/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VectorDrawableAtlas.h"
#include <GrRectanizer_pow2.h>
#include <SkCanvas.h>
#include <cmath>
#include "renderthread/RenderProxy.h"
#include "renderthread/RenderThread.h"
#include "utils/TraceUtils.h"
namespace android {
namespace uirenderer {
namespace skiapipeline {
VectorDrawableAtlas::VectorDrawableAtlas(size_t surfaceArea, StorageMode storageMode)
: mWidth((int)std::sqrt(surfaceArea))
, mHeight((int)std::sqrt(surfaceArea))
, mStorageMode(storageMode) {}
void VectorDrawableAtlas::prepareForDraw(GrContext* context) {
if (StorageMode::allowSharedSurface == mStorageMode) {
if (!mSurface) {
mSurface = createSurface(mWidth, mHeight, context);
mRectanizer = std::make_unique<GrRectanizerPow2>(mWidth, mHeight);
mPixelUsedByVDs = 0;
mPixelAllocated = 0;
mConsecutiveFailures = 0;
mFreeRects.clear();
} else {
if (isFragmented()) {
// Invoke repack outside renderFrame to avoid jank.
renderthread::RenderProxy::repackVectorDrawableAtlas();
}
}
}
}
#define MAX_CONSECUTIVE_FAILURES 5
#define MAX_UNUSED_RATIO 2.0f
bool VectorDrawableAtlas::isFragmented() {
return mConsecutiveFailures > MAX_CONSECUTIVE_FAILURES &&
mPixelUsedByVDs * MAX_UNUSED_RATIO < mPixelAllocated;
}
void VectorDrawableAtlas::repackIfNeeded(GrContext* context) {
// We repackage when atlas failed to allocate space MAX_CONSECUTIVE_FAILURES consecutive
// times and the atlas allocated pixels are at least MAX_UNUSED_RATIO times higher than pixels
// used by atlas VDs.
if (isFragmented() && mSurface) {
repack(context);
}
}
// compare to CacheEntry objects based on VD area.
bool VectorDrawableAtlas::compareCacheEntry(const CacheEntry& first, const CacheEntry& second) {
return first.VDrect.width() * first.VDrect.height() <
second.VDrect.width() * second.VDrect.height();
}
void VectorDrawableAtlas::repack(GrContext* context) {
ATRACE_CALL();
sk_sp<SkSurface> newSurface;
SkCanvas* canvas = nullptr;
if (StorageMode::allowSharedSurface == mStorageMode) {
newSurface = createSurface(mWidth, mHeight, context);
if (!newSurface) {
return;
}
canvas = newSurface->getCanvas();
canvas->clear(SK_ColorTRANSPARENT);
mRectanizer = std::make_unique<GrRectanizerPow2>(mWidth, mHeight);
} else {
if (!mSurface) {
return; // nothing to repack
}
mRectanizer.reset();
}
mFreeRects.clear();
SkImage* sourceImageAtlas = nullptr;
if (mSurface) {
sourceImageAtlas = mSurface->makeImageSnapshot().get();
}
// Sort the list by VD size, which allows for the smallest VDs to get first in the atlas.
// Sorting is safe, because it does not affect iterator validity.
if (mRects.size() <= 100) {
mRects.sort(compareCacheEntry);
}
for (CacheEntry& entry : mRects) {
SkRect currentVDRect = entry.VDrect;
SkImage* sourceImage; // copy either from the atlas or from a standalone surface
if (entry.surface) {
if (!fitInAtlas(currentVDRect.width(), currentVDRect.height())) {
continue; // don't even try to repack huge VD
}
sourceImage = entry.surface->makeImageSnapshot().get();
} else {
sourceImage = sourceImageAtlas;
}
size_t VDRectArea = currentVDRect.width() * currentVDRect.height();
SkIPoint16 pos;
if (canvas && mRectanizer->addRect(currentVDRect.width(), currentVDRect.height(), &pos)) {
SkRect newRect =
SkRect::MakeXYWH(pos.fX, pos.fY, currentVDRect.width(), currentVDRect.height());
canvas->drawImageRect(sourceImage, currentVDRect, newRect, nullptr);
entry.VDrect = newRect;
entry.rect = newRect;
if (entry.surface) {
// A rectangle moved from a standalone surface to the atlas.
entry.surface = nullptr;
mPixelUsedByVDs += VDRectArea;
}
} else {
// Repack failed for this item. If it is not already, store it in a standalone
// surface.
if (!entry.surface) {
// A rectangle moved from an atlas to a standalone surface.
mPixelUsedByVDs -= VDRectArea;
SkRect newRect = SkRect::MakeWH(currentVDRect.width(), currentVDRect.height());
entry.surface = createSurface(newRect.width(), newRect.height(), context);
auto tempCanvas = entry.surface->getCanvas();
tempCanvas->clear(SK_ColorTRANSPARENT);
tempCanvas->drawImageRect(sourceImageAtlas, currentVDRect, newRect, nullptr);
entry.VDrect = newRect;
entry.rect = newRect;
}
}
}
mPixelAllocated = mPixelUsedByVDs;
context->flush();
mSurface = newSurface;
mConsecutiveFailures = 0;
}
AtlasEntry VectorDrawableAtlas::requestNewEntry(int width, int height, GrContext* context) {
AtlasEntry result;
if (width <= 0 || height <= 0) {
return result;
}
if (mSurface) {
const size_t area = width * height;
// Use a rectanizer to allocate unused space from the atlas surface.
