/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CamComm1.0-CamModule"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include <utils/Trace.h>
#include "CameraModule.h"
namespace android {
namespace hardware {
namespace camera {
namespace common {
namespace V1_0 {
namespace helper {
void CameraModule::deriveCameraCharacteristicsKeys(
uint32_t deviceVersion, CameraMetadata &chars) {
ATRACE_CALL();
Vector<int32_t> derivedCharKeys;
Vector<int32_t> derivedRequestKeys;
Vector<int32_t> derivedResultKeys;
// Keys added in HAL3.3
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_3) {
Vector<uint8_t> controlModes;
uint8_t data = ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE;
chars.update(ANDROID_CONTROL_AE_LOCK_AVAILABLE, &data, /*count*/1);
data = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE;
chars.update(ANDROID_CONTROL_AWB_LOCK_AVAILABLE, &data, /*count*/1);
controlModes.push(ANDROID_CONTROL_MODE_AUTO);
camera_metadata_entry entry = chars.find(ANDROID_CONTROL_AVAILABLE_SCENE_MODES);
if (entry.count > 1 || entry.data.u8[0] != ANDROID_CONTROL_SCENE_MODE_DISABLED) {
controlModes.push(ANDROID_CONTROL_MODE_USE_SCENE_MODE);
}
// Only advertise CONTROL_OFF mode if 3A manual controls are supported.
bool isManualAeSupported = false;
bool isManualAfSupported = false;
bool isManualAwbSupported = false;
entry = chars.find(ANDROID_CONTROL_AE_AVAILABLE_MODES);
if (entry.count > 0) {
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.u8[i] == ANDROID_CONTROL_AE_MODE_OFF) {
isManualAeSupported = true;
break;
}
}
}
entry = chars.find(ANDROID_CONTROL_AF_AVAILABLE_MODES);
if (entry.count > 0) {
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.u8[i] == ANDROID_CONTROL_AF_MODE_OFF) {
isManualAfSupported = true;
break;
}
}
}
entry = chars.find(ANDROID_CONTROL_AWB_AVAILABLE_MODES);
if (entry.count > 0) {
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.u8[i] == ANDROID_CONTROL_AWB_MODE_OFF) {
isManualAwbSupported = true;
break;
}
}
}
if (isManualAeSupported && isManualAfSupported && isManualAwbSupported) {
controlModes.push(ANDROID_CONTROL_MODE_OFF);
}
chars.update(ANDROID_CONTROL_AVAILABLE_MODES, controlModes);
entry = chars.find(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
// HAL3.2 devices passing existing CTS test should all support all LSC modes and LSC map
bool lensShadingModeSupported = false;
if (entry.count > 0) {
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.i32[i] == ANDROID_SHADING_MODE) {
lensShadingModeSupported = true;
break;
}
}
}
Vector<uint8_t> lscModes;
Vector<uint8_t> lscMapModes;
lscModes.push(ANDROID_SHADING_MODE_FAST);
lscModes.push(ANDROID_SHADING_MODE_HIGH_QUALITY);
lscMapModes.push(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
if (lensShadingModeSupported) {
lscModes.push(ANDROID_SHADING_MODE_OFF);
lscMapModes.push(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_ON);
}
chars.update(ANDROID_SHADING_AVAILABLE_MODES, lscModes);
chars.update(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES, lscMapModes);
derivedCharKeys.push(ANDROID_CONTROL_AE_LOCK_AVAILABLE);
derivedCharKeys.push(ANDROID_CONTROL_AWB_LOCK_AVAILABLE);
derivedCharKeys.push(ANDROID_CONTROL_AVAILABLE_MODES);
derivedCharKeys.push(ANDROID_SHADING_AVAILABLE_MODES);
derivedCharKeys.push(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES);
// Need update android.control.availableHighSpeedVideoConfigurations since HAL3.3
// adds batch size to this array.
