/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SampleDriverMinimal"
#include "SampleDriver.h"
#include "HalInterfaces.h"
#include "NeuralNetworksOEM.h"
#include "Utils.h"
#include "ValidateHal.h"
#include <android-base/logging.h>
#include <hidl/LegacySupport.h>
#include <thread>
namespace android {
namespace nn {
namespace sample_driver {
class SampleDriverMinimal : public SampleDriver {
public:
SampleDriverMinimal() : SampleDriver("sample-minimal") {}
Return<void> getCapabilities_1_1(getCapabilities_1_1_cb cb) override;
Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb cb) override;
};
Return<void> SampleDriverMinimal::getCapabilities_1_1(getCapabilities_1_1_cb cb) {
android::nn::initVLogMask();
VLOG(DRIVER) << "getCapabilities()";
Capabilities capabilities = {.float32Performance = {.execTime = 0.4f, .powerUsage = 0.5f},
.quantized8Performance = {.execTime = 1.0f, .powerUsage = 1.0f},
.relaxedFloat32toFloat16Performance =
{.execTime = 0.4f, .powerUsage = 0.5f}};
cb(ErrorStatus::NONE, capabilities);
return Void();
}
Return<void> SampleDriverMinimal::getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb cb) {
VLOG(DRIVER) << "getSupportedOperations()";
if (validateModel(model)) {
const size_t count = model.operations.size();
std::vector<bool> supported(count);
// Simulate supporting just a few ops
for (size_t i = 0; i < count; i++) {
supported[i] = false;
const Operation& operation = model.operations[i];
switch (operation.type) {
case OperationType::ADD:
case OperationType::CONCATENATION:
case OperationType::CONV_2D: {
const Operand& firstOperand = model.operands[operation.inputs[0]];
if (firstOperand.type == OperandType::TENSOR_FLOAT32) {
supported[i] = true;
}
break;
}
default:
break;
}
}
cb(ErrorStatus::NONE, supported);
} else {
std::vector<bool> supported;
cb(ErrorStatus::INVALID_ARGUMENT, supported);
}
return Void();
}
} // namespace sample_driver
} // namespace nn
} // namespace android
using android::nn::sample_driver::SampleDriverMinimal;
using android::sp;
int main() {
sp<SampleDriverMinimal> driver(new SampleDriverMinimal());
return driver->run();
}