 1);
}
__ SmiTag(ToRegister(left));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
} else {
__ shl(ToRegister(left), shift_count);
}
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ sub(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ sub(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
uint64_t const bits = instr->bits();
uint32_t const lower = static_cast<uint32_t>(bits);
uint32_t const upper = static_cast<uint32_t>(bits >> 32);
DCHECK(instr->result()->IsDoubleRegister());
__ push(Immediate(upper));
__ push(Immediate(lower));
X87Register reg = ToX87Register(instr->result());
X87Mov(reg, Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Register reg = ToRegister(instr->result());
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ LoadObject(reg, object);
}
Operand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToRepresentation(LConstantOperand::cast(index),
Representation::Integer32());
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldOperand(string, SeqString::kHeaderSize + offset);
}
return FieldOperand(
string, ToRegister(index),
encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register result = ToRegister(instr->result());
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
__ push(string);
__ mov(string, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
__ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(equal, kUnexpectedStringType);
__ pop(string);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ movzx_b(result, operand);
} else {
__ movzx_w(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
Register value = ToRegister(instr->value());
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (instr->value()->IsConstantOperand()) {
int value = ToRepresentation(LConstantOperand::cast(instr->value()),
Representation::Integer32());
DCHECK_LE(0, value);
if (encoding == String::ONE_BYTE_ENCODING) {
DCHECK_LE(value, String::kMaxOneByteCharCode);
__ mov_b(operand, static_cast<int8_t>(value));
} else {
DCHECK_LE(value, String::kMaxUtf16CodeUnit);
__ mov_w(operand, static_cast<int16_t>(value));
}
} else {
Register value = ToRegister(instr->value());
if (encoding == String::ONE_BYTE_ENCODING) {
__ mov_b(operand, value);
} else {
__ mov_w(operand, value);
}
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
if (right->IsConstantOperand()) {
int32_t offset = ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
__ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
} else {
Operand address(ToRegister(left), ToRegister(right), times_1, 0);
__ lea(ToRegister(instr->result()), address);
}
} else {
if (right->IsConstantOperand()) {
__ add(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ add(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Label return_left;
Condition condition = (operation == HMathMinMax::kMathMin)
? less_equal
: greater_equal;
if (right->IsConstantOperand()) {
Operand left_op = ToOperand(left);
Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
instr->hydrogen()->representation());
__ cmp(left_op, immediate);
__ j(condition, &return_left, Label::kNear);
__ mov(left_op, immediate);
} else {
Register left_reg = ToRegister(left);
Operand right_op = ToOperand(right);
__ cmp(left_reg, right_op);
__ j(condition, &return_left, Label::kNear);
__ mov(left_reg, right_op);
}
__ bind(&return_left);
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
Label check_nan_left, check_zero, return_left, return_right;
Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
X87Register left_reg = ToX87Register(left);
X87Register right_reg = ToX87Register(right);
X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result()));
__ fld(1);
__ fld(1);
__ FCmp();
__ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
__ j(equal, &check_zero, Label::kNear); // left == right.
__ j(condition, &return_left, Label::kNear);
__ jmp(&return_right, Label::kNear);
__ bind(&check_zero);
__ fld(0);
__ fldz();
__ FCmp();
__ j(not_equal, &return_left, Label::kNear); // left == right != 0.
// At this point, both left and right are either 0 or -0.
if (operation == HMathMinMax::kMathMin) {
// Push st0 and st1 to stack, then pop them to temp registers and OR them,
// load it to left.
Register scratch_reg = ToRegister(instr->temp());
__ fld(1);
__ fld(1);
__ sub(esp, Immediate(2 * kPointerSize));
__ fstp_s(MemOperand(esp, 0));
__ fstp_s(MemOperand(esp, kPointerSize));
__ pop(scratch_reg);
__ or_(MemOperand(esp, 0), scratch_reg);
X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand);
__ pop(scratch_reg); // restore esp
} else {
// Since we operate on +0 and/or -0, addsd and andsd have the same effect.
// Should put the result in stX0
__ fadd_i(1);
}
__ jmp(&return_left, Label::kNear);
__ bind(&check_nan_left);
__ fld(0);
__ fld(0);
__ FCmp(); // NaN check.
__ j(parity_even, &return_left, Label::kNear); // left == NaN.
__ bind(&return_right);
X87Mov(left_reg, right_reg);
__ bind(&return_left);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
X87Register left = ToX87Register(instr->left());
X87Register right = ToX87Register(instr->right());
X87Register result = ToX87Register(instr->result());
if (instr->op() != Token::MOD) {
X87PrepareBinaryOp(left, right, result);
}
// Set the precision control to double-precision.
__ X87SetFPUCW(0x027F);
switch (instr->op()) {
case Token::ADD:
__ fadd_i(1);
break;
case Token::SUB:
__ fsub_i(1);
break;
case Token::MUL:
__ fmul_i(1);
break;
case Token::DIV:
__ fdiv_i(1);
break;
case Token::MOD: {
// Pass two doubles as arguments on the stack.
__ PrepareCallCFunction(4, eax);
X87Mov(Operand(esp, 1 * kDoubleSize), right);
X87Mov(Operand(esp, 0), left);
X87Free(right);
DCHECK(left.is(result));
X87PrepareToWrite(result);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()),
4);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
break;
}
default:
UNREACHABLE();
break;
}
// Restore the default value of control word.
__ X87SetFPUCW(0x037F);
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->left()).is(edx));
DCHECK(ToRegister(instr->right()).is(eax));
DCHECK(ToRegister(instr->result()).is(eax));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cc == no_condition) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
int true_block = instr->TrueDestination(chunk_);
if (cc == no_condition) {
__ jmp(chunk_->GetAssemblyLabel(true_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(true_block));
}
}
template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
int false_block = instr->FalseDestination(chunk_);
if (cc == no_condition) {
__ jmp(chunk_->GetAssemblyLabel(false_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(false_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsSmiOrInteger32()) {
Register reg = ToRegister(instr->value());
__ test(reg, Operand(reg));
EmitBranch(instr, not_zero);
} else if (r.IsDouble()) {
X87Register reg = ToX87Register(instr->value());
X87LoadForUsage(reg);
__ fldz();
__ FCmp();
EmitBranch(instr, not_zero);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ cmp(reg, factory()->true_value());
EmitBranch(instr, equal);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ test(reg, Operand(reg));
EmitBranch(instr, not_equal);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, no_condition);
} else if (type.IsHeapNumber()) {
UNREACHABLE();
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
EmitBranch(instr, not_equal);
} else {
ToBooleanHints expected = instr->hydrogen()->expected_input_types();
if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
if (expected & ToBooleanHint::kUndefined) {
// undefined -> false.
__ cmp(reg, factory()->undefined_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kBoolean) {
// true -> true.
__ cmp(reg, factory()->true_value());
__ j(equal, instr->TrueLabel(chunk_));
// false -> false.
__ cmp(reg, factory()->false_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kNull) {
// 'null' -> false.
__ cmp(reg, factory()->null_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kSmallInteger) {
// Smis: 0 -> false, all other -> true.
__ test(reg, Operand(reg));
__ j(equal, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected & ToBooleanHint::kNeedsMap) {
// If we need a map later and have a Smi -> deopt.
__ test(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
}
Register map = no_reg; // Keep the compiler happy.
if (expected & ToBooleanHint::kNeedsMap) {
map = ToRegister(instr->temp());
DCHECK(!map.is(reg));
__ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected & ToBooleanHint::kCanBeUndetectable) {
// Undetectable -> false.
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, instr->FalseLabel(chunk_));
}
}
if (expected & ToBooleanHint::kReceiver) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kString) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, ¬_string, Label::kNear);
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, instr->TrueLabel(chunk_));
__ jmp(instr->FalseLabel(chunk_));
__ bind(¬_string);
}
if (expected & ToBooleanHint::kSymbol) {
// Symbol value -> true.
__ CmpInstanceType(map, SYMBOL_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kHeapNumber) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(not_equal, ¬_heap_number, Label::kNear);
__ fldz();
__ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
__ FCmp();
__ j(zero, instr->FalseLabel(chunk_));
__ jmp(instr->TrueLabel(chunk_));
__ bind(¬_heap_number);
}
if (expected != ToBooleanHint::kAny) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject);
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::NE:
case Token::NE_STRICT:
cond = not_equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->is_double() ||
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cc = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
X87LoadForUsage(ToX87Register(right), ToX87Register(left));
__ FCmp();
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ j(parity_even, instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
__ cmp(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else if (left->IsConstantOperand()) {
__ cmp(ToOperand(right),
ToImmediate(left, instr->hydrogen()->representation()));
// We commuted the operands, so commute the condition.
cc = CommuteCondition(cc);
} else {
__ cmp(ToRegister(left), ToOperand(right));
}
}
EmitBranch(instr, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
if (instr->right()->IsConstantOperand()) {
Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
__ CmpObject(left, right);
} else {
Operand right = ToOperand(instr->right());
__ cmp(left, right);
}
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ cmp(input_reg, factory()->the_hole_value());
EmitBranch(instr, equal);
return;
}
// Put the value to the top of stack
X87Register src = ToX87Register(instr->object());
X87LoadForUsage(src);
__ fld(0);
__ fld(0);
__ FCmp();
Label ok;
__ j(parity_even, &ok, Label::kNear);
__ fstp(0);
EmitFalseBranch(instr, no_condition);
__ bind(&ok);
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(MemOperand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
EmitBranch(instr, equal);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Condition true_cond = EmitIsString(
reg, temp, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Operand input = ToOperand(instr->value());
__ test(input, Immediate(kSmiTagMask));
EmitBranch(instr, zero);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(temp, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
EmitBranch(instr, not_zero);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->left()).is(edx));
DCHECK(ToRegister(instr->right()).is(eax));
Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
__ CompareRoot(eax, Heap::kTrueValueRootIndex);
EmitBranch(instr, equal);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CmpObjectType(input, TestType(instr->hydrogen()), temp);
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
// Branches to a label or falls through with the answer in the z flag. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
__ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
__ j(above_equal, is_true);
} else {
__ j(above_equal, is_false);
}
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
// Check if the constructor in the map is a function.
