/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "broadcastradio.vts"
#include <VtsHalHidlTargetTestBase.h>
#include <android-base/logging.h>
#include <android/hardware/broadcastradio/1.1/IBroadcastRadio.h>
#include <android/hardware/broadcastradio/1.1/IBroadcastRadioFactory.h>
#include <android/hardware/broadcastradio/1.1/ITuner.h>
#include <android/hardware/broadcastradio/1.1/ITunerCallback.h>
#include <android/hardware/broadcastradio/1.1/types.h>
#include <broadcastradio-utils-1x/Utils.h>
#include <broadcastradio-vts-utils/call-barrier.h>
#include <broadcastradio-vts-utils/environment-utils.h>
#include <broadcastradio-vts-utils/mock-timeout.h>
#include <broadcastradio-vts-utils/pointer-utils.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gmock/gmock.h>
#include <hidl/HidlTransportSupport.h>
#include <utils/threads.h>
#include <chrono>
namespace android {
namespace hardware {
namespace broadcastradio {
namespace V1_1 {
namespace vts {
using namespace std::chrono_literals;
using testing::_;
using testing::AnyNumber;
using testing::ByMove;
using testing::DoAll;
using testing::Invoke;
using testing::SaveArg;
using broadcastradio::vts::CallBarrier;
using V1_0::BandConfig;
using V1_0::Class;
using V1_0::MetaData;
using V1_0::MetadataKey;
using V1_0::MetadataType;
using broadcastradio::vts::clearAndWait;
using broadcastradio::vts::BroadcastRadioHidlEnvironment;
static constexpr auto kConfigTimeout = 10s;
static constexpr auto kConnectModuleTimeout = 1s;
static constexpr auto kTuneTimeout = 30s;
static constexpr auto kEventPropagationTimeout = 1s;
static constexpr auto kFullScanTimeout = 1min;
static constexpr ProgramType kStandardProgramTypes[] = {
ProgramType::AM, ProgramType::FM, ProgramType::AM_HD, ProgramType::FM_HD,
ProgramType::DAB, ProgramType::DRMO, ProgramType::SXM};
static void printSkipped(std::string msg) {
std::cout << "[ SKIPPED ] " << msg << std::endl;
}
struct TunerCallbackMock : public ITunerCallback {
TunerCallbackMock() { EXPECT_CALL(*this, hardwareFailure()).Times(0); }
MOCK_METHOD0(hardwareFailure, Return<void>());
MOCK_TIMEOUT_METHOD2(configChange, Return<void>(Result, const BandConfig&));
MOCK_METHOD2(tuneComplete, Return<void>(Result, const V1_0::ProgramInfo&));
MOCK_TIMEOUT_METHOD2(tuneComplete_1_1, Return<void>(Result, const ProgramSelector&));
MOCK_METHOD1(afSwitch, Return<void>(const V1_0::ProgramInfo&));
MOCK_METHOD1(antennaStateChange, Return<void>(bool connected));
MOCK_METHOD1(trafficAnnouncement, Return<void>(bool active));
MOCK_METHOD1(emergencyAnnouncement, Return<void>(bool active));
MOCK_METHOD3(newMetadata, Return<void>(uint32_t ch, uint32_t subCh, const hidl_vec<MetaData>&));
MOCK_METHOD1(backgroundScanAvailable, Return<void>(bool));
MOCK_TIMEOUT_METHOD1(backgroundScanComplete, Return<void>(ProgramListResult));
MOCK_METHOD0(programListChanged, Return<void>());
MOCK_TIMEOUT_METHOD1(currentProgramInfoChanged, Return<void>(const ProgramInfo&));
};
static BroadcastRadioHidlEnvironment<IBroadcastRadioFactory>* gEnv = nullptr;
class BroadcastRadioHalTest : public ::testing::VtsHalHidlTargetTestBase,
public ::testing::WithParamInterface<Class> {
protected:
virtual void SetUp() override;
virtual void TearDown() override;
bool openTuner();
bool nextBand();
bool getProgramList(std::function<void(const hidl_vec<ProgramInfo>& list)> cb);
Class radioClass;
bool skipped = false;
sp<IBroadcastRadio> mRadioModule;
sp<ITuner> mTuner;
sp<TunerCallbackMock> mCallback = new TunerCallbackMock();
private:
const BandConfig& getBand(unsigned idx);
unsigned currentBandIndex = 0;
hidl_vec<BandConfig> mBands;
};
void BroadcastRadioHalTest::SetUp() {
radioClass = GetParam();
// lookup HIDL service
auto factory =
getService<IBroadcastRadioFactory>(gEnv->getServiceName<IBroadcastRadioFactory>());
ASSERT_NE(nullptr, factory.get());
// connect radio module
Result connectResult;
CallBarrier onConnect;
factory->connectModule(radioClass, [&](Result ret, const sp<V1_0::IBroadcastRadio>& radio) {
connectResult = ret;
if (ret == Result::OK) mRadioModule = IBroadcastRadio::castFrom(radio);
onConnect.call();
});
ASSERT_TRUE(onConnect.waitForCall(kConnectModuleTimeout));
if (connectResult == Result::INVALID_ARGUMENTS) {
printSkipped("This device class is not supported.");
skipped = true;
return;
}
ASSERT_EQ(connectResult, Result::OK);
ASSERT_NE(nullptr, mRadioModule.get());
// get module properties
Properties prop11;
auto& prop10 = prop11.base;
auto propResult =
mRadioModule->getProperties_1_1([&](const Properties& properties) { prop11 = properties; });
ASSERT_TRUE(propResult.isOk());
EXPECT_EQ(radioClass, prop10.classId);
EXPECT_GT(prop10.numTuners, 0u);
EXPECT_GT(prop11.supportedProgramTypes.size(), 0u);
EXPECT_GT(prop11.supportedIdentifierTypes.size(), 0u);
if (radioClass == Class::AM_FM) {
EXPECT_GT(prop10.bands.size(), 0u);
}
mBands = prop10.bands;
}
void BroadcastRadioHalTest::TearDown() {
mTuner.clear();
mRadioModule.clear();
clearAndWait(mCallback, 1s);
}
bool BroadcastRadioHalTest::openTuner() {
EXPECT_EQ(nullptr, mTuner.get());
if (radioClass == Class::AM_FM) {
EXPECT_TIMEOUT_CALL(*mCallback, configChange, Result::OK, _);
}
Result halResult = Result::NOT_INITIALIZED;
auto openCb = [&](Result result, const sp<V1_0::ITuner>& tuner) {
halResult = result;
if (result != Result::OK) return;
mTuner = ITuner::castFrom(tuner);
};
currentBandIndex = 0;
auto hidlResult = mRadioModule->openTuner(getBand(0), true, mCallback, openCb);
EXPECT_TRUE(hidlResult.isOk());
EXPECT_EQ(Result::OK, halResult);
EXPECT_NE(nullptr, mTuner.get());
if (radioClass == Class::AM_FM && mTuner != nullptr) {
EXPECT_TIMEOUT_CALL_WAIT(*mCallback, configChange, kConfigTimeout);
BandConfig halConfig;
Result halResult = Result::NOT_INITIALIZED;
mTuner->getConfiguration([&](Result result, const BandConfig& config) {
halResult = result;
halConfig = config;
});
EXPECT_EQ(Result::OK, halResult);
EXPECT_TRUE(halConfig.antennaConnected);
}
EXPECT_NE(nullptr, mTuner.get());
return nullptr != mTuner.get();
}
const BandConfig& BroadcastRadioHalTest::getBand(unsigned idx) {
static const BandConfig dummyBandConfig = {};
if (radioClass != Class::AM_FM) {
ALOGD("Not AM/FM radio, returning dummy band config");
return dummyBandConfig;
}
EXPECT_GT(mBands.size(), idx);
if (mBands.size() <= idx) {
ALOGD("Band index out of bound, returning dummy band config");
return dummyBandConfig;
}
auto& band = mBands[idx];
ALOGD("Returning %s band", toString(band.type).c_str());
return band;
}
bool BroadcastRadioHalTest::nextBand() {
if (currentBandIndex + 1 >= mBands.size()) return false;
currentBandIndex++;
BandConfig bandCb;
EXPECT_TIMEOUT_CALL(*mCallback, configChange, Result::OK, _)
.WillOnce(DoAll(SaveArg<1>(&bandCb), testing::Return(ByMove(Void()))));
auto hidlResult = mTuner->setConfiguration(getBand(currentBandIndex));
EXPECT_EQ(Result::OK, hidlResult);
EXPECT_TIMEOUT_CALL_WAIT(*mCallback, configChange, kConfigTimeout);
EXPECT_EQ(getBand(currentBandIndex), bandCb);
return true;
}
bool BroadcastRadioHalTest::getProgramList(
std::function<void(const hidl_vec<ProgramInfo>& list)> cb) {
ProgramListResult getListResult = ProgramListResult::NOT_INITIALIZED;
bool isListEmpty = true;
auto getListCb = [&](ProgramListResult result, const hidl_vec<ProgramInfo>& list) {
ALOGD("getListCb(%s, ProgramInfo[%zu])", toString(result).c_str(), list.size());
getListResult = result;
if (result != ProgramListResult::OK) return;
isListEmpty = (list.size() == 0);
if (!isListEmpty) cb(list);
};
// first try...
EXPECT_TIMEOUT_CALL(*mCallback, backgroundScanComplete, ProgramListResult::OK)
.Times(AnyNumber());
auto hidlResult = mTuner->getProgramList({}, getListCb);
EXPECT_TRUE(hidlResult.isOk());
if (!hidlResult.isOk()) return false;
if (getListResult == ProgramListResult::NOT_STARTED) {
auto result = mTuner->startBackgroundScan();
EXPECT_EQ(ProgramListResult::OK, result);
getListResult = ProgramListResult::NOT_READY; // continue as in NOT_READY case
}
if (getListResult == ProgramListResult::NOT_READY) {
EXPECT_TIMEOUT_CALL_WAIT(*mCallback, backgroundScanComplete, kFullScanTimeout);
// second (last) try...
hidlResult = mTuner->getProgramList({}, getListCb);
EXPECT_TRUE(hidlResult.isOk());
if (!hidlResult.isOk()) return false;
EXPECT_EQ(ProgramListResult::OK, getListResult);
}
return !isListEmpty;
}
/**
* Test IBroadcastRadio::openTuner() method called twice.
*
* Verifies that:
* - the openTuner method succeeds when called for the second time without
* deleting previous ITuner instance.
*
* This is a more strict requirement than in 1.0, where a second openTuner
* might fail.
*/
TEST_P(BroadcastRadioHalTest, OpenTunerTwice) {
if (skipped) return;
ASSERT_TRUE(openTuner());
auto secondTuner = mTuner;
mTuner.clear();
ASSERT_TRUE(openTuner());
}
/**
* Test tuning to program list entry.
*
* Verifies that:
* - getProgramList either succeeds or returns NOT_STARTED/NOT_READY status;
* - if the program list is NOT_STARTED, startBackgroundScan makes it completed
* within a full scan timeout and the next getProgramList call succeeds;
* - if the program list is not empty, tuneByProgramSelector call succeeds;
* - getProgramInformation_1_1 returns the same selector as returned in tuneComplete_1_1 call.
*/
TEST_P(BroadcastRadioHalTest, TuneFromProgramList) {
if (skipped) return;
ASSERT_TRUE(openTuner());
ProgramInfo firstProgram;
bool foundAny = false;
do {
auto getCb = [&](const hidl_vec<ProgramInfo>& list) {
// don't copy the whole list out, it might be heavy
firstProgram = list[0];
};
if (getProgramList(getCb)) foundAny = true;
} while (nextBand());
if (HasFailure()) return;
if (!foundAny) {
printSkipped("Program list is empty.");
return;
}
ProgramInfo infoCb;
ProgramSelector selCb;
EXPECT_CALL(*mCallback, tuneComplete(_, _)).Times(0);
EXPECT_TIMEOUT_CALL(*mCallback, tuneComplete_1_1, Result::OK, _)
.WillOnce(DoAll(SaveArg<1>(&selCb), testing::Return(ByMove(Void()))));
EXPECT_TIMEOUT_CALL(*mCallback, currentProgramInfoChanged, _)
.WillOnce(DoAll(SaveArg<0>(&infoCb), testing::Return(ByMove(Void()))));
auto tuneResult = mTuner->tuneByProgramSelector(firstProgram.selector);
ASSERT_EQ(Result::OK, tuneResult);
EXPECT_TIMEOUT_CALL_WAIT(*mCallback, tuneComplete_1_1, kTuneTimeout);
EXPECT_TIMEOUT_CALL_WAIT(*mCallback, currentProgramInfoChanged, kEventPropagationTimeout);
EXPECT_EQ(firstProgram.selector.primaryId, selCb.primaryId);
EXPECT_EQ(infoCb.selector, selCb);
bool called = false;
auto getResult = mTuner->getProgramInformation_1_1([&](Result result, ProgramInfo info) {
called = true;
EXPECT_EQ(Result::OK, result);
EXPECT_EQ(selCb, info.selector);
});
ASSERT_TRUE(getResult.isOk());
ASSERT_TRUE(called);
}
/**
* Test that primary vendor identifier isn't used for standard program types.
*
* Verifies that:
* - tuneByProgramSelector fails when VENDORn_PRIMARY is set as a primary
* identifier for program types other than VENDORn.
*/
TEST_P(BroadcastRadioHalTest, TuneFailsForPrimaryVendor) {
if (skipped) return;
ASSERT_TRUE(openTuner());
for (auto ptype : kStandardProgramTypes) {
ALOGD("Checking %s...", toString(ptype).c_str());
ProgramSelector sel = {};
sel.programType = static_cast<uint32_t>(ptype);
sel.primaryId.type = static_cast<uint32_t>(IdentifierType::VENDOR_PRIMARY_START);
auto tuneResult = mTuner->tuneByProgramSelector(sel);
ASSERT_NE(Result::OK, tuneResult);
}
}
/**
* Test that tune with unknown program type fails.
*
* Verifies that:
* - tuneByProgramSelector fails with INVALID_ARGUMENT when unknown program type is passed.
*/
TEST_P(BroadcastRadioHalTest, TuneFailsForUnknownProgram) {
if (skipped) return;
ASSERT_TRUE(openTuner());
// Program type is 1-based, so 0 will be always invalid.
ProgramSelector sel = {};
auto tuneResult = mTuner->tuneByProgramSelector(sel);
ASSERT_EQ(Result::INVALID_ARGUMENTS, tuneResult);
}
/**
* Test cancelling announcement.
*
* Verifies that:
* - cancelAnnouncement succeeds either when there is an announcement or there is none.
*/
TEST_P(BroadcastRadioHalTest, CancelAnnouncement) {
if (skipped) return;
ASSERT_TRUE(openTuner());
auto hidlResult = mTuner->cancelAnnouncement();
EXPECT_EQ(Result::OK, hidlResult);
}
/**
* Test getImage call with invalid image ID.
*
* Verifies that:
* - getImage call handles argument 0 gracefully.
*/
TEST_P(BroadcastRadioHalTest, GetNoImage) {
if (skipped) return;
size_t len = 0;
auto hidlResult =
mRadioModule->getImage(0, [&](hidl_vec<uint8_t> rawImage) { len = rawImage.size(); });
ASSERT_TRUE(hidlResult.isOk());
ASSERT_EQ(0u, len);
}
/**
* Test proper image format in metadata.
*
* Verifies that:
* - all images in metadata are provided out-of-band (by id, not as a binary blob);
* - images are available for getImage call.
*/
TEST_P(BroadcastRadioHalTest, OobImagesOnly) {
if (skipped) return;
ASSERT_TRUE(openTuner());
std::vector<int> imageIds;
do {
auto getCb = [&](const hidl_vec<ProgramInfo>& list) {
for (auto&& program : list) {
for (auto&& entry : program.base.metadata) {
EXPECT_NE(MetadataType::RAW, entry.type);
if (entry.key != MetadataKey::ICON && entry.key != MetadataKey::ART) continue;
EXPECT_NE(0, entry.intValue);
EXPECT_EQ(0u, entry.rawValue.size());
if (entry.intValue != 0) imageIds.push_back(entry.intValue);
}
}
};
getProgramList(getCb);
} while (nextBand());
if (imageIds.size() == 0) {
printSkipped("No images found");
return;
}
for (auto id : imageIds) {
ALOGD("Checking image %d", id);
size_t len = 0;
auto hidlResult =
mRadioModule->getImage(id, [&](hidl_vec<uint8_t> rawImage) { len = rawImage.size(); });
ASSERT_TRUE(hidlResult.isOk());
ASSERT_GT(len, 0u);
}
}
/**
* Test AnalogForced switch.
*
* Verifies that:
* - setAnalogForced results either with INVALID_STATE, or isAnalogForced replying the same.
*/
TEST_P(BroadcastRadioHalTest, AnalogForcedSwitch) {
if (skipped) return;
ASSERT_TRUE(openTuner());
bool forced;
Result halIsResult;
auto isCb = [&](Result result, bool isForced) {
halIsResult = result;
forced = isForced;
};
// set analog mode
auto setResult = mTuner->setAnalogForced(true);
ASSERT_TRUE(setResult.isOk());
if (Result::INVALID_STATE == setResult) {
// if setter fails, getter should fail too - it means the switch is not supported at all
auto isResult = mTuner->isAnalogForced(isCb);
ASSERT_TRUE(isResult.isOk());
EXPECT_EQ(Result::INVALID_STATE, halIsResult);
return;
}
ASSERT_EQ(Result::OK, setResult);
// check, if it's analog
auto isResult = mTuner->isAnalogForced(isCb);
ASSERT_TRUE(isResult.isOk());
EXPECT_EQ(Result::OK, halIsResult);
ASSERT_TRUE(forced);
// set digital mode
setResult = mTuner->setAnalogForced(false);
ASSERT_EQ(Result::OK, setResult);
// check, if it's digital
isResult = mTuner->isAnalogForced(isCb);
ASSERT_TRUE(isResult.isOk());
EXPECT_EQ(Result::OK, halIsResult);
ASSERT_FALSE(forced);
}
static void verifyIdentifier(const ProgramIdentifier& id) {
EXPECT_NE(id.type, 0u);
auto val = id.value;
switch (static_cast<IdentifierType>(id.type)) {
case IdentifierType::AMFM_FREQUENCY:
case IdentifierType::DAB_FREQUENCY:
case IdentifierType::DRMO_FREQUENCY:
EXPECT_GT(val, 100u) << "Expected f > 100kHz";
EXPECT_LT(val, 10000000u) << "Expected f < 10GHz";
break;
case IdentifierType::RDS_PI:
