/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ValidateHal"
#include "ValidateHal.h"
#include "NeuralNetworks.h"
#include "Utils.h"
#include <android-base/logging.h>
namespace android {
namespace nn {
class MemoryAccessVerifier {
public:
MemoryAccessVerifier(const hidl_vec<hidl_memory>& pools)
: mPoolCount(pools.size()), mPoolSizes(mPoolCount) {
for (size_t i = 0; i < mPoolCount; i++) {
mPoolSizes[i] = pools[i].size();
}
}
bool validate(const DataLocation& location) {
if (location.poolIndex >= mPoolCount) {
LOG(ERROR) << "Invalid poolIndex " << location.poolIndex << "/" << mPoolCount;
return false;
}
const size_t size = mPoolSizes[location.poolIndex];
// Do the addition using size_t to avoid potential wrap-around problems.
if (static_cast<size_t>(location.offset) + location.length > size) {
LOG(ERROR) << "Reference to pool " << location.poolIndex << " with offset "
<< location.offset << " and length " << location.length
<< " exceeds pool size of " << size;
return false;
}
return true;
}
private:
size_t mPoolCount;
std::vector<size_t> mPoolSizes;
};
static bool validateOperands(const hidl_vec<Operand>& operands,
const hidl_vec<uint8_t>& operandValues,
const hidl_vec<hidl_memory>& pools) {
uint32_t index = 0;
MemoryAccessVerifier poolVerifier(pools);
for (auto& operand : operands) {
// Validate type and dimensions.
switch (operand.type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::OEM: {
size_t count = operand.dimensions.size();
if (count != 0) {
LOG(ERROR) << "Operand " << index << ": Scalar data has dimensions of rank "
<< count;
return false;
}
break;
}
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
case OperandType::TENSOR_OEM_BYTE: {
if (operand.dimensions.size() == 0) {
LOG(ERROR) << "Operand " << index << ": Tensor has dimensions of rank 0";
return false;
}
break;
}
default:
LOG(ERROR) << "Operand " << index << ": Invalid operand type "
<< toString(operand.type);
return false;
}
// TODO Validate the numberOfConsumers.
// TODO Since we have to validate it, there was no point in including it. For the next
// release, consider removing unless we have an additional process in system space
// that creates this value. In that case, it would not have to be validated.
// Validate the scale.
switch (operand.type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
if (operand.scale != 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero scale ("
<< operand.scale << ")";
return false;
}
break;
case OperandType::TENSOR_INT32:
// TENSOR_INT32 may be used with or without scale, depending on the operation.
if (operand.scale < 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a negative scale";
return false;
}
break;
case OperandType::TENSOR_QUANT8_ASYMM:
if (operand.scale <= 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-positive scale";
return false;
}
break;
default:
// No validation for the OEM types.
// TODO We should have had a separate type for TENSOR_INT32 that a scale
// and those who don't. Document now and fix in the next release.
break;
}
// Validate the zeroPoint.
switch (operand.type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
if (operand.zeroPoint != 0) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with an non-zero zeroPoint "
<< operand.zeroPoint;
return false;
}
break;
case OperandType::TENSOR_QUANT8_ASYMM:
if (operand.zeroPoint < 0 || operand.zeroPoint > 255) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
<< operand.zeroPoint << ", must be in range [0, 255]";
return false;
}
break;
default:
// No validation for the OEM types.
break;
}
// Validate the lifetime and the location.
const DataLocation& location = operand.location;
switch (operand.lifetime) {
case OperandLifeTime::CONSTANT_COPY:
if (location.poolIndex != 0) {
LOG(ERROR) << "Operand " << index
<< ": CONSTANT_COPY with a non-zero poolIndex "
<< location.poolIndex;
return false;
}
// Do the addition using size_t to avoid potential wrap-around problems.
