// Generated file (from: rnn_state.mod.py). Do not edit
void CreateModel(Model *model) {
OperandType type5(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {16, 16});
OperandType type1(Type::TENSOR_FLOAT32, {16, 8});
OperandType type3(Type::TENSOR_FLOAT32, {16});
OperandType type4(Type::TENSOR_FLOAT32, {2, 16});
OperandType type0(Type::TENSOR_FLOAT32, {2, 8});
// Phase 1, operands
auto input = model->addOperand(&type0);
auto weights = model->addOperand(&type1);
auto recurrent_weights = model->addOperand(&type2);
auto bias = model->addOperand(&type3);
auto hidden_state_in = model->addOperand(&type4);
auto activation_param = model->addOperand(&type5);
auto hidden_state_out = model->addOperand(&type4);
auto output = model->addOperand(&type4);
// Phase 2, operations
static int32_t activation_param_init[] = {1};
model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input, weights, recurrent_weights, bias, hidden_state_in},
{hidden_state_out, output});
assert(model->isValid());
}
bool is_ignored(int i) {
static std::set<int> ignore = {0};
return ignore.find(i) != ignore.end();
}