/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains the implementation of the operations.
#define LOG_TAG "Operations"
#include "Operations.h"
#include "CpuOperationUtils.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
namespace android {
namespace nn {
bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape,
const int32_t* beginData, const int32_t* endData,
const int32_t* stridesData,
int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask,
uint8_t* outputData, const Shape& outputShape) {
// This Op only supports 1-4D cases and since we use the reference 4D
// implementation, the 1-3D tensors are mapped to 4D.
const int kMaxDim = 4;
std::vector<int> starts;
std::vector<int> stops;
std::vector<int> strides;
int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));
for (int32_t idx = numInputDims - 1; idx >= 0; --idx) {
int32_t dim = static_cast<int32_t>(getSizeOfDimension(inputShape, idx));
int32_t stride = stridesData[idx];
// stride value has to be non-zero
NN_OPS_CHECK(stride != 0);
bool positiveStride = stride > 0;
int32_t begin = beginMask & (1 << idx)
? positiveStride ? 0 : dim - 1
: ClampedIndex(beginData[idx], dim, positiveStride);
int32_t end = endMask & (1 << idx)
? positiveStride ? dim : -1
: ClampedIndex(endData[idx], dim, positiveStride);
starts.emplace_back(begin);
stops.emplace_back(end);
strides.emplace_back(stride);
}
for (int i = numInputDims; i < kMaxDim; i++) {
starts.emplace_back(0);
stops.emplace_back(1);
strides.emplace_back(1);
}
beginMask = ReverseMaskBits(beginMask, numInputDims);
endMask = ReverseMaskBits(endMask, numInputDims);
shrinkAxisMask = ReverseMaskBits(shrinkAxisMask, numInputDims);
if (inputShape.type == OperandType::TENSOR_FLOAT32) {
tflite::reference_ops::StridedSlice(
reinterpret_cast<const float*>(inputData),
convertShapeToDims(inputShape),
beginMask, endMask, shrinkAxisMask,
starts, stops, strides,
reinterpret_cast<float*>(outputData),
convertShapeToDims(outputShape));
} else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
tflite::reference_ops::StridedSlice(
reinterpret_cast<const uint8_t*>(inputData),
convertShapeToDims(inputShape),
beginMask, endMask, shrinkAxisMask,
starts, stops, strides,
reinterpret_cast<uint8_t*>(outputData),
convertShapeToDims(outputShape));
} else {
LOG(ERROR) << "Unsupported data type";
return false;
}
return true;
}
} // namespace nn
} // namespace android