__ GetMapConstructor(temp, temp, temp2);
// Objects with a non-function constructor have class 'Object'.
__ CmpInstanceType(temp2, JS_FUNCTION_TYPE);
if (String::Equals(class_name, isolate()->factory()->Object_string())) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ mov(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
__ cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Register temp2 = ToRegister(instr->temp2());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
__ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(instr, equal);
}
void LCodeGen::DoHasInPrototypeChainAndBranch(
LHasInPrototypeChainAndBranch* instr) {
Register const object = ToRegister(instr->object());
Register const object_map = ToRegister(instr->scratch());
Register const object_prototype = object_map;
Register const prototype = ToRegister(instr->prototype());
// The {object} must be a spec object. It's sufficient to know that {object}
// is not a smi, since all other non-spec objects have {null} prototypes and
// will be ruled out below.
if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
__ test(object, Immediate(kSmiTagMask));
EmitFalseBranch(instr, zero);
}
// Loop through the {object}s prototype chain looking for the {prototype}.
__ mov(object_map, FieldOperand(object, HeapObject::kMapOffset));
Label loop;
__ bind(&loop);
// Deoptimize if the object needs to be access checked.
__ test_b(FieldOperand(object_map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck);
// Deoptimize for proxies.
__ CmpInstanceType(object_map, JS_PROXY_TYPE);
DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy);
__ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
__ cmp(object_prototype, factory()->null_value());
EmitFalseBranch(instr, equal);
__ cmp(object_prototype, prototype);
EmitTrueBranch(instr, equal);
__ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
__ jmp(&loop);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = ComputeCompareCondition(op);
Label true_value, done;
__ test(eax, Operand(eax));
__ j(condition, &true_value, Label::kNear);
__ mov(ToRegister(instr->result()), factory()->false_value());
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ mov(ToRegister(instr->result()), factory()->true_value());
__ bind(&done);
}
void LCodeGen::EmitReturn(LReturn* instr) {
int extra_value_count = 1;
if (instr->has_constant_parameter_count()) {
int parameter_count = ToInteger32(instr->constant_parameter_count());
__ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
} else {
DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
__ SmiUntag(reg);
Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
// emit code to restore stack based on instr->parameter_count()
__ pop(return_addr_reg); // save return address
__ shl(reg, kPointerSizeLog2);
__ add(esp, reg);
__ jmp(return_addr_reg);
}
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Preserve the return value on the stack and rely on the runtime call
// to return the value in the same register. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ push(eax);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit);
}
if (NeedsEagerFrame()) {
__ mov(esp, ebp);
__ pop(ebp);
}
EmitReturn(instr);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ mov(result, ContextOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(result, factory()->the_hole_value());
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
} else {
Label is_not_hole;
__ j(not_equal, &is_not_hole, Label::kNear);
__ mov(result, factory()->undefined_value());
__ bind(&is_not_hole);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Label skip_assignment;
Operand target = ContextOperand(context, instr->slot_index());
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(target, factory()->the_hole_value());
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
} else {
__ j(not_equal, &skip_assignment, Label::kNear);
}
}
__ mov(target, value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Register temp = ToRegister(instr->temp());
int offset = Context::SlotOffset(instr->slot_index());
__ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs,
EMIT_REMEMBERED_SET, check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
MemOperand operand = instr->object()->IsConstantOperand()
? MemOperand::StaticVariable(ToExternalReference(
LConstantOperand::cast(instr->object())))
: MemOperand(ToRegister(instr->object()), offset);
__ Load(result, operand, access.representation());
return;
}
Register object = ToRegister(instr->object());
if (instr->hydrogen()->representation().IsDouble()) {
X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
object = result;
}
__ Load(result, FieldOperand(object, offset), access.representation());
}
void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
DCHECK(!operand->IsDoubleRegister());
if (operand->IsConstantOperand()) {
Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
AllowDeferredHandleDereference smi_check;
if (object->IsSmi()) {
__ Push(Handle<Smi>::cast(object));
} else {
__ PushHeapObject(Handle<HeapObject>::cast(object));
}
} else if (operand->IsRegister()) {
__ push(ToRegister(operand));
} else {
__ push(ToOperand(operand));
}
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register temp = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
// Get the prototype or initial map from the function.
__ mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ cmp(Operand(result), Immediate(factory()->the_hole_value()));
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
// If the function does not have an initial map, we're done.
Label done;
__ CmpObjectType(result, MAP_TYPE, temp);
__ j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
__ mov(result, FieldOperand(result, Map::kPrototypeOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
if (instr->length()->IsConstantOperand() &&
instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
int index = (const_length - const_index) + 1;
__ mov(result, Operand(arguments, index * kPointerSize));
} else {
Register length = ToRegister(instr->length());
Operand index = ToOperand(instr->index());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ sub(length, index);
__ mov(result, Operand(arguments, length, times_4, kPointerSize));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (!key->IsConstantOperand() &&
ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
elements_kind)) {
__ SmiUntag(ToRegister(key));
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == FLOAT32_ELEMENTS) {
X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
} else if (elements_kind == FLOAT64_ELEMENTS) {
X87Mov(ToX87Register(instr->result()), operand);
} else {
Register result(ToRegister(instr->result()));
switch (elements_kind) {
case INT8_ELEMENTS:
__ movsx_b(result, operand);
break;
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ movzx_b(result, operand);
break;
case INT16_ELEMENTS:
__ movsx_w(result, operand);
break;
case UINT16_ELEMENTS:
__ movzx_w(result, operand);
break;
case INT32_ELEMENTS:
__ mov(result, operand);
break;
case UINT32_ELEMENTS:
__ mov(result, operand);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
__ test(result, Operand(result));
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
if (instr->hydrogen()->RequiresHoleCheck()) {
Operand hole_check_operand = BuildFastArrayOperand(
instr->elements(), instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset() + sizeof(kHoleNanLower32));
__ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
}
Operand double_load_operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
X87Mov(ToX87Register(instr->result()), double_load_operand);
}
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
Register result = ToRegister(instr->result());
// Load the result.
__ mov(result,
BuildFastArrayOperand(instr->elements(), instr->key(),
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS, instr->base_offset()));
// Check for the hole value.
if (instr->hydrogen()->RequiresHoleCheck()) {
if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
__ test(result, Immediate(kSmiTagMask));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotASmi);
} else {
__ cmp(result, factory()->the_hole_value());
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
}
} else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
Label done;
__ cmp(result, factory()->the_hole_value());
__ j(not_equal, &done);
if (info()->IsStub()) {
// A stub can safely convert the hole to undefined only if the array
// protector cell contains (Smi) Isolate::kProtectorValid.
// Otherwise it needs to bail out.
__ LoadRoot(result, Heap::kArrayProtectorRootIndex);
__ cmp(FieldOperand(result, PropertyCell::kValueOffset),
Immediate(Smi::FromInt(Isolate::kProtectorValid)));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole);
}
__ mov(result, isolate()->factory()->undefined_value());
__ bind(&done);
}
}
void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
if (instr->is_fixed_typed_array()) {
DoLoadKeyedExternalArray(instr);
} else if (instr->hydrogen()->representation().IsDouble()) {
DoLoadKeyedFixedDoubleArray(instr);
} else {
DoLoadKeyedFixedArray(instr);
}
}
Operand LCodeGen::BuildFastArrayOperand(
LOperand* elements_pointer,
LOperand* key,
Representation key_representation,
ElementsKind elements_kind,
uint32_t base_offset) {
Register elements_pointer_reg = ToRegister(elements_pointer);
int element_shift_size = ElementsKindToShiftSize(elements_kind);
int shift_size = element_shift_size;
if (key->IsConstantOperand()) {
int constant_value = ToInteger32(LConstantOperand::cast(key));
if (constant_value & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
return Operand(elements_pointer_reg,
((constant_value) << shift_size)
+ base_offset);
} else {
// Take the tag bit into account while computing the shift size.
if (key_representation.IsSmi() && (shift_size >= 1)) {
shift_size -= kSmiTagSize;
}
ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
return Operand(elements_pointer_reg,
ToRegister(key),
scale_factor,
base_offset);
}
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register result = ToRegister(instr->result());
if (instr->hydrogen()->from_inlined()) {
__ lea(result, Operand(esp, -2 * kPointerSize));
} else if (instr->hydrogen()->arguments_adaptor()) {
// Check for arguments adapter frame.
