#
# Copyright (C) 2017 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
batches = 2
features = 4
rank = 1
units = int(features / rank)
input_size = 3
memory_size = 10
model = Model()
input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size))
weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size))
bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units))
state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
rank_param = Int32Scalar("rank_param", rank)
activation_param = Int32Scalar("activation_param", 0)
state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
rank_param, activation_param).To([state_out, output])
input0 = {
input: [],
weights_feature: [
-0.31930989, -0.36118156, 0.0079667, 0.37613347,
0.22197971, 0.12416199, 0.27901134, 0.27557442,
0.3905206, -0.36137494, -0.06634006, -0.10640851
],
weights_time: [
-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657
],
bias: [],
state_in: [0 for _ in range(batches * memory_size * features)],
}
test_inputs = [
0.12609188, -0.46347019, -0.89598465,
0.12609188, -0.46347019, -0.89598465,
0.14278367, -1.64410412, -0.75222826,
0.14278367, -1.64410412, -0.75222826,
0.49837467, 0.19278903, 0.26584083,
0.49837467, 0.19278903, 0.26584083,
-0.11186574, 0.13164264, -0.05349274,
-0.11186574, 0.13164264, -0.05349274,
-0.68892461, 0.37783599, 0.18263303,
-0.68892461, 0.37783599, 0.18263303,
-0.81299269, -0.86831826, 1.43940818,
-0.81299269, -0.86831826, 1.43940818,
-1.45006323, -0.82251364, -1.69082689,
-1.45006323, -0.82251364, -1.69082689,
0.03966608, -0.24936394, -0.77526885,
0.03966608, -0.24936394, -0.77526885,
0.11771342, -0.23761693, -0.65898693,
0.11771342, -0.23761693, -0.65898693,
-0.89477462, 1.67204106, -0.53235275,
-0.89477462, 1.67204106, -0.53235275
]
golden_outputs = [
0.014899, -0.0517661, -0.143725, -0.00271883,
0.014899, -0.0517661, -0.143725, -0.00271883,
0.068281, -0.162217, -0.152268, 0.00323521,
0.068281, -0.162217, -0.152268, 0.00323521,
-0.0317821, -0.0333089, 0.0609602, 0.0333759,
-0.0317821, -0.0333089, 0.0609602, 0.0333759,
-0.00623099, -0.077701, -0.391193, -0.0136691,
-0.00623099, -0.077701, -0.391193, -0.0136691,
0.201551, -0.164607, -0.179462, -0.0592739,
0.201551, -0.164607, -0.179462, -0.0592739,
0.0886511, -0.0875401, -0.269283, 0.0281379,
0.0886511, -0.0875401, -0.269283, 0.0281379,
-0.201174, -0.586145, -0.628624, -0.0330412,
-0.201174, -0.586145, -0.628624, -0.0330412,
-0.0839096, -0.299329, 0.108746, 0.109808,
-0.0839096, -0.299329, 0.108746, 0.109808,
0.419114, -0.237824, -0.422627, 0.175115,
0.419114, -0.237824, -0.422627, 0.175115,
0.36726, -0.522303, -0.456502, -0.175475,
0.36726, -0.522303, -0.456502, -0.175475
]
output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
output: []}
# TODO: enable more data points after fixing the reference issue
for i in range(1):
batch_start = i * input_size * batches
batch_end = batch_start + input_size * batches
input0[input] = test_inputs[batch_start:batch_end]
golden_start = i * units * batches
golden_end = golden_start + units * batches
output0[output] = golden_outputs[golden_start:golden_end]
Example((input0, output0))