if (static_cast<size_t>(location.offset) + location.length > operandValues.size()) {
LOG(ERROR) << "Operand " << index
<< ": OperandValue location out of range. Starts at "
<< location.offset << ", length " << location.length << ", max "
<< operandValues.size();
return false;
}
break;
case OperandLifeTime::CONSTANT_REFERENCE:
if (!poolVerifier.validate(location)) {
return false;
}
break;
case OperandLifeTime::TEMPORARY_VARIABLE:
case OperandLifeTime::MODEL_INPUT:
case OperandLifeTime::MODEL_OUTPUT:
case OperandLifeTime::NO_VALUE:
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0) {
LOG(ERROR) << "Operand " << index << ": Unexpected poolIndex "
<< location.poolIndex << ", offset " << location.offset
<< ", or length " << location.length << " for operand of lifetime "
<< toString(operand.lifetime);
return false;
}
break;
default:
LOG(ERROR) << "Operand " << index << ": Invalid lifetime "
<< toString(operand.lifetime);
return false;
}
// For constants, validate that the length is as expected. The other lifetimes
// expect the length to be 0. Don't validate for OEM types.
if (operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE ||
operand.lifetime == OperandLifeTime::CONSTANT_COPY) {
if (operand.type != OperandType::OEM &&
operand.type != OperandType::TENSOR_OEM_BYTE) {
uint32_t expectedLength = sizeOfData(operand.type, operand.dimensions);
if (location.length != expectedLength) {
LOG(ERROR) << "Operand " << index << ": For operand " << toString(operand)
<< " expected a size of " << expectedLength << " but got "
<< location.length;
return false;
}
}
}
index++;
}
return true;
}
static bool validOperationType(V1_0::OperationType operation) {
switch (operation) {
case V1_0::OperationType::ADD:
case V1_0::OperationType::AVERAGE_POOL_2D:
case V1_0::OperationType::CONCATENATION:
case V1_0::OperationType::CONV_2D:
case V1_0::OperationType::DEPTHWISE_CONV_2D:
case V1_0::OperationType::DEPTH_TO_SPACE:
case V1_0::OperationType::DEQUANTIZE:
case V1_0::OperationType::EMBEDDING_LOOKUP:
case V1_0::OperationType::FLOOR:
case V1_0::OperationType::FULLY_CONNECTED:
case V1_0::OperationType::HASHTABLE_LOOKUP:
case V1_0::OperationType::L2_NORMALIZATION:
case V1_0::OperationType::L2_POOL_2D:
case V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION:
case V1_0::OperationType::LOGISTIC:
case V1_0::OperationType::LSH_PROJECTION:
case V1_0::OperationType::LSTM:
case V1_0::OperationType::MAX_POOL_2D:
case V1_0::OperationType::MUL:
case V1_0::OperationType::RELU:
case V1_0::OperationType::RELU1:
case V1_0::OperationType::RELU6:
case V1_0::OperationType::RESHAPE:
case V1_0::OperationType::RESIZE_BILINEAR:
case V1_0::OperationType::RNN:
case V1_0::OperationType::SOFTMAX:
case V1_0::OperationType::SPACE_TO_DEPTH:
case V1_0::OperationType::SVDF:
case V1_0::OperationType::TANH:
case V1_0::OperationType::OEM_OPERATION:
return true;
default:
return false;
}
}
static bool validOperationType(V1_1::OperationType operation) {
switch (operation) {
case V1_1::OperationType::ADD:
case V1_1::OperationType::AVERAGE_POOL_2D:
case V1_1::OperationType::CONCATENATION:
case V1_1::OperationType::CONV_2D:
case V1_1::OperationType::DEPTHWISE_CONV_2D:
case V1_1::OperationType::DEPTH_TO_SPACE:
case V1_1::OperationType::DEQUANTIZE:
case V1_1::OperationType::EMBEDDING_LOOKUP:
case V1_1::OperationType::FLOOR:
case V1_1::OperationType::FULLY_CONNECTED:
case V1_1::OperationType::HASHTABLE_LOOKUP:
case V1_1::OperationType::L2_NORMALIZATION:
case V1_1::OperationType::L2_POOL_2D:
case V1_1::OperationType::LOCAL_RESPONSE_NORMALIZATION:
case V1_1::OperationType::LOGISTIC:
case V1_1::OperationType::LSH_PROJECTION:
case V1_1::OperationType::LSTM:
case V1_1::OperationType::MAX_POOL_2D:
case V1_1::OperationType::MUL:
case V1_1::OperationType::RELU:
case V1_1::OperationType::RELU1:
case V1_1::OperationType::RELU6:
case V1_1::OperationType::RESHAPE:
case V1_1::OperationType::RESIZE_BILINEAR:
case V1_1::OperationType::RNN:
case V1_1::OperationType::SOFTMAX:
case V1_1::OperationType::SPACE_TO_DEPTH:
case V1_1::OperationType::SVDF:
case V1_1::OperationType::TANH:
case V1_1::OperationType::BATCH_TO_SPACE_ND:
case V1_1::OperationType::DIV:
case V1_1::OperationType::MEAN:
case V1_1::OperationType::PAD:
case V1_1::OperationType::SPACE_TO_BATCH_ND:
case V1_1::OperationType::SQUEEZE:
case V1_1::OperationType::STRIDED_SLICE:
case V1_1::OperationType::SUB:
case V1_1::OperationType::TRANSPOSE:
case V1_1::OperationType::OEM_OPERATION:
return true;
default:
return false;
}
}
template<typename VersionedOperation>
static bool validateOperations(const hidl_vec<VersionedOperation>& operations,
const hidl_vec<Operand>& operands) {
const size_t operandCount = operands.size();
// This vector keeps track of whether there's an operation that writes to
// each operand. It is used to validate that temporary variables and
// model outputs will be written to.
