// Generated file (from: conv_float.mod.py). Do not edit
void CreateModel(Model *model) {
OperandType type3(Type::INT32, {});
OperandType type1(Type::TENSOR_FLOAT32, {1, 2, 2, 1});
OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 3, 1});
OperandType type2(Type::TENSOR_FLOAT32, {1});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto op2 = model->addOperand(&type1);
auto op3 = model->addOperand(&type2);
auto pad0 = model->addOperand(&type3);
auto act = model->addOperand(&type3);
auto stride = model->addOperand(&type3);
auto op4 = model->addOperand(&type1);
// Phase 2, operations
static float op2_init[] = {0.25f, 0.25f, 0.25f, 0.25f};
model->setOperandValue(op2, op2_init, sizeof(float) * 4);
static float op3_init[] = {0.0f};
model->setOperandValue(op3, op3_init, sizeof(float) * 1);
static int32_t pad0_init[] = {0};
model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
static int32_t act_init[] = {0};
model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
static int32_t stride_init[] = {1};
model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op4});
assert(model->isValid());
}
bool is_ignored(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}