Label done, adapted;
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result,
Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset));
__ cmp(Operand(result),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adapted, Label::kNear);
// No arguments adaptor frame.
__ mov(result, Operand(ebp));
__ jmp(&done, Label::kNear);
// Arguments adaptor frame present.
__ bind(&adapted);
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ bind(&done);
} else {
__ mov(result, Operand(ebp));
}
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Operand elem = ToOperand(instr->elements());
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
__ cmp(ebp, elem);
__ mov(result, Immediate(scope()->num_parameters()));
__ j(equal, &done, Label::kNear);
// Arguments adaptor frame present. Get argument length from there.
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result, Operand(result,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label receiver_ok, global_object;
Label::Distance dist;
// For x87 debug version jitted code's size exceeds 128 bytes whether
// FLAG_deopt_every_n_times
// is set or not. Always use Label:kFar for label distance for debug mode.
if (FLAG_debug_code)
dist = Label::kFar;
else
dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
Register scratch = ToRegister(instr->temp());
if (!instr->hydrogen()->known_function()) {
// Do not transform the receiver to object for strict mode
// functions.
__ mov(scratch,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &receiver_ok, dist);
// Do not transform the receiver to object for builtins.
__ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ j(not_equal, &receiver_ok, dist);
}
// Normal function. Replace undefined or null with global receiver.
__ cmp(receiver, factory()->null_value());
__ j(equal, &global_object, dist);
__ cmp(receiver, factory()->undefined_value());
__ j(equal, &global_object, dist);
// The receiver should be a JS object.
__ test(receiver, Immediate(kSmiTagMask));
DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi);
__ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, scratch);
DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject);
__ jmp(&receiver_ok, dist);
__ bind(&global_object);
__ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
__ mov(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
__ mov(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
__ bind(&receiver_ok);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
DCHECK(receiver.is(eax)); // Used for parameter count.
DCHECK(function.is(edi)); // Required by InvokeFunction.
DCHECK(ToRegister(instr->result()).is(eax));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmp(length, kArgumentsLimit);
DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments);
__ push(receiver);
__ mov(receiver, length);
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ test(length, Operand(length));
__ j(zero, &invoke, Label::kNear);
__ bind(&loop);
__ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
__ dec(length);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
InvokeFlag flag = CALL_FUNCTION;
if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
DCHECK(!info()->saves_caller_doubles());
// TODO(ishell): drop current frame before pushing arguments to the stack.
flag = JUMP_FUNCTION;
ParameterCount actual(eax);
// It is safe to use ebx, ecx and edx as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) ebx (expected arguments count) and edx (new.target) will be
// initialized below.
PrepareForTailCall(actual, ebx, ecx, edx);
}
DCHECK(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(eax);
__ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ int3();
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->value();
EmitPushTaggedOperand(argument);
}
void LCodeGen::DoDrop(LDrop* instr) {
__ Drop(instr->count());
}
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
if (info()->IsOptimizing()) {
__ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
} else {
// If there is no frame, the context must be in esi.
DCHECK(result.is(esi));
}
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
__ push(Immediate(instr->hydrogen()->declarations()));
__ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
__ push(Immediate(instr->hydrogen()->feedback_vector()));
CallRuntime(Runtime::kDeclareGlobals, instr);
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count, int arity,
bool is_tail_call, LInstruction* instr) {
bool dont_adapt_arguments =
formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
bool can_invoke_directly =
dont_adapt_arguments || formal_parameter_count == arity;
Register function_reg = edi;
if (can_invoke_directly) {
// Change context.
__ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset));
// Always initialize new target and number of actual arguments.
__ mov(edx, factory()->undefined_value());
__ mov(eax, arity);
bool is_self_call = function.is_identical_to(info()->closure());
// Invoke function directly.
if (is_self_call) {
Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
if (is_tail_call) {
__ Jump(self, RelocInfo::CODE_TARGET);
} else {
__ Call(self, RelocInfo::CODE_TARGET);
}
} else {
Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
if (is_tail_call) {
__ jmp(target);
} else {
__ call(target);
}
}
if (!is_tail_call) {
// Set up deoptimization.
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
} else {
// We need to adapt arguments.
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(arity);
ParameterCount expected(formal_parameter_count);
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(function_reg, expected, actual, flag, generator);
}
}
void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
DCHECK(ToRegister(instr->result()).is(eax));
if (instr->hydrogen()->IsTailCall()) {
if (NeedsEagerFrame()) __ leave();
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
__ jmp(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
__ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(target);
}
} else {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
__ call(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
generator.BeforeCall(__ CallSize(Operand(target)));
__ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(target);
}
generator.AfterCall();
}
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
Label slow, allocated, done;
uint32_t available_regs = eax.bit() | ecx.bit() | edx.bit() | ebx.bit();
available_regs &= ~input_reg.bit();
if (instr->context()->IsRegister()) {
// Make sure that the context isn't overwritten in the AllocateHeapNumber
// macro below.
available_regs &= ~ToRegister(instr->context()).bit();
}
Register tmp =
Register::from_code(base::bits::CountTrailingZeros32(available_regs));
available_regs &= ~tmp.bit();
Register tmp2 =
Register::from_code(base::bits::CountTrailingZeros32(available_regs));
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
__ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| will be restored
// unchanged by popping safepoint registers.
__ test(tmp, Immediate(HeapNumber::kSignMask));
__ j(zero, &done, Label::kNear);
__ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
__ jmp(&allocated, Label::kNear);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
instr, instr->context());
// Set the pointer to the new heap number in tmp.
if (!tmp.is(eax)) __ mov(tmp, eax);
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input_reg, input_reg);
__ bind(&allocated);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ and_(tmp2, ~HeapNumber::kSignMask);
__ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
__ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
__ StoreToSafepointRegisterSlot(input_reg, tmp);
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ test(input_reg, Operand(input_reg));
Label is_positive;
__ j(not_sign, &is_positive, Label::kNear);
__ neg(input_reg); // Sets flags.
DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
__ bind(&is_positive);
}
void LCodeGen::DoMathAbs(LMathAbs* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LMathAbs* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LMathAbs* instr_;
};
DCHECK(instr->value()->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
X87Register value = ToX87Register(instr->value());
X87Fxch(value);
__ fabs();
} else if (r.IsSmiOrInteger32()) {
EmitIntegerMathAbs(instr);
} else { // Tagged case.
DeferredMathAbsTaggedHeapNumber* deferred =
new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
Register input_reg = ToRegister(instr->value());
// Smi check.
__ JumpIfNotSmi(input_reg, deferred->entry());
EmitIntegerMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LMathFloor* instr) {
Register output_reg = ToRegister(instr->result());
X87Register input_reg = ToX87Register(instr->value());
X87Fxch(input_reg);
Label not_minus_zero, done;
// Deoptimize on unordered.
__ fldz();
__ fld(1);
__ FCmp();
DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
__ j(below, ¬_minus_zero, Label::kNear);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Check for negative zero.
__ j(not_equal, ¬_minus_zero, Label::kNear);
// +- 0.0.
__ fld(0);
__ FXamSign();
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
__ Move(output_reg, Immediate(0));
__ jmp(&done, Label::kFar);
}
// Positive input.
// rc=01B, round down.
__ bind(¬_minus_zero);
__ fnclex();
__ X87SetRC(0x0400);
__ sub(esp, Immediate(kPointerSize));
__ fist_s(Operand(esp, 0));
__ pop(output_reg);
__ X87SetRC(0x0000);
__ X87CheckIA();
DeoptimizeIf(equal, instr, DeoptimizeReason::kOverflow);
__ fnclex();
__ X87SetRC(0x0000);
__ bind(&done);
}
void LCodeGen::DoMathRound(LMathRound* instr) {
X87Register input_reg = ToX87Register(instr->value());
Register result = ToRegister(instr->result());
X87Fxch(input_reg);
Label below_one_half, below_minus_one_half, done;
ExternalReference one_half = ExternalReference::address_of_one_half();
ExternalReference minus_one_half =
ExternalReference::address_of_minus_one_half();
__ fld_d(Operand::StaticVariable(one_half));
__ fld(1);
__ FCmp();
__ j(carry, &below_one_half);
// Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x)
__ fld(0);
__ fadd_d(Operand::StaticVariable(one_half));
// rc=11B, round toward zero.
__ X87SetRC(0x0c00);
__ sub(esp, Immediate(kPointerSize));
// Clear exception bits.
__ fnclex();
__ fistp_s(MemOperand(esp, 0));
// Restore round mode.
__ X87SetRC(0x0000);
// Check overflow.
__ X87CheckIA();
__ pop(result);
DeoptimizeIf(equal, instr, DeoptimizeReason::kConversionOverflow);
__ fnclex();
// Restore round mode.
__ X87SetRC(0x0000);
__ jmp(&done);
__ bind(&below_one_half);
__ fld_d(Operand::StaticVariable(minus_one_half));
__ fld(1);
__ FCmp();
__ j(carry, &below_minus_one_half);
// We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
// we can ignore the difference between a result of -0 and +0.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// If the sign is positive, we return +0.