std::vector<bool> writtenTo(operandCount, false);
for (auto& op : operations) {
if (!validOperationType(op.type)) {
LOG(ERROR) << "Invalid operation type " << toString(op.type);
return false;
}
// TODO Validate the shapes and any known values. This is currently
// done in CpuExecutor but should be done here for all drivers.
int error =
validateOperation(static_cast<int32_t>(op.type), op.inputs.size(),
op.inputs.size() > 0 ? op.inputs.data() : nullptr, op.outputs.size(),
op.outputs.size() > 0 ? op.outputs.data() : nullptr, operands);
if (error != ANEURALNETWORKS_NO_ERROR) {
return false;
}
for (uint32_t i : op.outputs) {
const Operand& operand = operands[i];
if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE &&
operand.lifetime != OperandLifeTime::MODEL_OUTPUT) {
LOG(ERROR) << "Writing to an operand with incompatible lifetime "
<< toString(operand.lifetime);
return false;
}
// Check that we only write once to an operand.
if (writtenTo[i]) {
LOG(ERROR) << "Operand " << i << " written a second time";
return false;
}
writtenTo[i] = true;
}
}
for (size_t i = 0; i < operandCount; i++) {
if (!writtenTo[i]) {
const Operand& operand = operands[i];
if (operand.lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
operand.lifetime == OperandLifeTime::MODEL_OUTPUT) {
LOG(ERROR) << "Operand " << i << " with lifetime " << toString(operand.lifetime)
<< " is not being written to.";
return false;
}
}
}
// TODO More whole graph verifications are possible, for example that an
// operand is not use as input & output for the same op, and more
// generally that it is acyclic.
return true;
}
static bool validatePools(const hidl_vec<hidl_memory>& pools) {
for (const hidl_memory& memory : pools) {
const auto name = memory.name();
if (name != "ashmem" && name != "mmap_fd") {
LOG(ERROR) << "Unsupported memory type " << name;
return false;
}
if (memory.handle() == nullptr) {
LOG(ERROR) << "Memory of type " << name << " is null";
return false;
}
}
return true;
}
static bool validateModelInputOutputs(const hidl_vec<uint32_t> indexes,
const hidl_vec<Operand>& operands, OperandLifeTime lifetime) {
const size_t operandCount = operands.size();
for (uint32_t i : indexes) {
if (i >= operandCount) {
LOG(ERROR) << "Model input or output index out of range: " << i << "/" << operandCount;
return false;
}
const Operand& operand = operands[i];
if (operand.lifetime != lifetime) {
LOG(ERROR) << "Model input or output has lifetime of " << toString(operand.lifetime)
<< " instead of the expected " << toString(lifetime);
return false;
}
}
std::vector<uint32_t> sortedIndexes = indexes;
std::sort(sortedIndexes.begin(), sortedIndexes.end());
auto adjacentI = std::adjacent_find(sortedIndexes.begin(), sortedIndexes.end());
if (adjacentI != sortedIndexes.end()) {
LOG(ERROR) << "Model input or output occurs multiple times: " << *adjacentI;
return false;
}
return true;
}
template<typename VersionedModel>
static bool validateModelVersioned(const VersionedModel& model) {
return (validateOperands(model.operands, model.operandValues, model.pools) &&
validateOperations(model.operations, model.operands) &&
validateModelInputOutputs(model.inputIndexes, model.operands,
OperandLifeTime::MODEL_INPUT) &&
validateModelInputOutputs(model.outputIndexes, model.operands,
OperandLifeTime::MODEL_OUTPUT) &&
validatePools(model.pools));
}
bool validateModel(const V1_0::Model& model) {
return validateModelVersioned(model);
}
bool validateModel(const V1_1::Model& model) {
return validateModelVersioned(model);
}
// Validates the arguments of a request. type is either "input" or "output" and is used
// for printing error messages. The operandIndexes is the appropriate array of input
// or output operand indexes that was passed to the ANeuralNetworksModel_identifyInputsAndOutputs.
