// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
// A light-weight IA32 Assembler.
#ifndef V8_X87_ASSEMBLER_X87_INL_H_
#define V8_X87_ASSEMBLER_X87_INL_H_
#include "src/x87/assembler-x87.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return true; }
bool CpuFeatures::SupportsSimd128() { return false; }
static const byte kCallOpcode = 0xE8;
static const int kNoCodeAgeSequenceLength = 5;
// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(intptr_t delta) {
if (IsRuntimeEntry(rmode_) || IsCodeTarget(rmode_)) {
int32_t* p = reinterpret_cast<int32_t*>(pc_);
*p -= delta; // Relocate entry.
} else if (IsCodeAgeSequence(rmode_)) {
if (*pc_ == kCallOpcode) {
int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
*p -= delta; // Relocate entry.
}
} else if (IsDebugBreakSlot(rmode_) && IsPatchedDebugBreakSlotSequence()) {
// Special handling of a debug break slot when a break point is set (call
// instruction has been inserted).
int32_t* p = reinterpret_cast<int32_t*>(
pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
*p -= delta; // Relocate entry.
} else if (IsInternalReference(rmode_)) {
// absolute code pointer inside code object moves with the code object.
int32_t* p = reinterpret_cast<int32_t*>(pc_);
*p += delta; // Relocate entry.
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|| rmode_ == EMBEDDED_OBJECT
|| rmode_ == EXTERNAL_REFERENCE);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::constant_pool_entry_address() {
UNREACHABLE();
return NULL;
}
int RelocInfo::target_address_size() {
return Assembler::kSpecialTargetSize;
}
Object* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_at(pc_);
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_Handle_at(pc_);
}
void RelocInfo::set_target_object(Object* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Memory::Object_at(pc_) = target;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
return Memory::Address_at(pc_);
}
Address RelocInfo::target_internal_reference() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return Memory::Address_at(pc_);
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return reinterpret_cast<Address>(*reinterpret_cast<int32_t*>(pc_));
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target) {
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
}
Handle<Cell> RelocInfo::target_cell_handle() {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = Memory::Address_at(pc_);
return Handle<Cell>(reinterpret_cast<Cell**>(address));
}
Cell* RelocInfo::target_cell() {
DCHECK(rmode_ == RelocInfo::CELL);
return Cell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(Cell* cell,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(cell->IsCell());
DCHECK(rmode_ == RelocInfo::CELL);
Address address = cell->address() + Cell::kValueOffset;
Memory::Address_at(pc_) = address;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
cell);
}
}
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
DCHECK(*pc_ == kCallOpcode);
return Memory::Object_Handle_at(pc_ + 1);
}
Code* RelocInfo::code_age_stub() {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
DCHECK(*pc_ == kCallOpcode);
return Code::GetCodeFromTargetAddress(
Assembler::target_address_at(pc_ + 1, host_));
}
void RelocInfo::set_code_age_stub(Code* stub,
ICacheFlushMode icache_flush_mode) {
DCHECK(*pc_ == kCallOpcode);
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
Assembler::set_target_address_at(
isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
}
Address RelocInfo::debug_call_address() {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
Address location = pc_ + Assembler::kPatchDebugBreakSlotAddressOffset;
return Assembler::target_address_at(location, host_);
}
void RelocInfo::set_debug_call_address(Address target) {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
Address location = pc_ + Assembler::kPatchDebugBreakSlotAddressOffset;
Assembler::set_target_address_at(isolate_, location, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
void RelocInfo::WipeOut() {
if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_)) {
Memory::Address_at(pc_) = NULL;
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
// Effectively write zero into the relocation.
Assembler::set_target_address_at(isolate_, pc_, host_,
pc_ + sizeof(int32_t));
} else {
UNREACHABLE();
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
Assembler::FlushICache(isolate, pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::CELL) {
visitor->VisitCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
visitor->VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
visitor->VisitCodeAgeSequence(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
visitor->VisitDebugTarget(this);
} else if (IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::CELL) {
StaticVisitor::VisitCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
StaticVisitor::VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
StaticVisitor::VisitCodeAgeSequence(heap, this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
StaticVisitor::VisitDebugTarget(heap, this);
} else if (IsRuntimeEntry(mode)) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
Immediate::Immediate(int x) {
x_ = x;
rmode_ = RelocInfo::NONE32;
}
Immediate::Immediate(Address x, RelocInfo::Mode rmode) {
x_ = reinterpret_cast<int32_t>(x);
rmode_ = rmode;
}
Immediate::Immediate(const ExternalReference& ext) {
x_ = reinterpret_cast<int32_t>(ext.address());
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}
Immediate::Immediate(Label* internal_offset) {
x_ = reinterpret_cast<int32_t>(internal_offset);
rmode_ = RelocInfo::INTERNAL_REFERENCE;
}
Immediate::Immediate(Handle<Object> handle) {
AllowDeferredHandleDereference using_raw_address;
// Verify all Objects referred by code are NOT in new space.
