/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utils/JenkinsHash.h>
#include "Caches.h"
#include "Debug.h"
#include "DeviceInfo.h"
#include "GradientCache.h"
#include "Properties.h"
#include <cutils/properties.h>
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Functions
///////////////////////////////////////////////////////////////////////////////
template <typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
///////////////////////////////////////////////////////////////////////////////
// Cache entry
///////////////////////////////////////////////////////////////////////////////
hash_t GradientCacheEntry::hash() const {
uint32_t hash = JenkinsHashMix(0, count);
for (uint32_t i = 0; i < count; i++) {
hash = JenkinsHashMix(hash, android::hash_type(colors[i]));
hash = JenkinsHashMix(hash, android::hash_type(positions[i]));
}
return JenkinsHashWhiten(hash);
}
int GradientCacheEntry::compare(const GradientCacheEntry& lhs, const GradientCacheEntry& rhs) {
int deltaInt = int(lhs.count) - int(rhs.count);
if (deltaInt != 0) return deltaInt;
deltaInt = memcmp(lhs.colors.get(), rhs.colors.get(), lhs.count * sizeof(uint32_t));
if (deltaInt != 0) return deltaInt;
return memcmp(lhs.positions.get(), rhs.positions.get(), lhs.count * sizeof(float));
}
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
GradientCache::GradientCache(const Extensions& extensions)
: mCache(LruCache<GradientCacheEntry, Texture*>::kUnlimitedCapacity)
, mSize(0)
, mMaxSize(MB(1))
, mUseFloatTexture(extensions.hasFloatTextures())
, mHasNpot(extensions.hasNPot())
, mHasLinearBlending(extensions.hasLinearBlending()) {
mMaxTextureSize = DeviceInfo::get()->maxTextureSize();
mCache.setOnEntryRemovedListener(this);
}
GradientCache::~GradientCache() {
mCache.clear();
}
///////////////////////////////////////////////////////////////////////////////
// Size management
///////////////////////////////////////////////////////////////////////////////
uint32_t GradientCache::getSize() {
return mSize;
}
uint32_t GradientCache::getMaxSize() {
return mMaxSize;
}
///////////////////////////////////////////////////////////////////////////////
// Callbacks
///////////////////////////////////////////////////////////////////////////////
void GradientCache::operator()(GradientCacheEntry&, Texture*& texture) {
if (texture) {
mSize -= texture->objectSize();
texture->deleteTexture();
delete texture;
}
}
///////////////////////////////////////////////////////////////////////////////
// Caching
///////////////////////////////////////////////////////////////////////////////
Texture* GradientCache::get(uint32_t* colors, float* positions, int count) {
GradientCacheEntry gradient(colors, positions, count);
Texture* texture = mCache.get(gradient);
if (!texture) {
texture = addLinearGradient(gradient, colors, positions, count);
}
return texture;
}
void GradientCache::clear() {
mCache.clear();
}
void GradientCache::getGradientInfo(const uint32_t* colors, const int count, GradientInfo& info) {
uint32_t width = 256 * (count - 1);
// If the npot extension is not supported we cannot use non-clamp
// wrap modes. We therefore find the nearest largest power of 2
// unless width is already a power of 2
if (!mHasNpot && (width & (width - 1)) != 0) {
width = 1 << (32 - __builtin_clz(width));
}
bool hasAlpha = false;
for (int i = 0; i < count; i++) {
if (((colors[i] >> 24) & 0xff) < 255) {
hasAlpha = true;
break;
}
}
info.width = min(width, uint32_t(mMaxTextureSize));
info.hasAlpha = hasAlpha;
}
Texture* GradientCache::addLinearGradient(GradientCacheEntry& gradient, uint32_t* colors,
float* positions, int count) {
GradientInfo info;
getGradientInfo(colors, count, info);