entry = chars.find(ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS);
if (entry.count > 0) {
Vector<int32_t> highSpeedConfig;
for (size_t i = 0; i < entry.count; i += 4) {
highSpeedConfig.add(entry.data.i32[i]); // width
highSpeedConfig.add(entry.data.i32[i + 1]); // height
highSpeedConfig.add(entry.data.i32[i + 2]); // fps_min
highSpeedConfig.add(entry.data.i32[i + 3]); // fps_max
highSpeedConfig.add(1); // batchSize_max. default to 1 for HAL3.2
}
chars.update(ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS,
highSpeedConfig);
}
}
// Keys added in HAL3.4
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_4) {
// Check if HAL supports RAW_OPAQUE output
camera_metadata_entry entry = chars.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
bool supportRawOpaque = false;
bool supportAnyRaw = false;
const int STREAM_CONFIGURATION_SIZE = 4;
const int STREAM_FORMAT_OFFSET = 0;
const int STREAM_WIDTH_OFFSET = 1;
const int STREAM_HEIGHT_OFFSET = 2;
const int STREAM_IS_INPUT_OFFSET = 3;
Vector<int32_t> rawOpaqueSizes;
for (size_t i=0; i < entry.count; i += STREAM_CONFIGURATION_SIZE) {
int32_t format = entry.data.i32[i + STREAM_FORMAT_OFFSET];
int32_t width = entry.data.i32[i + STREAM_WIDTH_OFFSET];
int32_t height = entry.data.i32[i + STREAM_HEIGHT_OFFSET];
int32_t isInput = entry.data.i32[i + STREAM_IS_INPUT_OFFSET];
if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
format == HAL_PIXEL_FORMAT_RAW_OPAQUE) {
supportRawOpaque = true;
rawOpaqueSizes.push(width);
rawOpaqueSizes.push(height);
// 2 bytes per pixel. This rough estimation is only used when
// HAL does not fill in the opaque raw size
rawOpaqueSizes.push(width * height *2);
}
if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
(format == HAL_PIXEL_FORMAT_RAW16 ||
format == HAL_PIXEL_FORMAT_RAW10 ||
format == HAL_PIXEL_FORMAT_RAW12 ||
format == HAL_PIXEL_FORMAT_RAW_OPAQUE)) {
supportAnyRaw = true;
}
}
if (supportRawOpaque) {
entry = chars.find(ANDROID_SENSOR_OPAQUE_RAW_SIZE);
if (entry.count == 0) {
// Fill in estimated value if HAL does not list it
chars.update(ANDROID_SENSOR_OPAQUE_RAW_SIZE, rawOpaqueSizes);
derivedCharKeys.push(ANDROID_SENSOR_OPAQUE_RAW_SIZE);
}
}
// Check if HAL supports any RAW output, if so, fill in postRawSensitivityBoost range
if (supportAnyRaw) {
int32_t defaultRange[2] = {100, 100};
entry = chars.find(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE);
if (entry.count == 0) {
// Fill in default value (100, 100)
chars.update(
ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE,
defaultRange, 2);
derivedCharKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE);
// Actual request/results will be derived by camera device.
derivedRequestKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST);
derivedResultKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST);
}
}
}
// Always add a default for the pre-correction active array if the vendor chooses to omit this
camera_metadata_entry entry = chars.find(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
if (entry.count == 0) {
Vector<int32_t> preCorrectionArray;
entry = chars.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
preCorrectionArray.appendArray(entry.data.i32, entry.count);
chars.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE, preCorrectionArray);
derivedCharKeys.push(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
}
// Add those newly added keys to AVAILABLE_CHARACTERISTICS_KEYS
// This has to be done at this end of this function.
if (derivedCharKeys.size() > 0) {
appendAvailableKeys(
chars, ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, derivedCharKeys);
}
if (derivedRequestKeys.size() > 0) {
appendAvailableKeys(
chars, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, derivedRequestKeys);
}
if (derivedResultKeys.size() > 0) {
appendAvailableKeys(
chars, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, derivedResultKeys);
}
return;
}
void CameraModule::appendAvailableKeys(CameraMetadata &chars,
int32_t keyTag, const Vector<int32_t>& appendKeys) {
camera_metadata_entry entry = chars.find(keyTag);
Vector<int32_t> availableKeys;
availableKeys.setCapacity(entry.count + appendKeys.size());
for (size_t i = 0; i < entry.count; i++) {
availableKeys.push(entry.data.i32[i]);
}
for (size_t i = 0; i < appendKeys.size(); i++) {
availableKeys.push(appendKeys[i]);
}
chars.update(keyTag, availableKeys);
}
CameraModule::CameraModule(camera_module_t *module) {
if (module == NULL) {
ALOGE("%s: camera hardware module must not be null", __FUNCTION__);
assert(0);
}
mModule = module;
}
CameraModule::~CameraModule()
{
while (mCameraInfoMap.size() > 0) {
camera_info cameraInfo = mCameraInfoMap.editValueAt(0);
if (cameraInfo.static_camera_characteristics != NULL) {
free_camera_metadata(
const_cast<camera_metadata_t*>(cameraInfo.static_camera_characteristics));
}
mCameraInfoMap.removeItemsAt(0);
}
}
int CameraModule::init() {
ATRACE_CALL();
int res = OK;
if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_4 &&
mModule->init != NULL) {
ATRACE_BEGIN("camera_module->init");