__ fld(0);
__ FXamSign();
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
}
__ Move(result, Immediate(0));
__ jmp(&done);
__ bind(&below_minus_one_half);
__ fld(0);
__ fadd_d(Operand::StaticVariable(one_half));
// rc=01B, round down.
__ X87SetRC(0x0400);
__ sub(esp, Immediate(kPointerSize));
// Clear exception bits.
__ fnclex();
__ fistp_s(MemOperand(esp, 0));
// Restore round mode.
__ X87SetRC(0x0000);
// Check overflow.
__ X87CheckIA();
__ pop(result);
DeoptimizeIf(equal, instr, DeoptimizeReason::kConversionOverflow);
__ fnclex();
// Restore round mode.
__ X87SetRC(0x0000);
__ bind(&done);
}
void LCodeGen::DoMathFround(LMathFround* instr) {
X87Register input_reg = ToX87Register(instr->value());
X87Fxch(input_reg);
__ sub(esp, Immediate(kPointerSize));
__ fstp_s(MemOperand(esp, 0));
X87Fld(MemOperand(esp, 0), kX87FloatOperand);
__ add(esp, Immediate(kPointerSize));
}
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
X87Register input_reg = ToX87Register(instr->value());
__ X87SetFPUCW(0x027F);
X87Fxch(input_reg);
__ fsqrt();
__ X87SetFPUCW(0x037F);
}
void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
X87Register input_reg = ToX87Register(instr->value());
DCHECK(ToX87Register(instr->result()).is(input_reg));
X87Fxch(input_reg);
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done, sqrt;
// Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1
__ fxam();
__ push(eax);
__ fnstsw_ax();
__ and_(eax, Immediate(0x4700));
__ cmp(eax, Immediate(0x0700));
__ j(not_equal, &sqrt, Label::kNear);
// If input is -Infinity, return Infinity.
__ fchs();
__ jmp(&done, Label::kNear);
// Square root.
__ bind(&sqrt);
__ fldz();
__ faddp(); // Convert -0 to +0.
__ fsqrt();
__ bind(&done);
__ pop(eax);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
X87Register result = ToX87Register(instr->result());
// Having marked this as a call, we can use any registers.
X87Register base = ToX87Register(instr->left());
ExternalReference one_half = ExternalReference::address_of_one_half();
if (exponent_type.IsSmi()) {
Register exponent = ToRegister(instr->right());
X87LoadForUsage(base);
__ SmiUntag(exponent);
__ push(exponent);
__ fild_s(MemOperand(esp, 0));
__ pop(exponent);
} else if (exponent_type.IsTagged()) {
Register exponent = ToRegister(instr->right());
Register temp = exponent.is(ecx) ? eax : ecx;
Label no_deopt, done;
X87LoadForUsage(base);
__ JumpIfSmi(exponent, &no_deopt);
__ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
// Heap number(double)
__ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset));
__ jmp(&done);
// SMI
__ bind(&no_deopt);
__ SmiUntag(exponent);
__ push(exponent);
__ fild_s(MemOperand(esp, 0));
__ pop(exponent);
__ bind(&done);
} else if (exponent_type.IsInteger32()) {
Register exponent = ToRegister(instr->right());
X87LoadForUsage(base);
__ push(exponent);
__ fild_s(MemOperand(esp, 0));
__ pop(exponent);
} else {
DCHECK(exponent_type.IsDouble());
X87Register exponent_double = ToX87Register(instr->right());
X87LoadForUsage(base, exponent_double);
}
// FP data stack {base, exponent(TOS)}.
// Handle (exponent==+-0.5 && base == -0).
Label not_plus_0;
__ fld(0);
__ fabs();
X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand);
__ FCmp();
__ j(parity_even, ¬_plus_0, Label::kNear); // NaN.
__ j(not_equal, ¬_plus_0, Label::kNear);
__ fldz();
// FP data stack {base, exponent(TOS), zero}.
__ faddp(2);
__ bind(¬_plus_0);
{
__ PrepareCallCFunction(4, eax);
__ fstp_d(MemOperand(esp, kDoubleSize)); // Exponent value.
__ fstp_d(MemOperand(esp, 0)); // Base value.
X87PrepareToWrite(result);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
4);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
}
}
void LCodeGen::DoMathLog(LMathLog* instr) {
DCHECK(instr->value()->Equals(instr->result()));
X87Register result = ToX87Register(instr->result());
X87Register input_reg = ToX87Register(instr->value());
X87Fxch(input_reg);
// Pass one double as argument on the stack.
__ PrepareCallCFunction(2, eax);
__ fstp_d(MemOperand(esp, 0));
X87PrepareToWrite(result);
__ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 2);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
}
void LCodeGen::DoMathClz32(LMathClz32* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
__ Lzcnt(result, input);
}
void LCodeGen::DoMathCos(LMathCos* instr) {
X87Register result = ToX87Register(instr->result());
X87Register input_reg = ToX87Register(instr->value());
__ fld(x87_stack_.st(input_reg));
// Pass one double as argument on the stack.
__ PrepareCallCFunction(2, eax);
__ fstp_d(MemOperand(esp, 0));
X87PrepareToWrite(result);
__ X87SetFPUCW(0x027F);
__ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 2);
__ X87SetFPUCW(0x037F);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
}
void LCodeGen::DoMathSin(LMathSin* instr) {
X87Register result = ToX87Register(instr->result());
X87Register input_reg = ToX87Register(instr->value());
__ fld(x87_stack_.st(input_reg));
// Pass one double as argument on the stack.
__ PrepareCallCFunction(2, eax);
__ fstp_d(MemOperand(esp, 0));
X87PrepareToWrite(result);
__ X87SetFPUCW(0x027F);
__ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 2);
__ X87SetFPUCW(0x037F);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
}
void LCodeGen::DoMathExp(LMathExp* instr) {
X87Register result = ToX87Register(instr->result());
X87Register input_reg = ToX87Register(instr->value());
__ fld(x87_stack_.st(input_reg));
// Pass one double as argument on the stack.
__ PrepareCallCFunction(2, eax);
__ fstp_d(MemOperand(esp, 0));
X87PrepareToWrite(result);
__ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 2);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
}
void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
Register scratch1, Register scratch2,
Register scratch3) {
#if DEBUG
if (actual.is_reg()) {
DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
} else {
DCHECK(!AreAliased(scratch1, scratch2, scratch3));
}
#endif
if (FLAG_code_comments) {
if (actual.is_reg()) {
Comment(";;; PrepareForTailCall, actual: %s {",
RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
actual.reg().code()));
} else {
Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
}
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &no_arguments_adaptor, Label::kNear);
// Drop current frame and load arguments count from arguments adaptor frame.
__ mov(ebp, scratch2);
__ mov(caller_args_count_reg,
Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ jmp(&formal_parameter_count_loaded, Label::kNear);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count.
__ mov(caller_args_count_reg,
Immediate(info()->literal()->parameter_count()));
__ bind(&formal_parameter_count_loaded);
__ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
ReturnAddressState::kNotOnStack, 0);
Comment(";;; }");
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
HInvokeFunction* hinstr = instr->hydrogen();
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->function()).is(edi));
DCHECK(instr->HasPointerMap());
bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
if (is_tail_call) {
DCHECK(!info()->saves_caller_doubles());
ParameterCount actual(instr->arity());
// It is safe to use ebx, ecx and edx as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) ebx (expected arguments count) and edx (new.target) will be
// initialized below.
PrepareForTailCall(actual, ebx, ecx, edx);
}
Handle<JSFunction> known_function = hinstr->known_function();
if (known_function.is_null()) {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(instr->arity());
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(edi, no_reg, actual, flag, generator);
} else {
CallKnownFunction(known_function, hinstr->formal_parameter_count(),
instr->arity(), is_tail_call, instr);
}
}
void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->constructor()).is(edi));
DCHECK(ToRegister(instr->result()).is(eax));
__ Move(eax, Immediate(instr->arity()));
__ mov(ebx, instr->hydrogen()->site());
ElementsKind kind = instr->hydrogen()->elements_kind();
AllocationSiteOverrideMode override_mode =
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
? DISABLE_ALLOCATION_SITES
: DONT_OVERRIDE;
if (instr->arity() == 0) {
ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->arity() == 1) {
Label done;
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need a change here
// look at the first argument
__ mov(ecx, Operand(esp, 0));
__ test(ecx, ecx);
__ j(zero, &packed_case, Label::kNear);
ElementsKind holey_kind = GetHoleyElementsKind(kind);
ArraySingleArgumentConstructorStub stub(isolate(),
holey_kind,
override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ jmp(&done, Label::kNear);
__ bind(&packed_case);
}
ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&done);
} else {
ArrayNArgumentsConstructorStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
}
void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
Register function = ToRegister(instr->function());
Register code_object = ToRegister(instr->code_object());
__ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
__ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
}
void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
Register result = ToRegister(instr->result());
Register base = ToRegister(instr->base_object());
if (instr->offset()->IsConstantOperand()) {
LConstantOperand* offset = LConstantOperand::cast(instr->offset());
__ lea(result, Operand(base, ToInteger32(offset)));
} else {
Register offset = ToRegister(instr->offset());
__ lea(result, Operand(base, offset, times_1, 0));
}
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Representation representation = instr->hydrogen()->field_representation();
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
MemOperand operand = instr->object()->IsConstantOperand()
? MemOperand::StaticVariable(
ToExternalReference(LConstantOperand::cast(instr->object())))
: MemOperand(ToRegister(instr->object()), offset);
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
__ mov(operand, Immediate(ToInteger32(operand_value)));
} else {
Register value = ToRegister(instr->value());
__ Store(value, operand, representation);
}
return;
}
Register object = ToRegister(instr->object());
__ AssertNotSmi(object);
DCHECK(!representation.IsSmi() ||
!instr->value()->IsConstantOperand() ||
IsSmi(LConstantOperand::cast(instr->value())));
if (representation.IsDouble()) {
DCHECK(access.IsInobject());
DCHECK(!instr->hydrogen()->has_transition());
DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
X87Register value = ToX87Register(instr->value());
X87Mov(FieldOperand(object, offset), value);
return;
}
if (instr->hydrogen()->has_transition()) {
Handle<Map> transition = instr->hydrogen()->transition_map();
AddDeprecationDependency(transition);
__ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
Register temp = ToRegister(instr->temp());
Register temp_map = ToRegister(instr->temp_map());
__ mov(temp_map, transition);
__ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
// Update the write barrier for the map field.
__ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
}
}
// Do the store.
Register write_register = object;
if (!access.IsInobject()) {
write_register = ToRegister(instr->temp());
__ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
}
MemOperand operand = FieldOperand(write_register, offset);
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (operand_value->IsRegister()) {
Register value = ToRegister(operand_value);
__ Store(value, operand, representation);
} else if (representation.IsInteger32() || representation.IsExternal()) {
Immediate immediate = ToImmediate(operand_value, representation);
DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
__ mov(operand, immediate);
} else {
Handle<Object> handle_value = ToHandle(operand_value);
DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
__ mov(operand, handle_value);
}
} else {
Register value = ToRegister(instr->value());
__ Store(value, operand, representation);
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
Register value = ToRegister(instr->value());
Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
// Update the write barrier for the object for in-object properties.
__ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs,
EMIT_REMEMBERED_SET,
instr->hydrogen()->SmiCheckForWriteBarrier(),
instr->hydrogen()->PointersToHereCheckForValue());
}
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
if (instr->index()->IsConstantOperand()) {
__ cmp(ToOperand(instr->length()),
ToImmediate(LConstantOperand::cast(instr->index()),
instr->hydrogen()->length()->representation()));
cc = CommuteCondition(cc);
} else if (instr->length()->IsConstantOperand()) {
__ cmp(ToOperand(instr->index()),
ToImmediate(LConstantOperand::cast(instr->length()),
instr->hydrogen()->index()->representation()));
} else {
__ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
}
if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
Label done;
__ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
} else {
DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
}
}
void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (!key->IsConstantOperand() &&
ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
elements_kind)) {
__ SmiUntag(ToRegister(key));
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == FLOAT32_ELEMENTS) {
X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand);
} else if (elements_kind == FLOAT64_ELEMENTS) {
uint64_t int_val = kHoleNanInt64;
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
Operand operand2 = BuildFastArrayOperand(
instr->elements(), instr->key(),
instr->hydrogen()->key()->representation(), elements_kind,
instr->base_offset() + kPointerSize);
Label no_special_nan_handling, done;
X87Register value = ToX87Register(instr->value());
X87Fxch(value);
__ lea(esp, Operand(esp, -kDoubleSize));
__ fst_d(MemOperand(esp, 0));
__ lea(esp, Operand(esp, kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
__ j(not_equal, &no_special_nan_handling, Label::kNear);
__ mov(operand, Immediate(lower));
__ mov(operand2, Immediate(upper));
__ jmp(&done, Label::kNear);
__ bind(&no_special_nan_handling);
__ fst_d(operand);
__ bind(&done);
} else {
Register value = ToRegister(instr->value());
switch (elements_kind) {
case UINT8_ELEMENTS:
case INT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ mov_b(operand, value);
break;
case UINT16_ELEMENTS:
case INT16_ELEMENTS:
__ mov_w(operand, value);
break;
case UINT32_ELEMENTS:
case INT32_ELEMENTS:
__ mov(operand, value);
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
Operand double_store_operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
uint64_t int_val = kHoleNanInt64;
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
Operand double_store_operand2 = BuildFastArrayOperand(
instr->elements(), instr->key(),
instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS,
instr->base_offset() + kPointerSize);
if (instr->hydrogen()->IsConstantHoleStore()) {
// This means we should store the (double) hole. No floating point
// registers required.
__ mov(double_store_operand, Immediate(lower));
__ mov(double_store_operand2, Immediate(upper));
} else {
Label no_special_nan_handling, done;
X87Register value = ToX87Register(instr->value());
X87Fxch(value);
if (instr->NeedsCanonicalization()) {
__ fld(0);
__ fld(0);
__ FCmp();
__ j(parity_odd, &no_special_nan_handling, Label::kNear);
// All NaNs are Canonicalized to 0x7fffffffffffffff
__ mov(double_store_operand, Immediate(0xffffffff));
__ mov(double_store_operand2, Immediate(0x7fffffff));
__ jmp(&done, Label::kNear);
} else {
__ lea(esp, Operand(esp, -kDoubleSize));
__ fst_d(MemOperand(esp, 0));
__ lea(esp, Operand(esp, kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
__ j(not_equal, &no_special_nan_handling, Label::kNear);
__ mov(double_store_operand, Immediate(lower));
__ mov(double_store_operand2, Immediate(upper));
__ jmp(&done, Label::kNear);
}
__ bind(&no_special_nan_handling);
__ fst_d(double_store_operand);
__ bind(&done);
}
}
void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
Register elements = ToRegister(instr->elements());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
Operand operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
instr->base_offset());
if (instr->value()->IsRegister()) {
__ mov(operand, ToRegister(instr->value()));
} else {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (IsSmi(operand_value)) {
Immediate immediate = ToImmediate(operand_value, Representation::Smi());
__ mov(operand, immediate);
} else {
DCHECK(!IsInteger32(operand_value));
Handle<Object> handle_value = ToHandle(operand_value);
__ mov(operand, handle_value);
}
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
DCHECK(instr->value()->IsRegister());
Register value = ToRegister(instr->value());
DCHECK(!instr->key()->IsConstantOperand());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
__ lea(key, operand);
__ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET,
check_needed,
instr->hydrogen()->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
// By cases...external, fast-double, fast
if (instr->is_fixed_typed_array()) {
DoStoreKeyedExternalArray(instr);
} else if (instr->hydrogen()->value()->representation().IsDouble()) {
DoStoreKeyedFixedDoubleArray(instr);
} else {
DoStoreKeyedFixedArray(instr);
}
}
void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
Register object = ToRegister(instr->object());
Register temp = ToRegister(instr->temp());
Label no_memento_found;
__ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound);
__ bind(&no_memento_found);
}
void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
class DeferredMaybeGrowElements final : public LDeferredCode {
public:
DeferredMaybeGrowElements(LCodeGen* codegen,
LMaybeGrowElements* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) {}
void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
LInstruction* instr() override { return instr_; }
private:
LMaybeGrowElements* instr_;
};
Register result = eax;
DeferredMaybeGrowElements* deferred =
new (zone()) DeferredMaybeGrowElements(this, instr, x87_stack_);
LOperand* key = instr->key();
LOperand* current_capacity = instr->current_capacity();
DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
DCHECK(key->IsConstantOperand() || key->IsRegister());
DCHECK(current_capacity->IsConstantOperand() ||
current_capacity->IsRegister());
if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
if (constant_key >= constant_capacity) {
// Deferred case.
__ jmp(deferred->entry());
}
} else if (key->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
__ cmp(ToOperand(current_capacity), Immediate(constant_key));
__ j(less_equal, deferred->entry());
} else if (current_capacity->IsConstantOperand()) {
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
__ cmp(ToRegister(key), Immediate(constant_capacity));
__ j(greater_equal, deferred->entry());
} else {
__ cmp(ToRegister(key), ToRegister(current_capacity));
__ j(greater_equal, deferred->entry());
}
__ mov(result, ToOperand(instr->elements()));
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register result = eax;
__ Move(result, Immediate(0));
// We have to call a stub.
{
PushSafepointRegistersScope scope(this);
if (instr->object()->IsRegister()) {
__ Move(result, ToRegister(instr->object()));
} else {
__ mov(result, ToOperand(instr->object()));
}
LOperand* key = instr->key();
if (key->IsConstantOperand()) {
LConstantOperand* constant_key = LConstantOperand::cast(key);
int32_t int_key = ToInteger32(constant_key);
if (Smi::IsValid(int_key)) {
__ mov(ebx, Immediate(Smi::FromInt(int_key)));
} else {
// We should never get here at runtime because there is a smi check on
// the key before this point.
__ int3();
}
} else {
__ Move(ebx, ToRegister(key));
__ SmiTag(ebx);
}
GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
__ StoreToSafepointRegisterSlot(result, result);
}
// Deopt on smi, which means the elements array changed to dictionary mode.