Object* obj = *handle;
if (obj->IsHeapObject()) {
x_ = reinterpret_cast<intptr_t>(handle.location());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
} else {
// no relocation needed
x_ = reinterpret_cast<intptr_t>(obj);
rmode_ = RelocInfo::NONE32;
}
}
Immediate::Immediate(Smi* value) {
x_ = reinterpret_cast<intptr_t>(value);
rmode_ = RelocInfo::NONE32;
}
Immediate::Immediate(Address addr) {
x_ = reinterpret_cast<int32_t>(addr);
rmode_ = RelocInfo::NONE32;
}
void Assembler::emit(uint32_t x) {
*reinterpret_cast<uint32_t*>(pc_) = x;
pc_ += sizeof(uint32_t);
}
void Assembler::emit_q(uint64_t x) {
*reinterpret_cast<uint64_t*>(pc_) = x;
pc_ += sizeof(uint64_t);
}
void Assembler::emit(Handle<Object> handle) {
AllowDeferredHandleDereference heap_object_check;
// Verify all Objects referred by code are NOT in new space.
Object* obj = *handle;
if (obj->IsHeapObject()) {
emit(reinterpret_cast<intptr_t>(handle.location()),
RelocInfo::EMBEDDED_OBJECT);
} else {
// no relocation needed
emit(reinterpret_cast<intptr_t>(obj));
}
}
void Assembler::emit(uint32_t x, RelocInfo::Mode rmode, TypeFeedbackId id) {
if (rmode == RelocInfo::CODE_TARGET && !id.IsNone()) {
RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, id.ToInt());
} else if (!RelocInfo::IsNone(rmode)
&& rmode != RelocInfo::CODE_AGE_SEQUENCE) {
RecordRelocInfo(rmode);
}
emit(x);
}
void Assembler::emit(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId id) {
AllowDeferredHandleDereference embedding_raw_address;
emit(reinterpret_cast<intptr_t>(code.location()), rmode, id);
}
void Assembler::emit(const Immediate& x) {
if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) {
Label* label = reinterpret_cast<Label*>(x.x_);
emit_code_relative_offset(label);
return;
}
if (!RelocInfo::IsNone(x.rmode_)) RecordRelocInfo(x.rmode_);
emit(x.x_);
}
void Assembler::emit_code_relative_offset(Label* label) {
if (label->is_bound()) {
int32_t pos;
pos = label->pos() + Code::kHeaderSize - kHeapObjectTag;
emit(pos);
} else {
emit_disp(label, Displacement::CODE_RELATIVE);
}
}
void Assembler::emit_b(Immediate x) {
DCHECK(x.is_int8() || x.is_uint8());
uint8_t value = static_cast<uint8_t>(x.x_);
*pc_++ = value;
}
void Assembler::emit_w(const Immediate& x) {
DCHECK(RelocInfo::IsNone(x.rmode_));
uint16_t value = static_cast<uint16_t>(x.x_);
reinterpret_cast<uint16_t*>(pc_)[0] = value;
pc_ += sizeof(uint16_t);
}
Address Assembler::target_address_at(Address pc, Address constant_pool) {
return pc + sizeof(int32_t) + *reinterpret_cast<int32_t*>(pc);
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode) {
int32_t* p = reinterpret_cast<int32_t*>(pc);
*p = target - (pc + sizeof(int32_t));
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, p, sizeof(int32_t));
}
}
Address Assembler::target_address_at(Address pc, Code* code) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
Address target,
ICacheFlushMode icache_flush_mode) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
}
Address Assembler::target_address_from_return_address(Address pc) {
return pc - kCallTargetAddressOffset;
}
Displacement Assembler::disp_at(Label* L) {
return Displacement(long_at(L->pos()));
}
void Assembler::disp_at_put(Label* L, Displacement disp) {
long_at_put(L->pos(), disp.data());
}
void Assembler::emit_disp(Label* L, Displacement::Type type) {
Displacement disp(L, type);
L->link_to(pc_offset());
emit(static_cast<int>(disp.data()));
}
void Assembler::emit_near_disp(Label* L) {
byte disp = 0x00;
if (L->is_near_linked()) {
int offset = L->near_link_pos() - pc_offset();
DCHECK(is_int8(offset));
disp = static_cast<byte>(offset & 0xFF);
}
L->link_to(pc_offset(), Label::kNear);
*pc_++ = disp;
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
Memory::Address_at(pc) = target;
}
void Operand::set_modrm(int mod, Register rm) {
DCHECK((mod & -4) == 0);
buf_[0] = mod << 6 | rm.code();
len_ = 1;
}
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
DCHECK(len_ == 1);
DCHECK((scale & -4) == 0);
// Use SIB with no index register only for base esp.
DCHECK(!index.is(esp) || base.is(esp));
buf_[1] = scale << 6 | index.code() << 3 | base.code();
len_ = 2;
}
void Operand::set_disp8(int8_t disp) {
DCHECK(len_ == 1 || len_ == 2);
*reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
}
void Operand::set_dispr(int32_t disp, RelocInfo::Mode rmode) {
DCHECK(len_ == 1 || len_ == 2);
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int32_t);
rmode_ = rmode;
}
Operand::Operand(Register reg) {
// reg
set_modrm(3, reg);
}
Operand::Operand(int32_t disp, RelocInfo::Mode rmode) {
// [disp/r]
set_modrm(0, ebp);
set_dispr(disp, rmode);
}
Operand::Operand(Immediate imm) {
// [disp/r]
set_modrm(0, ebp);
set_dispr(imm.x_, imm.rmode_);
}
} // namespace internal
} // namespace v8
#endif // V8_X87_ASSEMBLER_X87_INL_H_