res = mModule->init();
ATRACE_END();
}
mCameraInfoMap.setCapacity(getNumberOfCameras());
return res;
}
int CameraModule::getCameraInfo(int cameraId, struct camera_info *info) {
ATRACE_CALL();
Mutex::Autolock lock(mCameraInfoLock);
if (cameraId < 0) {
ALOGE("%s: Invalid camera ID %d", __FUNCTION__, cameraId);
return -EINVAL;
}
// Only override static_camera_characteristics for API2 devices
int apiVersion = mModule->common.module_api_version;
if (apiVersion < CAMERA_MODULE_API_VERSION_2_0) {
int ret;
ATRACE_BEGIN("camera_module->get_camera_info");
ret = mModule->get_camera_info(cameraId, info);
// Fill in this so CameraService won't be confused by
// possibly 0 device_version
info->device_version = CAMERA_DEVICE_API_VERSION_1_0;
ATRACE_END();
return ret;
}
ssize_t index = mCameraInfoMap.indexOfKey(cameraId);
if (index == NAME_NOT_FOUND) {
// Get camera info from raw module and cache it
camera_info rawInfo, cameraInfo;
ATRACE_BEGIN("camera_module->get_camera_info");
int ret = mModule->get_camera_info(cameraId, &rawInfo);
ATRACE_END();
if (ret != 0) {
return ret;
}
int deviceVersion = rawInfo.device_version;
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_0) {
// static_camera_characteristics is invalid
*info = rawInfo;
return ret;
}
CameraMetadata m;
m.append(rawInfo.static_camera_characteristics);
deriveCameraCharacteristicsKeys(rawInfo.device_version, m);
cameraInfo = rawInfo;
cameraInfo.static_camera_characteristics = m.release();
index = mCameraInfoMap.add(cameraId, cameraInfo);
}
assert(index != NAME_NOT_FOUND);
// return the cached camera info
*info = mCameraInfoMap[index];
return OK;
}
int CameraModule::getDeviceVersion(int cameraId) {
ssize_t index = mDeviceVersionMap.indexOfKey(cameraId);
if (index == NAME_NOT_FOUND) {
int deviceVersion;
if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_0) {
struct camera_info info;
getCameraInfo(cameraId, &info);
deviceVersion = info.device_version;
} else {
deviceVersion = CAMERA_DEVICE_API_VERSION_1_0;
}
index = mDeviceVersionMap.add(cameraId, deviceVersion);
}
assert(index != NAME_NOT_FOUND);
return mDeviceVersionMap[index];
}
int CameraModule::open(const char* id, struct hw_device_t** device) {
int res;
ATRACE_BEGIN("camera_module->open");
res = filterOpenErrorCode(mModule->common.methods->open(&mModule->common, id, device));
ATRACE_END();
return res;
}
bool CameraModule::isOpenLegacyDefined() const {
if (getModuleApiVersion() < CAMERA_MODULE_API_VERSION_2_3) {
return false;
}
return mModule->open_legacy != NULL;
}
int CameraModule::openLegacy(
const char* id, uint32_t halVersion, struct hw_device_t** device) {
int res;
ATRACE_BEGIN("camera_module->open_legacy");
res = mModule->open_legacy(&mModule->common, id, halVersion, device);
ATRACE_END();
return res;
}
int CameraModule::getNumberOfCameras() {
int numCameras;
ATRACE_BEGIN("camera_module->get_number_of_cameras");
numCameras = mModule->get_number_of_cameras();
ATRACE_END();
return numCameras;
}
int CameraModule::setCallbacks(const camera_module_callbacks_t *callbacks) {
int res = OK;
ATRACE_BEGIN("camera_module->set_callbacks");
if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_1) {
res = mModule->set_callbacks(callbacks);
}
ATRACE_END();
return res;
}
bool CameraModule::isVendorTagDefined() const {
return mModule->get_vendor_tag_ops != NULL;
}
void CameraModule::getVendorTagOps(vendor_tag_ops_t* ops) {
if (mModule->get_vendor_tag_ops) {
ATRACE_BEGIN("camera_module->get_vendor_tag_ops");
mModule->get_vendor_tag_ops(ops);
ATRACE_END();
}
}
bool CameraModule::isSetTorchModeSupported() const {
if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_4) {
if (mModule->set_torch_mode == NULL) {
ALOGE("%s: Module 2.4 device must support set torch API!",
__FUNCTION__);
return false;
}
return true;
}
return false;
}
int CameraModule::setTorchMode(const char* camera_id, bool enable) {
int res = INVALID_OPERATION;
if (mModule->set_torch_mode != NULL) {
ATRACE_BEGIN("camera_module->set_torch_mode");
res = mModule->set_torch_mode(camera_id, enable);
ATRACE_END();
}
return res;
}
status_t CameraModule::filterOpenErrorCode(status_t err) {
switch(err) {
case NO_ERROR:
case -EBUSY:
case -EINVAL:
case -EUSERS:
return err;
default:
break;
}
return -ENODEV;
}
void CameraModule::removeCamera(int cameraId) {
free_camera_metadata(
const_cast<camera_metadata_t*>(mCameraInfoMap[cameraId].static_camera_characteristics));
mCameraInfoMap.removeItem(cameraId);
mDeviceVersionMap.removeItem(cameraId);
}
uint16_t CameraModule::getModuleApiVersion() const {
return mModule->common.module_api_version;
}
const char* CameraModule::getModuleName() const {
return mModule->common.name;
}
uint16_t CameraModule::getHalApiVersion() const {
return mModule->common.hal_api_version;
}
const char* CameraModule::getModuleAuthor() const {
return mModule->common.author;
}
void* CameraModule::getDso() {
return mModule->common.dso;
}
} // namespace helper
} // namespace V1_0
} // namespace common
} // namespace camera
} // namespace hardware
} // namespace android