__ test(result, Immediate(kSmiTagMask));
DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = instr->from_kind();
ElementsKind to_kind = instr->to_kind();
Label not_applicable;
bool is_simple_map_transition =
IsSimpleMapChangeTransition(from_kind, to_kind);
Label::Distance branch_distance =
is_simple_map_transition ? Label::kNear : Label::kFar;
__ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
__ j(not_equal, ¬_applicable, branch_distance);
if (is_simple_map_transition) {
Register new_map_reg = ToRegister(instr->new_map_temp());
__ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
Immediate(to_map));
// Write barrier.
DCHECK_NOT_NULL(instr->temp());
__ RecordWriteForMap(object_reg, to_map, new_map_reg,
ToRegister(instr->temp()), kDontSaveFPRegs);
} else {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(object_reg.is(eax));
PushSafepointRegistersScope scope(this);
__ mov(ebx, to_map);
TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(instr,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
}
__ bind(¬_applicable);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt final : public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen,
LStringCharCodeAt* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
StringCharLoadGenerator::Generate(masm(),
factory(),
ToRegister(instr->string()),
ToRegister(instr->index()),
ToRegister(instr->result()),
deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(0));
PushSafepointRegistersScope scope(this);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (instr->index()->IsConstantOperand()) {
Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
Representation::Smi());
__ push(immediate);
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
instr, instr->context());
__ AssertSmi(eax);
__ SmiUntag(eax);
__ StoreToSafepointRegisterSlot(result, eax);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode final : public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen,
LStringCharFromCode* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredStringCharFromCode(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
DCHECK(!char_code.is(result));
__ cmp(char_code, String::kMaxOneByteCharCode);
__ j(above, deferred->entry());
__ Move(result, Immediate(factory()->single_character_string_cache()));
__ mov(result, FieldOperand(result,
char_code, times_pointer_size,
FixedArray::kHeaderSize));
__ cmp(result, factory()->undefined_value());
__ j(equal, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(0));
PushSafepointRegistersScope scope(this);
__ SmiTag(char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
instr->context());
__ StoreToSafepointRegisterSlot(result, eax);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->left()).is(edx));
DCHECK(ToRegister(instr->right()).is(eax));
StringAddStub stub(isolate(),
instr->hydrogen()->flags(),
instr->hydrogen()->pretenure_flag());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
DCHECK(input->IsRegister() || input->IsStackSlot());
DCHECK(output->IsDoubleRegister());
if (input->IsRegister()) {
Register input_reg = ToRegister(input);
__ push(input_reg);
X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
__ pop(input_reg);
} else {
X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
}
}
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
X87Register res = ToX87Register(output);
X87PrepareToWrite(res);
__ LoadUint32NoSSE2(ToRegister(input));
X87CommitWrite(res);
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI final : public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen,
LNumberTagI* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
SIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagI* deferred =
new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
__ SmiTag(reg);
__ j(overflow, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
class DeferredNumberTagU final : public LDeferredCode {
public:
DeferredNumberTagU(LCodeGen* codegen,
LNumberTagU* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
UNSIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagU* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagU* deferred =
new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
__ cmp(reg, Immediate(Smi::kMaxValue));
__ j(above, deferred->entry());
__ SmiTag(reg);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
LOperand* value,
LOperand* temp,
IntegerSignedness signedness) {
Label done, slow;
Register reg = ToRegister(value);
Register tmp = ToRegister(temp);
if (signedness == SIGNED_INT32) {
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
__ SmiUntag(reg);
__ xor_(reg, 0x80000000);
__ push(reg);
__ fild_s(Operand(esp, 0));
__ pop(reg);
} else {
// There's no fild variant for unsigned values, so zero-extend to a 64-bit
// int manually.
__ push(Immediate(0));
__ push(reg);
__ fild_d(Operand(esp, 0));
__ pop(reg);
__ pop(reg);
}
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, no_reg, &slow);
__ jmp(&done, Label::kNear);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
{
// TODO(3095996): Put a valid pointer value in the stack slot where the
// result register is stored, as this register is in the pointer map, but
// contains an integer value.
__ Move(reg, Immediate(0));
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
// Reset the context register.
if (!reg.is(esi)) {
__ Move(esi, Immediate(0));
}
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(reg, eax);
}
__ bind(&done);
__ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD final : public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen,
LNumberTagD* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
LInstruction* instr() override { return instr_; }
private:
LNumberTagD* instr_;
};
Register reg = ToRegister(instr->result());
// Put the value to the top of stack
X87Register src = ToX87Register(instr->value());
// Don't use X87LoadForUsage here, which is only used by Instruction which
// clobbers fp registers.
x87_stack_.Fxch(src);
DeferredNumberTagD* deferred =
new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
if (FLAG_inline_new) {
Register tmp = ToRegister(instr->temp());
__ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ Move(reg, Immediate(0));
PushSafepointRegistersScope scope(this);
// Reset the context register.
if (!reg.is(esi)) {
__ Move(esi, Immediate(0));
}
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(reg, eax);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
HChange* hchange = instr->hydrogen();
Register input = ToRegister(instr->value());
if (hchange->CheckFlag(HValue::kCanOverflow) &&
hchange->value()->CheckFlag(HValue::kUint32)) {
__ test(input, Immediate(0xc0000000));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOverflow);
}
__ SmiTag(input);
if (hchange->CheckFlag(HValue::kCanOverflow) &&
!hchange->value()->CheckFlag(HValue::kUint32)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
LOperand* input = instr->value();
Register result = ToRegister(input);
DCHECK(input->IsRegister() && input->Equals(instr->result()));
if (instr->needs_check()) {
__ test(result, Immediate(kSmiTagMask));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi);
} else {
__ AssertSmi(result);
}
__ SmiUntag(result);
}
void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg,
Register temp_reg, X87Register res_reg,
NumberUntagDMode mode) {
bool can_convert_undefined_to_nan = instr->truncating();
bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
Label load_smi, done;
X87PrepareToWrite(res_reg);
if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
// Smi check.
__ JumpIfSmi(input_reg, &load_smi);
// Heap number map check.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
if (!can_convert_undefined_to_nan) {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
} else {
Label heap_number, convert;
__ j(equal, &heap_number);
// Convert undefined (or hole) to NaN.
__ cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, instr,
DeoptimizeReason::kNotAHeapNumberUndefined);
__ bind(&convert);
__ push(Immediate(0xfff80000));
__ push(Immediate(0x00000000));
__ fld_d(MemOperand(esp, 0));
__ lea(esp, Operand(esp, kDoubleSize));
__ jmp(&done, Label::kNear);
__ bind(&heap_number);
}
// Heap number to x87 conversion.
__ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
if (deoptimize_on_minus_zero) {
__ fldz();
__ FCmp();
__ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
__ j(not_zero, &done, Label::kNear);
// Use general purpose registers to check if we have -0.0
__ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ test(temp_reg, Immediate(HeapNumber::kSignMask));
__ j(zero, &done, Label::kNear);
// Pop FPU stack before deoptimizing.
__ fstp(0);
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
}
__ jmp(&done, Label::kNear);
} else {
DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
}
__ bind(&load_smi);
// Clobbering a temp is faster than re-tagging the
// input register since we avoid dependencies.
__ mov(temp_reg, input_reg);
__ SmiUntag(temp_reg); // Untag smi before converting to float.
__ push(temp_reg);
__ fild_s(Operand(esp, 0));
__ add(esp, Immediate(kPointerSize));
__ bind(&done);
X87CommitWrite(res_reg);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
Register input_reg = ToRegister(instr->value());
// The input was optimistically untagged; revert it.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
if (instr->truncating()) {
Label truncate;
Label::Distance truncate_distance =
DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &truncate, truncate_distance);
__ push(input_reg);
__ CmpObjectType(input_reg, ODDBALL_TYPE, input_reg);
__ pop(input_reg);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball);
__ bind(&truncate);
__ TruncateHeapNumberToI(input_reg, input_reg);
} else {
// TODO(olivf) Converting a number on the fpu is actually quite slow. We
// should first try a fast conversion and then bailout to this slow case.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
__ sub(esp, Immediate(kPointerSize));
__ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
Label no_precision_lost, not_nan, zero_check;
__ fld(0);
__ fist_s(MemOperand(esp, 0));
__ fild_s(MemOperand(esp, 0));
__ FCmp();
__ pop(input_reg);
__ j(equal, &no_precision_lost, Label::kNear);
__ fstp(0);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
__ bind(&no_precision_lost);
__ j(parity_odd, ¬_nan);
__ fstp(0);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
__ bind(¬_nan);
__ test(input_reg, Operand(input_reg));
__ j(zero, &zero_check, Label::kNear);
__ fstp(0);
__ jmp(done);
__ bind(&zero_check);
// To check for minus zero, we load the value again as float, and check
// if that is still 0.
__ sub(esp, Immediate(kPointerSize));
__ fstp_s(Operand(esp, 0));
__ pop(input_reg);
__ test(input_reg, Operand(input_reg));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
} else {
__ fist_s(MemOperand(esp, 0));
__ fild_s(MemOperand(esp, 0));
__ FCmp();
__ pop(input_reg);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
}
}
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI final : public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen,
LTaggedToI* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
LInstruction* instr() override { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister());
Register input_reg = ToRegister(input);
DCHECK(input_reg.is(ToRegister(instr->result())));
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiUntag(input_reg);
} else {
DeferredTaggedToI* deferred =
new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
// Optimistically untag the input.