bool notTooBig = fitInAtlas(width, height);
SkIPoint16 pos;
if (notTooBig && mRectanizer->addRect(width, height, &pos)) {
mPixelUsedByVDs += area;
mPixelAllocated += area;
result.rect = SkRect::MakeXYWH(pos.fX, pos.fY, width, height);
result.surface = mSurface;
auto eraseIt = mRects.emplace(mRects.end(), result.rect, result.rect, nullptr);
CacheEntry* entry = &(*eraseIt);
entry->eraseIt = eraseIt;
result.key = reinterpret_cast<AtlasKey>(entry);
mConsecutiveFailures = 0;
return result;
}
// Try to reuse atlas memory from rectangles freed by "releaseEntry".
auto freeRectIt = mFreeRects.lower_bound(area);
while (freeRectIt != mFreeRects.end()) {
SkRect& freeRect = freeRectIt->second;
if (freeRect.width() >= width && freeRect.height() >= height) {
result.rect = SkRect::MakeXYWH(freeRect.fLeft, freeRect.fTop, width, height);
result.surface = mSurface;
auto eraseIt = mRects.emplace(mRects.end(), result.rect, freeRect, nullptr);
CacheEntry* entry = &(*eraseIt);
entry->eraseIt = eraseIt;
result.key = reinterpret_cast<AtlasKey>(entry);
mPixelUsedByVDs += area;
mFreeRects.erase(freeRectIt);
mConsecutiveFailures = 0;
return result;
}
freeRectIt++;
}
if (notTooBig && mConsecutiveFailures <= MAX_CONSECUTIVE_FAILURES) {
mConsecutiveFailures++;
}
}
// Allocate a surface for a rectangle that is too big or if atlas is full.
if (nullptr != context) {
result.rect = SkRect::MakeWH(width, height);
result.surface = createSurface(width, height, context);
auto eraseIt = mRects.emplace(mRects.end(), result.rect, result.rect, result.surface);
CacheEntry* entry = &(*eraseIt);
entry->eraseIt = eraseIt;
result.key = reinterpret_cast<AtlasKey>(entry);
}
return result;
}
AtlasEntry VectorDrawableAtlas::getEntry(AtlasKey atlasKey) {
AtlasEntry result;
if (INVALID_ATLAS_KEY != atlasKey) {
CacheEntry* entry = reinterpret_cast<CacheEntry*>(atlasKey);
result.rect = entry->VDrect;
result.surface = entry->surface;
if (!result.surface) {
result.surface = mSurface;
}
result.key = atlasKey;
}
return result;
}
void VectorDrawableAtlas::releaseEntry(AtlasKey atlasKey) {
if (INVALID_ATLAS_KEY != atlasKey) {
if (!renderthread::RenderThread::isCurrent()) {
{
AutoMutex _lock(mReleaseKeyLock);
mKeysForRelease.push_back(atlasKey);
}
// invoke releaseEntry on the renderthread
renderthread::RenderProxy::releaseVDAtlasEntries();
return;
}
CacheEntry* entry = reinterpret_cast<CacheEntry*>(atlasKey);
if (!entry->surface) {
// Store freed atlas rectangles in "mFreeRects" and try to reuse them later, when atlas
// is full.
SkRect& removedRect = entry->rect;
size_t rectArea = removedRect.width() * removedRect.height();
mFreeRects.emplace(rectArea, removedRect);
SkRect& removedVDRect = entry->VDrect;
size_t VDRectArea = removedVDRect.width() * removedVDRect.height();
mPixelUsedByVDs -= VDRectArea;
mConsecutiveFailures = 0;
}
auto eraseIt = entry->eraseIt;
mRects.erase(eraseIt);
}
}
void VectorDrawableAtlas::delayedReleaseEntries() {
AutoMutex _lock(mReleaseKeyLock);
for (auto key : mKeysForRelease) {
releaseEntry(key);
}
mKeysForRelease.clear();
}
sk_sp<SkSurface> VectorDrawableAtlas::createSurface(int width, int height, GrContext* context) {
#ifndef ANDROID_ENABLE_LINEAR_BLENDING
sk_sp<SkColorSpace> colorSpace = nullptr;
#else
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeSRGB();
#endif
SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType, colorSpace);
// This must have a top-left origin so that calls to surface->canvas->writePixels
// performs a basic texture upload instead of a more complex drawing operation
return SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, info, 0, kTopLeft_GrSurfaceOrigin,
nullptr);
}
void VectorDrawableAtlas::setStorageMode(StorageMode mode) {
mStorageMode = mode;
if (StorageMode::disallowSharedSurface == mStorageMode && mSurface) {
mSurface.reset();
mRectanizer.reset();
mFreeRects.clear();
}
}
} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */