/* * SGI RTC clock/timer routines. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) Dimitri Sivanich */ #include <linux/clockchips.h> #include <linux/slab.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_hub.h> #include <asm/uv/bios.h> #include <asm/uv/uv.h> #include <asm/apic.h> #include <asm/cpu.h> #define RTC_NAME "sgi_rtc" static cycle_t uv_read_rtc(struct clocksource *cs); static int uv_rtc_next_event(unsigned long, struct clock_event_device *); static void uv_rtc_timer_setup(enum clock_event_mode, struct clock_event_device *); static struct clocksource clocksource_uv = { .name = RTC_NAME, .rating = 400, .read = uv_read_rtc, .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK, .shift = 10, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct clock_event_device clock_event_device_uv = { .name = RTC_NAME, .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 20, .rating = 400, .irq = -1, .set_next_event = uv_rtc_next_event, .set_mode = uv_rtc_timer_setup, .event_handler = NULL, }; static DEFINE_PER_CPU(struct clock_event_device, cpu_ced); /* There is one of these allocated per node */ struct uv_rtc_timer_head { spinlock_t lock; /* next cpu waiting for timer, local node relative: */ int next_cpu; /* number of cpus on this node: */ int ncpus; struct { int lcpu; /* systemwide logical cpu number */ u64 expires; /* next timer expiration for this cpu */ } cpu[1]; }; /* * Access to uv_rtc_timer_head via blade id. */ static struct uv_rtc_timer_head **blade_info __read_mostly; static int uv_rtc_evt_enable; /* * Hardware interface routines */ /* Send IPIs to another node */ static void uv_rtc_send_IPI(int cpu) { unsigned long apicid, val; int pnode; apicid = cpu_physical_id(cpu); pnode = uv_apicid_to_pnode(apicid); apicid |= uv_apicid_hibits; val = (1UL << UVH_IPI_INT_SEND_SHFT) | (apicid << UVH_IPI_INT_APIC_ID_SHFT) | (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT); uv_write_global_mmr64(pnode, UVH_IPI_INT, val); } /* Check for an RTC interrupt pending */ static int uv_intr_pending(int pnode) { return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) & UVH_EVENT_OCCURRED0_RTC1_MASK; } /* Setup interrupt and return non-zero if early expiration occurred. */ static int uv_setup_intr(int cpu, u64 expires) { u64 val; unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits; int pnode = uv_cpu_to_pnode(cpu); uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, UVH_RTC1_INT_CONFIG_M_MASK); uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS, UVH_EVENT_OCCURRED0_RTC1_MASK); val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); /* Set configuration */ uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val); /* Initialize comparator value */ uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires); if (uv_read_rtc(NULL) <= expires) return 0; return !uv_intr_pending(pnode); } /* * Per-cpu timer tracking routines */ static __init void uv_rtc_deallocate_timers(void) { int bid; for_each_possible_blade(bid) { kfree(blade_info[bid]); } kfree(blade_info); } /* Allocate per-node list of cpu timer expiration times. */ static __init int uv_rtc_allocate_timers(void) { int cpu; blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL); if (!blade_info) return -ENOMEM; memset(blade_info, 0, uv_possible_blades * sizeof(void *)); for_each_present_cpu(cpu) { int nid = cpu_to_node(cpu); int bid = uv_cpu_to_blade_id(cpu); int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; struct uv_rtc_timer_head *head = blade_info[bid]; if (!head) { head = kmalloc_node(sizeof(struct uv_rtc_timer_head) + (uv_blade_nr_possible_cpus(bid) * 2 * sizeof(u64)), GFP_KERNEL, nid); if (!head) { uv_rtc_deallocate_timers(); return -ENOMEM; } spin_lock_init(&head->lock); head->ncpus = uv_blade_nr_possible_cpus(bid); head->next_cpu = -1; blade_info[bid] = head; } head->cpu[bcpu].lcpu = cpu; head->cpu[bcpu].expires = ULLONG_MAX; } return 0; } /* Find and set the next expiring timer. */ static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode) { u64 lowest = ULLONG_MAX; int c, bcpu = -1; head->next_cpu = -1; for (c = 0; c < head->ncpus; c++) { u64 exp = head->cpu[c].expires; if (exp < lowest) { bcpu = c; lowest = exp; } } if (bcpu >= 0) { head->next_cpu = bcpu; c = head->cpu[bcpu].lcpu; if (uv_setup_intr(c, lowest)) /* If we didn't set it up in time, trigger */ uv_rtc_send_IPI(c); } else { uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, UVH_RTC1_INT_CONFIG_M_MASK); } } /* * Set expiration time for current cpu. * * Returns 