static bool validateRequestArguments(const hidl_vec<RequestArgument>& requestArguments,
const hidl_vec<uint32_t>& operandIndexes,
const hidl_vec<Operand>& operands,
const hidl_vec<hidl_memory>& pools, const char* type) {
MemoryAccessVerifier poolVerifier(pools);
// The request should specify as many arguments as were described in the model.
const size_t requestArgumentCount = requestArguments.size();
if (requestArgumentCount != operandIndexes.size()) {
LOG(ERROR) << "Request specifies " << requestArgumentCount << " " << type
<< "s but the model has " << operandIndexes.size();
return false;
}
for (size_t requestArgumentIndex = 0; requestArgumentIndex < requestArgumentCount;
requestArgumentIndex++) {
const RequestArgument& requestArgument = requestArguments[requestArgumentIndex];
const DataLocation& location = requestArgument.location;
// Get the operand index for this argument. We extract it from the list
// that was provided in the call to ANeuralNetworksModel_identifyInputsAndOutputs.
// We assume in this function that the model has been validated already.
const uint32_t operandIndex = operandIndexes[requestArgumentIndex];
const Operand& operand = operands[operandIndex];
if (requestArgument.hasNoValue) {
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0 ||
requestArgument.dimensions.size() != 0) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has no value yet has details.";
return false;
}
} else {
// Validate the location.
if (!poolVerifier.validate(location)) {
return false;
}
// If the argument specified a dimension, validate it.
uint32_t rank = requestArgument.dimensions.size();
if (rank == 0) {
// Validate that all the dimensions are specified in the model.
for (size_t i = 0; i < operand.dimensions.size(); i++) {
if (operand.dimensions[i] == 0) {
LOG(ERROR) << "Model has dimension " << i
<< " set to 0 but the request does specify the dimension.";
return false;
}
}
} else {
if (rank != operand.dimensions.size()) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has number of dimensions (" << rank
<< ") different than the model's (" << operand.dimensions.size()
<< ")";
return false;
}
for (size_t i = 0; i < rank; i++) {
if (requestArgument.dimensions[i] != operand.dimensions[i] &&
operand.dimensions[i] != 0) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has dimension " << i << " of "
<< requestArgument.dimensions[i]
<< " different than the model's " << operand.dimensions[i];
return false;
}
if (requestArgument.dimensions[i] == 0) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has dimension " << i << " of zero";
return false;
}
}
}
}
}
return true;
}
template<typename VersionedModel>
static bool validateRequestVersioned(const Request& request, const VersionedModel& model) {
return (validateRequestArguments(request.inputs, model.inputIndexes, model.operands,
request.pools, "input") &&
validateRequestArguments(request.outputs, model.outputIndexes, model.operands,
request.pools, "output") &&
validatePools(request.pools));
}
bool validateRequest(const Request& request, const V1_0::Model& model) {
return validateRequestVersioned(request, model);
}
bool validateRequest(const Request& request, const V1_1::Model& model) {
return validateRequestVersioned(request, model);
}
bool validateExecutionPreference(ExecutionPreference preference) {
return preference == ExecutionPreference::LOW_POWER ||
preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
preference == ExecutionPreference::SUSTAINED_SPEED;
}
} // namespace nn
} // namespace android