// If the input is a HeapObject, SmiUntag will set the carry flag.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiUntag(input_reg);
// Branch to deferred code if the input was tagged.
// The deferred code will take care of restoring the tag.
__ j(carry, deferred->entry());
__ bind(deferred->exit());
}
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->value();
DCHECK(input->IsRegister());
LOperand* temp = instr->temp();
DCHECK(temp->IsRegister());
LOperand* result = instr->result();
DCHECK(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
Register temp_reg = ToRegister(temp);
HValue* value = instr->hydrogen()->value();
NumberUntagDMode mode = value->representation().IsSmi()
? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result),
mode);
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
LOperand* input = instr->value();
DCHECK(input->IsDoubleRegister());
LOperand* result = instr->result();
DCHECK(result->IsRegister());
Register result_reg = ToRegister(result);
if (instr->truncating()) {
X87Register input_reg = ToX87Register(input);
X87Fxch(input_reg);
__ TruncateX87TOSToI(result_reg);
} else {
Label lost_precision, is_nan, minus_zero, done;
X87Register input_reg = ToX87Register(input);
X87Fxch(input_reg);
__ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
&lost_precision, &is_nan, &minus_zero);
__ jmp(&done);
__ bind(&lost_precision);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
__ bind(&is_nan);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
__ bind(&minus_zero);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
__ bind(&done);
}
}
void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
LOperand* input = instr->value();
DCHECK(input->IsDoubleRegister());
LOperand* result = instr->result();
DCHECK(result->IsRegister());
Register result_reg = ToRegister(result);
Label lost_precision, is_nan, minus_zero, done;
X87Register input_reg = ToX87Register(input);
X87Fxch(input_reg);
__ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
&lost_precision, &is_nan, &minus_zero);
__ jmp(&done);
__ bind(&lost_precision);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
__ bind(&is_nan);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
__ bind(&minus_zero);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
__ bind(&done);
__ SmiTag(result_reg);
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->value();
__ test(ToOperand(input), Immediate(kSmiTagMask));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi);
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
LOperand* input = instr->value();
__ test(ToOperand(input), Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
}
}
void LCodeGen::DoCheckArrayBufferNotNeutered(
LCheckArrayBufferNotNeutered* instr) {
Register view = ToRegister(instr->view());
Register scratch = ToRegister(instr->scratch());
__ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset));
__ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset),
Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds);
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(first));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
} else {
DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType);
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(last));
DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType);
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
if (base::bits::IsPowerOfTwo32(mask)) {
DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
__ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(mask));
DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
DeoptimizeReason::kWrongInstanceType);
} else {
__ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
__ and_(temp, mask);
__ cmp(temp, tag);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
}
}
}
void LCodeGen::DoCheckValue(LCheckValue* instr) {
Handle<HeapObject> object = instr->hydrogen()->object().handle();
if (instr->hydrogen()->object_in_new_space()) {
Register reg = ToRegister(instr->value());
Handle<Cell> cell = isolate()->factory()->NewCell(object);
__ cmp(reg, Operand::ForCell(cell));
} else {
Operand operand = ToOperand(instr->value());
__ cmp(operand, object);
}
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch);
}
void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
Label deopt, done;
// If the map is not deprecated the migration attempt does not make sense.
__ push(object);
__ mov(object, FieldOperand(object, HeapObject::kMapOffset));
__ test(FieldOperand(object, Map::kBitField3Offset),
Immediate(Map::Deprecated::kMask));
__ pop(object);
__ j(zero, &deopt);
{
PushSafepointRegistersScope scope(this);
__ push(object);
__ xor_(esi, esi);
__ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
RecordSafepointWithRegisters(
instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
__ test(eax, Immediate(kSmiTagMask));
}
__ j(not_zero, &done);
__ bind(&deopt);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kInstanceMigrationFailed);
__ bind(&done);
}
void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
class DeferredCheckMaps final : public LDeferredCode {
public:
DeferredCheckMaps(LCodeGen* codegen,
LCheckMaps* instr,
Register object,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
SetExit(check_maps());
}
void Generate() override {
codegen()->DoDeferredInstanceMigration(instr_, object_);
}
Label* check_maps() { return &check_maps_; }
LInstruction* instr() override { return instr_; }
private:
LCheckMaps* instr_;
Label check_maps_;
Register object_;
};
if (instr->hydrogen()->IsStabilityCheck()) {
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
for (int i = 0; i < maps->size(); ++i) {
AddStabilityDependency(maps->at(i).handle());
}
return;
}
LOperand* input = instr->value();
DCHECK(input->IsRegister());
Register reg = ToRegister(input);
DeferredCheckMaps* deferred = NULL;
if (instr->hydrogen()->HasMigrationTarget()) {
deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
__ bind(deferred->check_maps());
}
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
Label success;
for (int i = 0; i < maps->size() - 1; i++) {
Handle<Map> map = maps->at(i).handle();
__ CompareMap(reg, map);
__ j(equal, &success, Label::kNear);
}
Handle<Map> map = maps->at(maps->size() - 1).handle();
__ CompareMap(reg, map);
if (instr->hydrogen()->HasMigrationTarget()) {
__ j(not_equal, deferred->entry());
} else {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
}
__ bind(&success);
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
X87Register value_reg = ToX87Register(instr->unclamped());
Register result_reg = ToRegister(instr->result());
X87Fxch(value_reg);
__ ClampTOSToUint8(result_reg);
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
DCHECK(instr->unclamped()->Equals(instr->result()));
Register value_reg = ToRegister(instr->result());
__ ClampUint8(value_reg);
}
void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
Register input_reg = ToRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
Register scratch = ToRegister(instr->scratch());
Register scratch2 = ToRegister(instr->scratch2());
Register scratch3 = ToRegister(instr->scratch3());
Label is_smi, done, heap_number, valid_exponent,
largest_value, zero_result, maybe_nan_or_infinity;
__ JumpIfSmi(input_reg, &is_smi);
// Check for heap number
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
__ jmp(&zero_result, Label::kNear);
// Heap number
__ bind(&heap_number);
// Surprisingly, all of the hand-crafted bit-manipulations below are much
// faster than the x86 FPU built-in instruction, especially since "banker's
// rounding" would be additionally very expensive
// Get exponent word.
__ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
// Test for negative values --> clamp to zero
__ test(scratch, scratch);
__ j(negative, &zero_result, Label::kNear);
// Get exponent alone in scratch2.
__ mov(scratch2, scratch);
__ and_(scratch2, HeapNumber::kExponentMask);
__ shr(scratch2, HeapNumber::kExponentShift);
__ j(zero, &zero_result, Label::kNear);
__ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
__ j(negative, &zero_result, Label::kNear);
const uint32_t non_int8_exponent = 7;
__ cmp(scratch2, Immediate(non_int8_exponent + 1));
// If the exponent is too big, check for special values.
__ j(greater, &maybe_nan_or_infinity, Label::kNear);
__ bind(&valid_exponent);
// Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
// < 7. The shift bias is the number of bits to shift the mantissa such that
// with an exponent of 7 such the that top-most one is in bit 30, allowing
// detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
// 1).
int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
__ lea(result_reg, MemOperand(scratch2, shift_bias));
// Here result_reg (ecx) is the shift, scratch is the exponent word. Get the
// top bits of the mantissa.
__ and_(scratch, HeapNumber::kMantissaMask);
// Put back the implicit 1 of the mantissa
__ or_(scratch, 1 << HeapNumber::kExponentShift);
// Shift up to round
__ shl_cl(scratch);
// Use "banker's rounding" to spec: If fractional part of number is 0.5, then
// use the bit in the "ones" place and add it to the "halves" place, which has
// the effect of rounding to even.
__ mov(scratch2, scratch);
const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
const uint32_t one_bit_shift = one_half_bit_shift + 1;
__ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
__ cmp(scratch2, Immediate(1 << one_half_bit_shift));
Label no_round;
__ j(less, &no_round, Label::kNear);
Label round_up;
__ mov(scratch2, Immediate(1 << one_half_bit_shift));
__ j(greater, &round_up, Label::kNear);
__ test(scratch3, scratch3);
__ j(not_zero, &round_up, Label::kNear);
__ mov(scratch2, scratch);
__ and_(scratch2, Immediate(1 << one_bit_shift));
__ shr(scratch2, 1);
__ bind(&round_up);
__ add(scratch, scratch2);
__ j(overflow, &largest_value, Label::kNear);
__ bind(&no_round);
__ shr(scratch, 23);
__ mov(result_reg, scratch);
__ jmp(&done, Label::kNear);
__ bind(&maybe_nan_or_infinity);
// Check for NaN/Infinity, all other values map to 255
__ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
__ j(not_equal, &largest_value, Label::kNear);
// Check for NaN, which differs from Infinity in that at least one mantissa
// bit is set.
__ and_(scratch, HeapNumber::kMantissaMask);
__ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
__ j(not_zero, &zero_result, Label::kNear); // M!=0 --> NaN
// Infinity -> Fall through to map to 255.
__ bind(&largest_value);
__ mov(result_reg, Immediate(255));
__ jmp(&done, Label::kNear);
__ bind(&zero_result);
__ xor_(result_reg, result_reg);
__ jmp(&done, Label::kNear);
// smi
__ bind(&is_smi);
if (!input_reg.is(result_reg)) {
__ mov(result_reg, input_reg);
}
__ SmiUntag(result_reg);
__ ClampUint8(result_reg);
__ bind(&done);
}
void LCodeGen::DoAllocate(LAllocate* instr) {
class DeferredAllocate final : public LDeferredCode {
public:
DeferredAllocate(LCodeGen* codegen,
LAllocate* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override { codegen()->DoDeferredAllocate(instr_); }
LInstruction* instr() override { return instr_; }
private:
LAllocate* instr_;
};
DeferredAllocate* deferred =
new(zone()) DeferredAllocate(this, instr, x87_stack_);
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->temp());
// Allocate memory for the object.
AllocationFlags flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
}
DCHECK(!instr->hydrogen()->IsAllocationFolded());
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= kMaxRegularHeapObjectSize);
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
} else {
Register size = ToRegister(instr->size());
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
}
__ bind(deferred->exit());
if (instr->hydrogen()->MustPrefillWithFiller()) {
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
__ mov(temp, (size / kPointerSize) - 1);
} else {
temp = ToRegister(instr->size());
__ shr(temp, kPointerSizeLog2);
__ dec(temp);
}
Label loop;
__ bind(&loop);
__ mov(FieldOperand(result, temp, times_pointer_size, 0),
isolate()->factory()->one_pointer_filler_map());
__ dec(temp);
__ j(not_zero, &loop);
}
}
void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
DCHECK(instr->hydrogen()->IsAllocationFolded());
DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->temp());
AllocationFlags flags = ALLOCATION_FOLDED;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= kMaxRegularHeapObjectSize);
__ FastAllocate(size, result, temp, flags);
} else {
Register size = ToRegister(instr->size());
__ FastAllocate(size, result, temp, flags);
}
}
void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(Smi::kZero));
PushSafepointRegistersScope scope(this);
if (instr->size()->IsRegister()) {
Register size = ToRegister(instr->size());
DCHECK(!size.is(result));
__ SmiTag(ToRegister(instr->size()));
__ push(size);
} else {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
if (size >= 0 && size <= Smi::kMaxValue) {
__ push(Immediate(Smi::FromInt(size)));
} else {
// We should never get here at runtime => abort
__ int3();
return;
}
}
int flags = AllocateDoubleAlignFlag::encode(
instr->hydrogen()->MustAllocateDoubleAligned());
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = AllocateTargetSpace::update(flags, OLD_SPACE);
} else {
flags = AllocateTargetSpace::update(flags, NEW_SPACE);
}
__ push(Immediate(Smi::FromInt(flags)));
CallRuntimeFromDeferred(
Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
__ StoreToSafepointRegisterSlot(result, eax);
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
// If the allocation folding dominator allocate triggered a GC, allocation
// happend in the runtime. We have to reset the top pointer to virtually
// undo the allocation.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
__ sub(eax, Immediate(kHeapObjectTag));
__ mov(Operand::StaticVariable(allocation_top), eax);
__ add(eax, Immediate(kHeapObjectTag));
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
DCHECK(ToRegister(instr->value()).is(ebx));
Label end, do_call;
Register value_register = ToRegister(instr->value());
__ JumpIfNotSmi(value_register, &do_call);
__ mov(eax, Immediate(isolate()->factory()->number_string()));
__ jmp(&end);
__ bind(&do_call);
Callable callable = CodeFactory::Typeof(isolate());
CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
__ bind(&end);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->value());
Condition final_branch_condition = EmitTypeofIs(instr, input);
if (final_branch_condition != no_condition) {
EmitBranch(instr, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
Label* true_label = instr->TrueLabel(chunk_);
Label* false_label = instr->FalseLabel(chunk_);
Handle<String> type_name = instr->type_literal();
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
Label::Distance true_distance = left_block == next_block ? Label::kNear
: Label::kFar;
Label::Distance false_distance = right_block == next_block ? Label::kNear
: Label::kFar;
Condition final_branch_condition = no_condition;
if (String::Equals(type_name, factory()->number_string())) {
__ JumpIfSmi(input, true_label, true_distance);
__ cmp(FieldOperand(input, HeapObject::kMapOffset),
factory()->heap_number_map());
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->string_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
final_branch_condition = below;
} else if (String::Equals(type_name, factory()->symbol_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, SYMBOL_TYPE, input);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->boolean_string())) {
__ cmp(input, factory()->true_value());
__ j(equal, true_label, true_distance);
__ cmp(input, factory()->false_value());
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->undefined_string())) {
__ cmp(input, factory()->null_value());
__ j(equal, false_label, false_distance);
__ JumpIfSmi(input, false_label, false_distance);
// Check for undetectable objects => true.
__ mov(input, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
final_branch_condition = not_zero;
} else if (String::Equals(type_name, factory()->function_string())) {
__ JumpIfSmi(input, false_label, false_distance);
// Check for callable and not undetectable objects => true.
__ mov(input, FieldOperand(input, HeapObject::kMapOffset));
__ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset));
__ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
__ cmp(input, 1 << Map::kIsCallable);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->object_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ cmp(input, factory()->null_value());
__ j(equal, true_label, true_distance);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
__ j(below, false_label, false_distance);
// Check for callable or undetectable objects => false.
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
final_branch_condition = zero;
} else {
__ jmp(false_label, false_distance);
}
return final_branch_condition;
}
void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
if (info()->ShouldEnsureSpaceForLazyDeopt()) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
last_lazy_deopt_pc_ = masm()->pc_offset();
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
last_lazy_deopt_pc_ = masm()->pc_offset();
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
Deoptimizer::BailoutType type = instr->hydrogen()->type();
// TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
// needed return address), even though the implementation of LAZY and EAGER is
// now identical. When LAZY is eventually completely folded into EAGER, remove
// the special case below.
if (info()->IsStub() && type == Deoptimizer::EAGER) {
type = Deoptimizer::LAZY;
}
DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
}
void LCodeGen::DoDummy(LDummy* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDummyUse(LDummyUse* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck final : public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen,
LStackCheck* instr,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStackCheck* instr_;
};
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &done, Label::kNear);
DCHECK(instr->context()->IsRegister());
DCHECK(ToRegister(instr->context()).is(esi));
CallCode(isolate()->builtins()->StackCheck(),
RelocInfo::CODE_TARGET,
instr);
__ bind(&done);
} else {
DCHECK(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new(zone()) DeferredStackCheck(this, instr, x87_stack_);
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(below, deferred_stack_check->entry());
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
DCHECK(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
GenerateOsrPrologue();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
DCHECK(ToRegister(instr->context()).is(esi));
Label use_cache, call_runtime;
__ CheckEnumCache(&call_runtime);
__ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(eax);
CallRuntime(Runtime::kForInEnumerate, instr);
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
Label load_cache, done;
__ EnumLength(result, map);
__ cmp(result, Immediate(Smi::kZero));
__ j(not_equal, &load_cache, Label::kNear);
__ mov(result, isolate()->factory()->empty_fixed_array());
__ jmp(&done, Label::kNear);
__ bind(&load_cache);
__ LoadInstanceDescriptors(map, result);
__ mov(result,
FieldOperand(result, DescriptorArray::kEnumCacheOffset));
__ mov(result,
FieldOperand(result, FixedArray::SizeFor(instr->idx())));
__ bind(&done);
__ test(result, result);
DeoptimizeIf(equal, instr, DeoptimizeReason::kNoCache);
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
__ cmp(ToRegister(instr->map()),
FieldOperand(object, HeapObject::kMapOffset));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
}
void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
Register object,
Register index) {
PushSafepointRegistersScope scope(this);
__ push(object);
__ push(index);
__ xor_(esi, esi);
__ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
RecordSafepointWithRegisters(
instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(object, eax);
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
class DeferredLoadMutableDouble final : public LDeferredCode {
public:
DeferredLoadMutableDouble(LCodeGen* codegen,
LLoadFieldByIndex* instr,
Register object,
Register index,
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack),
instr_(instr),
object_(object),
index_(index) {
}
void Generate() override {
codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
}
LInstruction* instr() override { return instr_; }
private:
LLoadFieldByIndex* instr_;
Register object_;
Register index_;
};
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
DeferredLoadMutableDouble* deferred;
deferred = new(zone()) DeferredLoadMutableDouble(
this, instr, object, index, x87_stack_);
Label out_of_object, done;
__ test(index, Immediate(Smi::FromInt(1)));
__ j(not_zero, deferred->entry());
__ sar(index, 1);
__ cmp(index, Immediate(0));
__ j(less, &out_of_object, Label::kNear);
__ mov(object, FieldOperand(object,
index,
times_half_pointer_size,
JSObject::kHeaderSize));
__ jmp(&done, Label::kNear);
__ bind(&out_of_object);
__ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
__ neg(index);
// Index is now equal to out of object property index plus 1.
__ mov(object, FieldOperand(object,
index,
times_half_pointer_size,
FixedArray::kHeaderSize - kPointerSize));
__ bind(deferred->exit());
__ bind(&done);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X87