/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/cache.h> #include <linux/delay.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/mm.h> #include <asm/atomic.h> #include <asm/futex.h> #include <arch/chip.h> /* See <asm/atomic_32.h> */ #if ATOMIC_LOCKS_FOUND_VIA_TABLE() /* * A block of memory containing locks for atomic ops. Each instance of this * struct will be homed on a different CPU. */ struct atomic_locks_on_cpu { int lock[ATOMIC_HASH_L2_SIZE]; } __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4))); static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool); /* The locks we'll use until __init_atomic_per_cpu is called. */ static struct atomic_locks_on_cpu __initdata initial_atomic_locks; /* Hash into this vector to get a pointer to lock for the given atomic. */ struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE] __write_once = { [0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks) }; #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ /* This page is remapped on startup to be hash-for-home. */ int atomic_locks[PAGE_SIZE / sizeof(int)] __page_aligned_bss; #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ static inline int *__atomic_hashed_lock(volatile void *v) { /* NOTE: this code must match "sys_cmpxchg" in kernel/intvec_32.S */ #if ATOMIC_LOCKS_FOUND_VIA_TABLE() unsigned long i = (unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long)); unsigned long n = __insn_crc32_32(0, i); /* Grab high bits for L1 index. */ unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT); /* Grab low bits for L2 index. */ unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1); return &atomic_lock_ptr[l1_index]->lock[l2_index]; #else /* * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index. * Using mm works here because atomic_locks is page aligned. */ unsigned long ptr = __insn_mm((unsigned long)v >> 1, (unsigned long)atomic_locks, 2, (ATOMIC_HASH_SHIFT + 2) - 1); return (int *)ptr; #endif } #ifdef CONFIG_SMP /* Return whether the passed pointer is a valid atomic lock pointer. */ static int is_atomic_lock(int *p) { #if ATOMIC_LOCKS_FOUND_VIA_TABLE() int i; for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { if (p >= &atomic_lock_ptr[i]->lock[0] && p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) { return 1; } } return 0; #else return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE]; #endif } void __atomic_fault_unlock(int *irqlock_word) { BUG_ON(!is_atomic_lock(irqlock_word)); BUG_ON(*irqlock_word != 1); *irqlock_word = 0; } #endif /* CONFIG_SMP */ static inline int *__atomic_setup(volatile void *v) { /* Issue a load to the target to bring it into cache. */ *(volatile int *)v; return __atomic_hashed_lock(v); } int _atomic_xchg(atomic_t *v, int n) { return __atomic_xchg(&v->counter, __atomic_setup(v), n).val; } EXPORT_SYMBOL(_atomic_xchg); int _atomic_xchg_add(atomic_t *v, int i) { return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val; } EXPORT_SYMBOL(_atomic_xchg_add); int _atomic_xchg_add_unless(atomic_t *v, int a, int u) { /* * Note: argument order is switched here since it is easier * to use the first argument consistently as the "old value" * in the assembly, as is done for _atomic_cmpxchg(). */ return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a) .val; } EXPORT_SYMBOL(_atomic_xchg_add_unless); int _atomic_cmpxchg(atomic_t *v, int o, int n) { return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val; } EXPORT_SYMBOL(_atomic_cmpxchg); unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask) { return __atomic_or((int *)p, __atomic_setup(p), mask).val; } EXPORT_SYMBOL(_atomic_or); unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask) { return __atomic_andn((int *)p, __atomic_setup(p), mask).val; } EXPORT_SYMBOL(_atomic_andn); unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask) { return __atomic_xor((int *)p, __atomic_setup(p), mask).val; } EXPORT_SYMBOL(_atomic_xor); u64 _atomic64_xchg(atomic64_t *v, u64 n) { return __atomic64_xchg(&v->counter, __atomic_setup(v), n); } EXPORT_SYMBOL(_atomic64_xchg); u64 _atomic64_xchg_add(atomic64_t *v, u64 i) { return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i); } EXPORT_SYMBOL(_atomic64_xchg_add); u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u) { /* * Note: argument order is switched here since it is easier * to use the first argument consistently as the "old value" * in the assembly, as is done for _atomic_cmpxchg(). */ return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v), u, a); } EXPORT_SYMBOL(_atomic64_xchg_add_unless); u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n) { return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n); } EXPORT_SYMBOL(_atomic64_cmpxchg); static inline int *__futex_setup(int __user *v) { /* * Issue a prefetch to the counter to bring it into cache. * As for __atomic_setup, but we can't do a read into the L1 * since it might fault; instead we do a prefetch into the L2. */ __insn_prefetch(v); return __atomic_hashed_lock((int __force *)v); } struct __get_user futex_set(u32 __user *v, int i) { return __atomic_xchg((int __force *)v, __futex_setup(v), i); } struct __get_user futex_add(u32 __user *v, int n) { return __atomic_xchg_add((int __force *)v, __futex_setup(v), n); } struct __get_user futex_or(u32 __user *v, int n) { return __atomic_or((int __force *)v, __futex_setup(v), n); } struct __get_user futex_andn(u32 __user *v, int n) { return __atomic_andn((int __force *)v, __futex_setup(v), n); } struct __get_user futex_xor(u32 __user *v, int n) { return __atomic_xor((int __force *)v, __futex_setup(v), n); } struct __get_user futex_cmpxchg(u32 __user *v, int o, int n) { return __atomic_cmpxchg((int __force *)v, __futex_setup(v), o, n); } /* * If any of the atomic or futex routines hit a bad address (not in * the page tables at kernel PL) this routine is called. The futex * routines are never used on kernel space, and the normal atomics and * bitops are never used on user space. So a fault on kernel space * must be fatal, but a fault on userspace is a futex fault and we * need to return -EFAULT. Note that the context this routine is * invoked in is the context of the "_atomic_xxx()" routines called * by the functions in this file. */ struct __get_user __atomic_bad_address(int __user *addr) { if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int)))) panic("Bad address used for kernel atomic op: %p\n", addr); return (struct __get_user) { .err = -EFAULT }; } #if CHIP_HAS_CBOX_HOME_MAP() static int __init noatomichash(char *str) { pr_warning("noatomichash is deprecated.\n"); return 1; } __setup("noatomichash", noatomichash); #endif void __init __init_atomic_per_cpu(void) { #if ATOMIC_LOCKS_FOUND_VIA_TABLE() unsigned int i; int actual_cpu; /* * Before this is called from setup, we just have one lock for * all atomic objects/operations. Here we replace the * elements of atomic_lock_ptr so that they point at per_cpu * integers. This seemingly over-complex approach stems from * the fact that DEFINE_PER_CPU defines an entry for each cpu * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But * for efficient hashing of atomics to their locks we want a * compile time constant power of 2 for the size of this * table, so we use ATOMIC_HASH_SIZE. * * Here we populate atomic_lock_ptr from the per cpu * atomic_lock_pool, interspersing by actual cpu so that * subsequent elements are homed on consecutive cpus. */ actual_cpu = cpumask_first(cpu_possible_mask); for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { /* * Preincrement to slightly bias against using cpu 0, * which has plenty of stuff homed on it already. */ actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask); if (actual_cpu >= nr_cpu_ids) actual_cpu = cpumask_first(cpu_possible_mask); atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu); } #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ /* Validate power-of-two and "bigger than cpus" assumption */ BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1)); BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids); /* * On TILEPro we prefer to use a single hash-for-home * page, since this means atomic operations are less * likely to encounter a TLB fault and thus should * in general perform faster. You may wish to disable * this in situations where few hash-for-home tiles * are configured. */ BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0); /* The locks must all fit on one page. */ BUILD_BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE); /* * We use the page offset of the atomic value's address as * an index into atomic_locks, excluding the low 3 bits. * That should not produce more indices than ATOMIC_HASH_SIZE. */ BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE); #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ /* The futex code makes this assumption, so we validate it here. */ BUILD_BUG_ON(sizeof(atomic_t) != sizeof(int)); }