/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HWBINDER_PERF_TEST_H
#define HWBINDER_PERF_TEST_H
#include <unistd.h>
#include <chrono>
#include <list>
#include <tuple>
#define TRACE_PATH "/sys/kernel/debug/tracing"
using std::list;
using std::tuple;
// Pipe is a object used for IPC between parent process and child process.
// This IPC class is widely used in binder/hwbinder tests.
// The common usage is the main process to create the Pipe and forks.
// Both parent and child hold a object. Each recv() on one side requires
// a send() on the other side to unblock.
class Pipe {
public:
static tuple<Pipe, Pipe> createPipePair();
Pipe(Pipe&& rval);
~Pipe();
inline void signal() {
bool val = true;
send(val);
}
inline void wait() {
bool val = false;
recv(val);
}
// write a data struct
template <typename T>
int send(const T& v) {
return write(fd_write_, &v, sizeof(T));
}
// read a data struct
template <typename T>
int recv(T& v) {
return read(fd_read_, &v, sizeof(T));
}
private:
int fd_read_; // file descriptor to read
int fd_write_; // file descriptor to write
Pipe(int read_fd, int write_fd) : fd_read_{read_fd}, fd_write_{write_fd} {}
Pipe(const Pipe&) = delete;
Pipe& operator=(const Pipe&) = delete;
Pipe& operator=(const Pipe&&) = delete;
};
// statistics of latency
// common usage:
//
// Results r;
// Tick sta, end;
// TICK_NOW(sta);
// ... do something ...
// TICK_NOW(end);
// r.addTime(tickDiffNS(sta, end));
//
// r.dump();
// r.dumpDistribution();
//
class Results {
public:
// enable the deadline miss detection which stops the trace recording after
// a transaction latency > deadline_us_ is detected.
void setTracingMode(bool tracing, uint64_t deadline_us) {
tracing_ = tracing;
deadline_us_ = deadline_us;
}
inline uint64_t getTransactions() const { return transactions_; }
inline bool missDeadline(uint64_t nano) const { return nano > deadline_us_ * 1000; }
// Combine two sets of latency data points and update the aggregation info.
static Results combine(const Results& a, const Results& b);
// add a new transaction latency record
void addTime(uint64_t nano);
// prepare for raw data recording, it may allocate resources which requires
// a flushRawData() to release
void setupRawData();
// dump the raw data and release the resource
void flushRawData();
// dump average, best, worst latency in json
void dump() const;
// dump latency distribution in json
void dumpDistribution() const;
private:
static const uint32_t kNumBuckets = 128;
static const uint64_t kMaxTimeBucket = 50ull * 1000000;
static const uint64_t kTimePerBucket = kMaxTimeBucket / kNumBuckets;
static constexpr float kTimePerBucketMS = kTimePerBucket / 1.0E6;
uint64_t best_ = 0xffffffffffffffffULL; // best transaction latency in ns.
uint64_t worst_ = 0; // worst transaction latency in ns.
uint64_t transactions_ = 0; // number of transactions
uint64_t total_time_ = 0; // total transaction time
uint64_t miss_ = 0; // number of transactions whose latency > deadline
uint32_t buckets_[kNumBuckets] = {0}; // statistics for the distribution
list<uint64_t>* raw_data_ = nullptr; // list for raw-data
bool tracing_ = false; // halt the trace log on a deadline miss
bool raw_dump_ = false; // record the raw data for the dump after
uint64_t deadline_us_ = 2500; // latency deadline in us.
};
// statistics of a process pair
class PResults {
public:
static PResults combine(const PResults& a, const PResults& b);
int nNotInherent = 0; ///< #transactions that does not inherit priority
int nNotSync = 0; ///< #transactions that are not synced
Results other; ///< statistics of CFS-other transactions
Results fifo; ///< statistics of RT-fifo transactions
// dump and flush the raw data
inline void flushRawData() { fifo.flushRawData(); }
// dump in json
void dump() const;
};
// Tick keeps timestamp
typedef std::chrono::time_point<std::chrono::high_resolution_clock> Tick;
// get current timestamp as a Tick
static inline Tick tickNow() {
return std::chrono::high_resolution_clock::now();
}
#define TICK_NOW(_tick) \
do { \
asm volatile("" ::: "memory"); \
_tick = tickNow(); \
asm volatile("" ::: "memory"); \
} while (0)
// get nano seconds between sta & end
static inline uint64_t tickDiffNS(Tick& sta, Tick& end) {
return uint64_t(std::chrono::duration_cast<std::chrono::nanoseconds>(end - sta).count());
}
#endif