// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/identity-map.h"
#include "src/base/functional.h"
#include "src/heap/heap-inl.h"
namespace v8 {
namespace internal {
static const int kInitialIdentityMapSize = 4;
static const int kResizeFactor = 4;
IdentityMapBase::~IdentityMapBase() {
// Clear must be called by the subclass to avoid calling the virtual
// DeleteArray function from the destructor.
DCHECK_NULL(keys_);
}
void IdentityMapBase::Clear() {
if (keys_) {
DCHECK(!is_iterable());
heap_->UnregisterStrongRoots(keys_);
DeleteArray(keys_);
DeleteArray(values_);
keys_ = nullptr;
values_ = nullptr;
size_ = 0;
capacity_ = 0;
mask_ = 0;
}
}
void IdentityMapBase::EnableIteration() {
CHECK(!is_iterable());
is_iterable_ = true;
}
void IdentityMapBase::DisableIteration() {
CHECK(is_iterable());
is_iterable_ = false;
// We might need to resize due to iterator deletion - do this now.
if (size_ * kResizeFactor < capacity_ / kResizeFactor) {
Resize(capacity_ / kResizeFactor);
}
}
int IdentityMapBase::ScanKeysFor(Object* address) const {
int start = Hash(address) & mask_;
Object* not_mapped = heap_->not_mapped_symbol();
for (int index = start; index < capacity_; index++) {
if (keys_[index] == address) return index; // Found.
if (keys_[index] == not_mapped) return -1; // Not found.
}
for (int index = 0; index < start; index++) {
if (keys_[index] == address) return index; // Found.
if (keys_[index] == not_mapped) return -1; // Not found.
}
return -1;
}
int IdentityMapBase::InsertKey(Object* address) {
Object* not_mapped = heap_->not_mapped_symbol();
while (true) {
int start = Hash(address) & mask_;
int limit = capacity_ / 2;
// Search up to {limit} entries.
for (int index = start; --limit > 0; index = (index + 1) & mask_) {
if (keys_[index] == address) return index; // Found.
if (keys_[index] == not_mapped) { // Free entry.
keys_[index] = address;
return index;
}
}
// Should only have to resize once, since we grow 4x.
Resize(capacity_ * kResizeFactor);
}
UNREACHABLE();
return -1;
}
void* IdentityMapBase::DeleteIndex(int index) {
void* ret_value = values_[index];
Object* not_mapped = heap_->not_mapped_symbol();
DCHECK_NE(keys_[index], not_mapped);
keys_[index] = not_mapped;
values_[index] = nullptr;
size_--;
DCHECK_GE(size_, 0);
if (!is_iterable() && (size_ * kResizeFactor < capacity_ / kResizeFactor)) {
Resize(capacity_ / kResizeFactor);
return ret_value; // No need to fix collisions as resize reinserts keys.
}
// Move any collisions to their new correct location.
int next_index = index;
for (;;) {
next_index = (next_index + 1) & mask_;
Object* key = keys_[next_index];
if (key == not_mapped) break;
int expected_index = Hash(key) & mask_;
if (index < next_index) {
if (index < expected_index && expected_index <= next_index) continue;
} else {
DCHECK_GT(index, next_index);
if (index < expected_index || expected_index <= next_index) continue;
}
DCHECK_EQ(not_mapped, keys_[index]);
DCHECK_NULL(values_[index]);
std::swap(keys_[index], keys_[next_index]);
std::swap(values_[index], values_[next_index]);
index = next_index;
}
return ret_value;
}
int IdentityMapBase::Lookup(Object* key) const {
int index = ScanKeysFor(key);
if (index < 0 && gc_counter_ != heap_->gc_count()) {
// Miss; rehash if there was a GC, then lookup again.
const_cast<IdentityMapBase*>(this)->Rehash();
index = ScanKeysFor(key);
}
return index;
}
int IdentityMapBase::LookupOrInsert(Object* key) {
// Perform an optimistic lookup.
int index = ScanKeysFor(key);
if (index < 0) {
// Miss; rehash if there was a GC, then insert.
if (gc_counter_ != heap_->gc_count()) Rehash();
index = InsertKey(key);
size_++;
DCHECK_LE(size_, capacity_);
}
DCHECK_GE(index, 0);
return index;
}
int IdentityMapBase::Hash(Object* address) const {
CHECK_NE(address, heap_->not_mapped_symbol());
uintptr_t raw_address = reinterpret_cast<uintptr_t>(address);
return static_cast<int>(hasher_(raw_address));
}
// Searches this map for the given key using the object's address
// as the identity, returning:
// found => a pointer to the storage location for the value
// not found => a pointer to a new storage location for the value
IdentityMapBase::RawEntry IdentityMapBase::GetEntry(Object* key) {
CHECK(!is_iterable()); // Don't allow insertion while iterable.
