#!/usr/bin/python
import optparse
import sys
import sqlite3
import scipy.stats
import numpy
from math import log10, floor
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import pylab
import adbutil
from devices import DEVICES
DB_PATH="/data/data/com.android.benchmark/databases/BenchmarkResults"
OUT_PATH = "db/"
QUERY_BAD_FRAME = ("select run_id, name, iteration, total_duration from ui_results "
"where total_duration >= 16 order by run_id, name, iteration")
QUERY_PERCENT_JANK = ("select run_id, name, iteration, sum(jank_frame) as jank_count, count (*) as total "
"from ui_results group by run_id, name, iteration")
SKIP_TESTS = [
# "BMUpload",
# "Low-hitrate text render",
# "High-hitrate text render",
# "Edit Text Input",
# "List View Fling"
]
INCLUDE_TESTS = [
#"BMUpload"
#"Shadow Grid Fling"
#"Image List View Fling"
#"Edit Text Input"
]
class IterationResult:
def __init__(self):
self.durations = []
self.jank_count = 0
self.total_count = 0
def get_scoremap(dbpath):
db = sqlite3.connect(dbpath)
rows = db.execute(QUERY_BAD_FRAME)
scoremap = {}
for row in rows:
run_id = row[0]
name = row[1]
iteration = row[2]
total_duration = row[3]
if not run_id in scoremap:
scoremap[run_id] = {}
if not name in scoremap[run_id]:
scoremap[run_id][name] = {}
if not iteration in scoremap[run_id][name]:
scoremap[run_id][name][iteration] = IterationResult()
scoremap[run_id][name][iteration].durations.append(float(total_duration))
for row in db.execute(QUERY_PERCENT_JANK):
run_id = row[0]
name = row[1]
iteration = row[2]
jank_count = row[3]
total_count = row[4]
if run_id in scoremap.keys() and name in scoremap[run_id].keys() and iteration in scoremap[run_id][name].keys():
scoremap[run_id][name][iteration].jank_count = long(jank_count)
scoremap[run_id][name][iteration].total_count = long(total_count)
db.close()
return scoremap
def round_to_2(val):
return val
if val == 0:
return val
return round(val , -int(floor(log10(abs(val)))) + 1)
def score_device(name, serial, pull = False, verbose = False):
dbpath = OUT_PATH + name + ".db"
if pull:
adbutil.root(serial)
adbutil.pull(serial, DB_PATH, dbpath)
scoremap = None
try:
scoremap = get_scoremap(dbpath)
except sqlite3.DatabaseError:
print "Database corrupt, fetching..."
adbutil.root(serial)
adbutil.pull(serial, DB_PATH, dbpath)
scoremap = get_scoremap(dbpath)
per_test_score = {}
per_test_sample_count = {}
global_overall = {}
for run_id in iter(scoremap):
overall = []
if len(scoremap[run_id]) < 1:
if verbose:
print "Skipping short run %s" % run_id
continue
print "Run: %s" % run_id
for test in iter(scoremap[run_id]):
if test in SKIP_TESTS:
continue
if INCLUDE_TESTS and test not in INCLUDE_TESTS:
continue
if verbose:
print "\t%s" % test
scores = []
means = []
stddevs = []
pjs = []
sample_count = 0
hit_min_count = 0
# try pooling together all iterations
for iteration in iter(scoremap[run_id][test]):
res = scoremap[run_id][test][iteration]
stddev = round_to_2(numpy.std(res.durations))
mean = round_to_2(numpy.mean(res.durations))
sample_count += len(res.durations)
pj = round_to_2(100 * res.jank_count / float(res.total_count))
score = stddev * mean * pj
score = 100 * len(res.durations) / float(res.total_count)
if score == 0:
score = 1
scores.append(score)
means.append(mean)
stddevs.append(stddev)
pjs.append(pj)
if verbose:
print "\t%s: Score = %f x %f x %f = %f (%d samples)" % (iteration, stddev, mean, pj, score, len(res.durations))
if verbose:
print "\tHit min: %d" % hit_min_count
print "\tMean Variation: %0.2f%%" % (100 * scipy.stats.variation(means))
print "\tStdDev Variation: %0.2f%%" % (100 * scipy.stats.variation(stddevs))
print "\tPJ Variation: %0.2f%%" % (100 * scipy.stats.variation(pjs))
geo_run = numpy.mean(scores)
if test not in per_test_score:
per_test_score[test] = []
if test not in per_test_sample_count:
per_test_sample_count[test] = []
sample_count /= len(scoremap[run_id][test])
per_test_score[test].append(geo_run)
per_test_sample_count[test].append(int(sample_count))
overall.append(geo_run)
if not verbose:
print "\t%s:\t%0.2f (%0.2f avg. sample count)" % (test, geo_run, sample_count)
else:
print "\tOverall:\t%0.2f (%0.2f avg. sample count)" % (geo_run, sample_count)
print ""
global_overall[run_id] = scipy.stats.gmean(overall)
print "Run Overall: %f" % global_overall[run_id]
print ""
print ""
print "Variability (CV) - %s:" % name
worst_offender_test = None
worst_offender_variation = 0
for test in per_test_score:
variation = 100 * scipy.stats.variation(per_test_score[test])
if worst_offender_variation < variation:
worst_offender_test = test
worst_offender_variation = variation
print "\t%s:\t%0.2f%% (%0.2f avg sample count)" % (test, variation, numpy.mean(per_test_sample_count[test]))
print "\tOverall: %0.2f%%" % (100 * scipy.stats.variation([x for x in global_overall.values()]))
print ""
return {
"overall": global_overall.values(),
"worst_offender_test": (name, worst_offender_test, worst_offender_variation)
}
def parse_options(argv):
usage = 'Usage: %prog [options]'
desc = 'Example: %prog'
parser = optparse.OptionParser(usage=usage, description=desc)
parser.add_option("-p", dest='pull', action="store_true")
parser.add_option("-d", dest='device', action="store")
parser.add_option("-v", dest='verbose', action="store_true")
options, categories = parser.parse_args(argv[1:])
return options
def main():
options = parse_options(sys.argv)
if options.device != None:
score_device(options.device, DEVICES[options.device], options.pull, options.verbose)
else:
device_scores = []
worst_offenders = []
for name, serial in DEVICES.iteritems():
print "======== %s =========" % name
result = score_device(name, serial, options.pull, options.verbose)
device_scores.append((name, result["overall"]))
worst_offenders.append(result["worst_offender_test"])
device_scores.sort(cmp=(lambda x, y: cmp(x[1], y[1])))
print "Ranking by max overall score:"
for name, score in device_scores:
plt.plot([0, 1, 2, 3, 4, 5], score, label=name)
print "\t%s: %s" % (name, score)
plt.ylabel("Jank %")
plt.xlabel("Iteration")
plt.title("Jank Percentage")
plt.legend()
pylab.savefig("holy.png", bbox_inches="tight")
print "Worst offender tests:"
for device, test, variation in worst_offenders:
print "\t%s: %s %.2f%%" % (device, test, variation)
if __name__ == "__main__":
main()