1 if we missed the expiration time. */ static int uv_rtc_set_timer(int cpu, u64 expires) { int pnode = uv_cpu_to_pnode(cpu); int bid = uv_cpu_to_blade_id(cpu); struct uv_rtc_timer_head *head = blade_info[bid]; int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; u64 *t = &head->cpu[bcpu].expires; unsigned long flags; int next_cpu; spin_lock_irqsave(&head->lock, flags); next_cpu = head->next_cpu; *t = expires; /* Will this one be next to go off? */ if (next_cpu < 0 || bcpu == next_cpu || expires < head->cpu[next_cpu].expires) { head->next_cpu = bcpu; if (uv_setup_intr(cpu, expires)) { *t = ULLONG_MAX; uv_rtc_find_next_timer(head, pnode); spin_unlock_irqrestore(&head->lock, flags); return -ETIME; } } spin_unlock_irqrestore(&head->lock, flags); return 0; } /* * Unset expiration time for current cpu. * * Returns 1 if this timer was pending. */ static int uv_rtc_unset_timer(int cpu, int force) { int pnode = uv_cpu_to_pnode(cpu); int bid = uv_cpu_to_blade_id(cpu); struct uv_rtc_timer_head *head = blade_info[bid]; int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; u64 *t = &head->cpu[bcpu].expires; unsigned long flags; int rc = 0; spin_lock_irqsave(&head->lock, flags); if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force) rc = 1; if (rc) { *t = ULLONG_MAX; /* Was the hardware setup for this timer? */ if (head->next_cpu == bcpu) uv_rtc_find_next_timer(head, pnode); } spin_unlock_irqrestore(&head->lock, flags); return rc; } /* * Kernel interface routines. */ /* * Read the RTC. * * Starting with HUB rev 2.0, the UV RTC register is replicated across all * cachelines of it's own page. This allows faster simultaneous reads * from a given socket. */ static cycle_t uv_read_rtc(struct clocksource *cs) { unsigned long offset; if (uv_get_min_hub_revision_id() == 1) offset = 0; else offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE; return (cycle_t)uv_read_local_mmr(UVH_RTC | offset); } /* * Program the next event, relative to now */ static int uv_rtc_next_event(unsigned long delta, struct clock_event_device *ced) { int ced_cpu = cpumask_first(ced->cpumask); return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL)); } /* * Setup the RTC timer in oneshot mode */ static void uv_rtc_timer_setup(enum clock_event_mode mode, struct clock_event_device *evt) { int ced_cpu = cpumask_first(evt->cpumask); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_RESUME: /* Nothing to do here yet */ break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: uv_rtc_unset_timer(ced_cpu, 1); break; } } static void uv_rtc_interrupt(void) { int cpu = smp_processor_id(); struct clock_event_device *ced = &per_cpu(cpu_ced, cpu); if (!ced || !ced->event_handler) return; if (uv_rtc_unset_timer(cpu, 0) != 1) return; ced->event_handler(ced); } static int __init uv_enable_evt_rtc(char *str) { uv_rtc_evt_enable = 1; return 1; } __setup("uvrtcevt", uv_enable_evt_rtc); static __init void uv_rtc_register_clockevents(struct work_struct *dummy) { struct clock_event_device *ced = &__get_cpu_var(cpu_ced); *ced = clock_event_device_uv; ced->cpumask = cpumask_of(smp_processor_id()); clockevents_register_device(ced); } static __init int uv_rtc_setup_clock(void) { int rc; if (!is_uv_system()) return -ENODEV; clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second, clocksource_uv.shift); /* If single blade, prefer tsc */ if (uv_num_possible_blades() == 1) clocksource_uv.rating = 250; rc = clocksource_register(&clocksource_uv); if (rc) printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc); else printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n", sn_rtc_cycles_per_second/(unsigned long)1E6); if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback) return rc; /* Setup and register clockevents */ rc = uv_rtc_allocate_timers(); if (rc) goto error; x86_platform_ipi_callback = uv_rtc_interrupt; clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second, NSEC_PER_SEC, clock_event_device_uv.shift); clock_event_device_uv.min_delta_ns = NSEC_PER_SEC / sn_rtc_cycles_per_second; clock_event_device_uv.max_delta_ns = clocksource_uv.mask * (NSEC_PER_SEC / sn_rtc_cycles_per_second); rc = schedule_on_each_cpu(uv_rtc_register_clockevents); if (rc) { x86_platform_ipi_callback = NULL; uv_rtc_deallocate_timers(); goto error; } printk(KERN_INFO "UV RTC clockevents registered\n"); return 0; error: clocksource_unregister(&clocksource_uv); printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc); return rc; } arch_initcall(uv_rtc_setup_clock);