EXPECT_GT(val, 0u);
EXPECT_LE(val, 0xFFFFu) << "Expected 16bit id";
break;
case IdentifierType::HD_STATION_ID_EXT: {
auto stationId = val & 0xFFFFFFFF; // 32bit
val >>= 32;
auto subchannel = val & 0xF; // 4bit
val >>= 4;
auto freq = val & 0x3FFFF; // 18bit
EXPECT_GT(stationId, 0u);
EXPECT_LT(subchannel, 8u) << "Expected ch < 8";
EXPECT_GT(freq, 100u) << "Expected f > 100kHz";
EXPECT_LT(freq, 10000000u) << "Expected f < 10GHz";
break;
}
case IdentifierType::HD_SUBCHANNEL:
EXPECT_LT(val, 8u) << "Expected ch < 8";
break;
case IdentifierType::DAB_SIDECC: {
auto sid = val & 0xFFFF; // 16bit
val >>= 16;
auto ecc = val & 0xFF; // 8bit
EXPECT_NE(sid, 0u);
EXPECT_GE(ecc, 0xA0u) << "Invalid ECC, see ETSI TS 101 756 V2.1.1";
EXPECT_LE(ecc, 0xF6u) << "Invalid ECC, see ETSI TS 101 756 V2.1.1";
break;
}
case IdentifierType::DAB_ENSEMBLE:
EXPECT_GT(val, 0u);
EXPECT_LE(val, 0xFFFFu) << "Expected 16bit id";
break;
case IdentifierType::DAB_SCID:
EXPECT_GT(val, 0xFu) << "Expected 12bit SCId (not 4bit SCIdS)";
EXPECT_LE(val, 0xFFFu) << "Expected 12bit id";
break;
case IdentifierType::DRMO_SERVICE_ID:
EXPECT_GT(val, 0u);
EXPECT_LE(val, 0xFFFFFFu) << "Expected 24bit id";
break;
case IdentifierType::DRMO_MODULATION:
EXPECT_GE(val, static_cast<uint32_t>(Modulation::AM));
EXPECT_LE(val, static_cast<uint32_t>(Modulation::FM));
break;
case IdentifierType::SXM_SERVICE_ID:
EXPECT_GT(val, 0u);
EXPECT_LE(val, 0xFFFFFFFFu) << "Expected 32bit id";
break;
case IdentifierType::SXM_CHANNEL:
EXPECT_LT(val, 1000u);
break;
case IdentifierType::VENDOR_PRIMARY_START:
case IdentifierType::VENDOR_PRIMARY_END:
// skip
break;
}
}
/**
* Test ProgramIdentifier format.
*
* Verifies that:
* - values of ProgramIdentifier match their definitions at IdentifierType.
*/
TEST_P(BroadcastRadioHalTest, VerifyIdentifiersFormat) {
if (skipped) return;
ASSERT_TRUE(openTuner());
do {
auto getCb = [&](const hidl_vec<ProgramInfo>& list) {
for (auto&& program : list) {
verifyIdentifier(program.selector.primaryId);
for (auto&& id : program.selector.secondaryIds) {
verifyIdentifier(id);
}
}
};
getProgramList(getCb);
} while (nextBand());
}
INSTANTIATE_TEST_CASE_P(BroadcastRadioHalTestCases, BroadcastRadioHalTest,
::testing::Values(Class::AM_FM, Class::SAT, Class::DT));
} // namespace vts
} // namespace V1_1
} // namespace broadcastradio
} // namespace hardware
} // namespace android
int main(int argc, char** argv) {
using android::hardware::broadcastradio::V1_1::vts::gEnv;
using android::hardware::broadcastradio::V1_1::IBroadcastRadioFactory;
using android::hardware::broadcastradio::vts::BroadcastRadioHidlEnvironment;
gEnv = new BroadcastRadioHidlEnvironment<IBroadcastRadioFactory>;
::testing::AddGlobalTestEnvironment(gEnv);
::testing::InitGoogleTest(&argc, argv);
gEnv->init(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGI("Test result = %d", status);
return status;
}