if (capacity_ == 0) {
// Allocate the initial storage for keys and values.
capacity_ = kInitialIdentityMapSize;
mask_ = kInitialIdentityMapSize - 1;
gc_counter_ = heap_->gc_count();
keys_ = reinterpret_cast<Object**>(NewPointerArray(capacity_));
Object* not_mapped = heap_->not_mapped_symbol();
for (int i = 0; i < capacity_; i++) keys_[i] = not_mapped;
values_ = NewPointerArray(capacity_);
memset(values_, 0, sizeof(void*) * capacity_);
heap_->RegisterStrongRoots(keys_, keys_ + capacity_);
}
int index = LookupOrInsert(key);
return &values_[index];
}
// Searches this map for the given key using the object's address
// as the identity, returning:
// found => a pointer to the storage location for the value
// not found => {nullptr}
IdentityMapBase::RawEntry IdentityMapBase::FindEntry(Object* key) const {
// Don't allow find by key while iterable (might rehash).
CHECK(!is_iterable());
if (size_ == 0) return nullptr;
// Remove constness since lookup might have to rehash.
int index = Lookup(key);
return index >= 0 ? &values_[index] : nullptr;
}
// Deletes the given key from the map using the object's address as the
// identity, returning:
// found => the value
// not found => {nullptr}
void* IdentityMapBase::DeleteEntry(Object* key) {
CHECK(!is_iterable()); // Don't allow deletion by key while iterable.
if (size_ == 0) return nullptr;
int index = Lookup(key);
if (index < 0) return nullptr; // No entry found.
return DeleteIndex(index);
}
IdentityMapBase::RawEntry IdentityMapBase::EntryAtIndex(int index) const {
DCHECK_LE(0, index);
DCHECK_LT(index, capacity_);
DCHECK_NE(keys_[index], heap_->not_mapped_symbol());
CHECK(is_iterable()); // Must be iterable to access by index;
return &values_[index];
}
int IdentityMapBase::NextIndex(int index) const {
DCHECK_LE(-1, index);
DCHECK_LE(index, capacity_);
CHECK(is_iterable()); // Must be iterable to access by index;
Object* not_mapped = heap_->not_mapped_symbol();
for (index++; index < capacity_; index++) {
if (keys_[index] != not_mapped) {
return index;
}
}
return capacity_;
}
void IdentityMapBase::Rehash() {
CHECK(!is_iterable()); // Can't rehash while iterating.
// Record the current GC counter.
gc_counter_ = heap_->gc_count();
// Assume that most objects won't be moved.
std::vector<std::pair<Object*, void*>> reinsert;
// Search the table looking for keys that wouldn't be found with their
// current hashcode and evacuate them.
int last_empty = -1;
Object* not_mapped = heap_->not_mapped_symbol();
for (int i = 0; i < capacity_; i++) {
if (keys_[i] == not_mapped) {
last_empty = i;
} else {
int pos = Hash(keys_[i]) & mask_;
if (pos <= last_empty || pos > i) {
// Evacuate an entry that is in the wrong place.
reinsert.push_back(std::pair<Object*, void*>(keys_[i], values_[i]));
keys_[i] = not_mapped;
values_[i] = nullptr;
last_empty = i;
}
}
}
// Reinsert all the key/value pairs that were in the wrong place.
for (auto pair : reinsert) {
int index = InsertKey(pair.first);
DCHECK_GE(index, 0);
values_[index] = pair.second;
}
}
void IdentityMapBase::Resize(int new_capacity) {
CHECK(!is_iterable()); // Can't resize while iterating.
// Resize the internal storage and reinsert all the key/value pairs.
DCHECK_GT(new_capacity, size_);
int old_capacity = capacity_;
Object** old_keys = keys_;
void** old_values = values_;
capacity_ = new_capacity;
mask_ = capacity_ - 1;
gc_counter_ = heap_->gc_count();
keys_ = reinterpret_cast<Object**>(NewPointerArray(capacity_));
Object* not_mapped = heap_->not_mapped_symbol();
for (int i = 0; i < capacity_; i++) keys_[i] = not_mapped;
values_ = NewPointerArray(capacity_);
memset(values_, 0, sizeof(void*) * capacity_);
for (int i = 0; i < old_capacity; i++) {
if (old_keys[i] == not_mapped) continue;
int index = InsertKey(old_keys[i]);
DCHECK_GE(index, 0);
values_[index] = old_values[i];
}
// Unregister old keys and register new keys.
heap_->UnregisterStrongRoots(old_keys);
heap_->RegisterStrongRoots(keys_, keys_ + capacity_);
// Delete old storage;
DeleteArray(old_keys);
DeleteArray(old_values);
}
} // namespace internal
} // namespace v8