Texture* texture = new Texture(Caches::getInstance());
texture->blend = info.hasAlpha;
texture->generation = 1;
// Assume the cache is always big enough
const uint32_t size = info.width * 2 * bytesPerPixel();
while (getSize() + size > mMaxSize) {
LOG_ALWAYS_FATAL_IF(!mCache.removeOldest(),
"Ran out of things to remove from the cache? getSize() = %" PRIu32
", size = %" PRIu32 ", mMaxSize = %" PRIu32 ", width = %" PRIu32,
getSize(), size, mMaxSize, info.width);
}
generateTexture(colors, positions, info.width, 2, texture);
mSize += size;
LOG_ALWAYS_FATAL_IF((int)size != texture->objectSize(),
"size != texture->objectSize(), size %" PRIu32
", objectSize %d"
" width = %" PRIu32 " bytesPerPixel() = %zu",
size, texture->objectSize(), info.width, bytesPerPixel());
mCache.put(gradient, texture);
return texture;
}
size_t GradientCache::bytesPerPixel() const {
// We use 4 channels (RGBA)
return 4 * (mUseFloatTexture ? /* fp16 */ 2 : sizeof(uint8_t));
}
size_t GradientCache::sourceBytesPerPixel() const {
// We use 4 channels (RGBA) and upload from floats (not half floats)
return 4 * (mUseFloatTexture ? sizeof(float) : sizeof(uint8_t));
}
void GradientCache::mixBytes(const FloatColor& start, const FloatColor& end, float amount,
uint8_t*& dst) const {
float oppAmount = 1.0f - amount;
float a = start.a * oppAmount + end.a * amount;
*dst++ = uint8_t(OECF(start.r * oppAmount + end.r * amount) * 255.0f);
*dst++ = uint8_t(OECF(start.g * oppAmount + end.g * amount) * 255.0f);
*dst++ = uint8_t(OECF(start.b * oppAmount + end.b * amount) * 255.0f);
*dst++ = uint8_t(a * 255.0f);
}
void GradientCache::mixFloats(const FloatColor& start, const FloatColor& end, float amount,
uint8_t*& dst) const {
float oppAmount = 1.0f - amount;
float a = start.a * oppAmount + end.a * amount;
float* d = (float*)dst;
#ifdef ANDROID_ENABLE_LINEAR_BLENDING
// We want to stay linear
*d++ = (start.r * oppAmount + end.r * amount);
*d++ = (start.g * oppAmount + end.g * amount);
*d++ = (start.b * oppAmount + end.b * amount);
#else
*d++ = OECF(start.r * oppAmount + end.r * amount);
*d++ = OECF(start.g * oppAmount + end.g * amount);
*d++ = OECF(start.b * oppAmount + end.b * amount);
#endif
*d++ = a;
dst += 4 * sizeof(float);
}
void GradientCache::generateTexture(uint32_t* colors, float* positions, const uint32_t width,
const uint32_t height, Texture* texture) {
const GLsizei rowBytes = width * sourceBytesPerPixel();
uint8_t pixels[rowBytes * height];
static ChannelMixer gMixers[] = {
// colors are stored gamma-encoded
&android::uirenderer::GradientCache::mixBytes,
// colors are stored in linear (linear blending on)
// or gamma-encoded (linear blending off)
&android::uirenderer::GradientCache::mixFloats,
};
ChannelMixer mix = gMixers[mUseFloatTexture];
FloatColor start;
start.set(colors[0]);
FloatColor end;
end.set(colors[1]);
int currentPos = 1;
float startPos = positions[0];
float distance = positions[1] - startPos;
uint8_t* dst = pixels;
for (uint32_t x = 0; x < width; x++) {
float pos = x / float(width - 1);
if (pos > positions[currentPos]) {
start = end;
startPos = positions[currentPos];
currentPos++;
end.set(colors[currentPos]);
distance = positions[currentPos] - startPos;
}
float amount = (pos - startPos) / distance;
(this->*mix)(start, end, amount, dst);
}
memcpy(pixels + rowBytes, pixels, rowBytes);
if (mUseFloatTexture) {
texture->upload(GL_RGBA16F, width, height, GL_RGBA, GL_FLOAT, pixels);
} else {
GLint internalFormat = mHasLinearBlending ? GL_SRGB8_ALPHA8 : GL_RGBA;
texture->upload(internalFormat, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
}
texture->setFilter(GL_LINEAR);
texture->setWrap(GL_CLAMP_TO_EDGE);
}
}; // namespace uirenderer
}; // namespace android