/* * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3 * * (C) 2001 San Mehat <nettwerk@valinux.com> * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com> * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au> * * This driver for the Micro Memory PCI Memory Module with Battery Backup * is Copyright Micro Memory Inc 2001-2002. All rights reserved. * * This driver is released to the public under the terms of the * GNU GENERAL PUBLIC LICENSE version 2 * See the file COPYING for details. * * This driver provides a standard block device interface for Micro Memory(tm) * PCI based RAM boards. * 10/05/01: Phap Nguyen - Rebuilt the driver * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn * - use stand disk partitioning (so fdisk works). * 08nov2001:NeilBrown - change driver name from "mm" to "umem" * - incorporate into main kernel * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet * - use spin_lock_bh instead of _irq * - Never block on make_request. queue * bh's instead. * - unregister umem from devfs at mod unload * - Change version to 2.3 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal) * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA * 15May2002:NeilBrown - convert to bio for 2.5 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect * - a sequence of writes that cover the card, and * - set initialised bit then. */ #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */ #include <linux/fs.h> #include <linux/bio.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/gfp.h> #include <linux/ioctl.h> #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/timer.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/hdreg.h> /* HDIO_GETGEO */ #include "umem.h" #include <asm/uaccess.h> #include <asm/io.h> #define MM_MAXCARDS 4 #define MM_RAHEAD 2 /* two sectors */ #define MM_BLKSIZE 1024 /* 1k blocks */ #define MM_HARDSECT 512 /* 512-byte hardware sectors */ #define MM_SHIFT 6 /* max 64 partitions on 4 cards */ /* * Version Information */ #define DRIVER_NAME "umem" #define DRIVER_VERSION "v2.3" #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown" #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver" static int debug; /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */ #define HW_TRACE(x) #define DEBUG_LED_ON_TRANSFER 0x01 #define DEBUG_BATTERY_POLLING 0x02 module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Debug bitmask"); static int pci_read_cmd = 0x0C; /* Read Multiple */ module_param(pci_read_cmd, int, 0); MODULE_PARM_DESC(pci_read_cmd, "PCI read command"); static int pci_write_cmd = 0x0F; /* Write and Invalidate */ module_param(pci_write_cmd, int, 0); MODULE_PARM_DESC(pci_write_cmd, "PCI write command"); static int pci_cmds; static int major_nr; #include <linux/blkdev.h> #include <linux/blkpg.h> struct cardinfo { struct pci_dev *dev; unsigned char __iomem *csr_remap; unsigned int mm_size; /* size in kbytes */ unsigned int init_size; /* initial segment, in sectors, * that we know to * have been written */ struct bio *bio, *currentbio, **biotail; int current_idx; sector_t current_sector; struct request_queue *queue; struct mm_page { dma_addr_t page_dma; struct mm_dma_desc *desc; int cnt, headcnt; struct bio *bio, **biotail; int idx; } mm_pages[2]; #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc)) int Active, Ready; struct tasklet_struct tasklet; unsigned int dma_status; struct { int good; int warned; unsigned long last_change; } battery[2]; spinlock_t lock; int check_batteries; int flags; }; static struct cardinfo cards[MM_MAXCARDS]; static struct timer_list battery_timer; static int num_cards; static struct gendisk *mm_gendisk[MM_MAXCARDS]; static void check_batteries(struct cardinfo *card); static int get_userbit(struct cardinfo *card, int bit) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); return led & bit; } static int set_userbit(struct cardinfo *card, int bit, unsigned char state) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); if (state) led |= bit; else led &= ~bit; writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); return 0; } /* * NOTE: For the power LED, use the LED_POWER_* macros since they differ */ static void set_led(struct cardinfo *card, int shift, unsigned char state) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); if (state == LED_FLIP) led ^= (1<<shift); else { led &= ~(0x03 << shift); led |= (state << shift); } writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); } #ifdef MM_DIAG static void dump_regs(struct cardinfo *card) { unsigned char *p; int i, i1; p = card->csr_remap; for (i = 0; i < 8; i++) { printk(KERN_DEBUG "%p ", p); for (i1 = 0; i1 < 16; i1++) printk("%02x ", *p++); printk("\n"); } } #endif static void dump_dmastat(struct cardinfo *card, unsigned int dmastat) { dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - "); if (dmastat & DMASCR_ANY_ERR) printk(KERN_CONT "ANY_ERR "); if (dmastat & DMASCR_MBE_ERR) printk(KERN_CONT "MBE_ERR "); if (dmastat & DMASCR_PARITY_ERR_REP) printk(KERN_CONT "PARITY_ERR_REP "); if (dmastat & DMASCR_PARITY_ERR_DET) printk(KERN_CONT "PARITY_ERR_DET "); if (dmastat & DMASCR_SYSTEM_ERR_SIG) printk(KERN_CONT "SYSTEM_ERR_SIG "); if (dmastat & DMASCR_TARGET_ABT) printk(KERN_CONT "TARGET_ABT "); if (dmastat & DMASCR_MASTER_ABT) printk(KERN_CONT "MASTER_ABT "); if (dmastat & DMASCR_CHAIN_COMPLETE) printk(KERN_CONT "CHAIN_COMPLETE "); if (dmastat & DMASCR_DMA_COMPLETE) printk(KERN_CONT "DMA_COMPLETE "); printk("\n"); } /* * Theory of request handling * * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME * We have two pages of mm_dma_desc, holding about 64 descriptors * each. These are allocated at init time. * One page is "Ready" and is either full, or can have request added. * The other page might be "Active", which DMA is happening on it. * * Whenever IO on the active page completes, the Ready page is activated * and the ex-Active page is clean out and made Ready. * Otherwise the Ready page is only activated when it becomes full. * * If a request arrives while both pages a full, it is queued, and b_rdev is * overloaded to record whether it was a read or a write. * * The interrupt handler only polls the device to clear the interrupt. * The processing of the result is done in a tasklet. */ static void mm_start_io(struct cardinfo *card) { /* we have the lock, we know there is * no IO active, and we know that card->Active * is set */ struct mm_dma_desc *desc; struct mm_page *page; int offset; /* make the last descriptor end the chain */ page = &card->mm_pages[card->Active]; pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt - 1); desc = &page->desc[page->cnt-1]; desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN); desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN); desc->sem_control_bits = desc->control_bits; if (debug & DEBUG_LED_ON_TRANSFER) set_led(card, LED_REMOVE, LED_ON); desc = &page->desc[page->headcnt]; writel(0, card->csr_remap + DMA_PCI_ADDR); writel(0, card->csr_remap + DMA_PCI_ADDR + 4); writel(0, card->csr_remap + DMA_LOCAL_ADDR); writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4); writel(0, card->csr_remap + DMA_TRANSFER_SIZE); writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4); writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR); writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4); offset = ((char *)desc) - ((char *)page->desc); writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff), card->csr_remap + DMA_DESCRIPTOR_ADDR); /* Force the value to u64 before shifting otherwise >> 32 is undefined C * and on some ports will do nothing ! */ writel(cpu_to_le32(((u64)page->page_dma)>>32), card->csr_remap + DMA_DESCRIPTOR_ADDR + 4); /* Go, go, go */ writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds), card->csr_remap + DMA_STATUS_CTRL); } static int add_bio(struct cardinfo *card); static void activate(struct cardinfo *card) { /* if No page is Active, and Ready is * not empty, then switch Ready page * to active and start IO. * Then add any bh's that are available to Ready */ do { while (add_bio(card)) ; if (card->Active == -1 && card->mm_pages[card->Ready].cnt > 0) { card->Active = card->Ready; card->Ready = 1-card->Ready; mm_start_io(card); } } while (card->Active == -1 && add_bio(card)); } static inline void reset_page(struct mm_page *page) { page->cnt = 0; page->headcnt = 0; page->bio = NULL; page->biotail = &page->bio; } /* * If there is room on Ready page, take * one bh off list and add it. * return 1 if there was room, else 0. */ static int add_bio(struct cardinfo *card) { struct mm_page *p; struct mm_dma_desc *desc; dma_addr_t dma_handle; int offset; struct bio *bio; struct bio_vec *vec; int idx; int rw; int len; bio = card->currentbio; if (!bio && card->bio) { card->currentbio = card->bio; card->current_idx = card->bio->bi_idx; card->current_sector = card->bio->bi_sector; card->bio = card->bio->bi_next; if (card->bio == NULL) card->biotail = &card->bio; card->currentbio->bi_next = NULL; return 1; } if (!bio) return 0; idx = card->current_idx; rw = bio_rw(bio); if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE) return 0; vec = bio_iovec_idx(bio, idx); len = vec->bv_len; dma_handle = pci_map_page(card->dev, vec->bv_page, vec->bv_offset, len, (rw == READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); p = &card->mm_pages[card->Ready]; desc = &p->desc[p->cnt]; p->cnt++; if (p->bio == NULL) p->idx = idx; if ((p->biotail) != &bio->bi_next) { *(p->biotail) = bio; p->biotail = &(bio->bi_next); bio->bi_next = NULL; } desc->data_dma_handle = dma_handle; desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle); desc->local_addr = cpu_to_le64(card->current_sector << 9); desc->transfer_size = cpu_to_le32(len); offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc)); desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset)); desc->zero1 = desc->zero2 = 0; offset = (((char *)(desc+1)) - ((char *)p->desc)); desc->next_desc_addr = cpu_to_le64(p->page_dma+offset); desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN| DMASCR_PARITY_INT_EN| DMASCR_CHAIN_EN | DMASCR_SEM_EN | pci_cmds); if (rw == WRITE) desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ); desc->sem_control_bits = desc->control_bits; card->current_sector += (len >> 9); idx++; card->current_idx = idx; if (idx >= bio->bi_vcnt) card->currentbio = NULL; return 1; } static void process_page(unsigned long data) { /* check if any of the requests in the page are DMA_COMPLETE, * and deal with them appropriately. * If we find a descriptor without DMA_COMPLETE in the semaphore, then * dma must have hit an error on that descriptor, so use dma_status * instead and assume that all following descriptors must be re-tried. */ struct mm_page *page; struct bio *return_bio = NULL; struct cardinfo *card = (struct cardinfo *)data; unsigned int dma_status = card->dma_status; spin_lock_bh(&card->lock); if (card->Active < 0) goto out_unlock; page = &card->mm_pages[card->Active]; while (page->headcnt < page->cnt) { struct bio *bio = page->bio; struct mm_dma_desc *desc = &page->desc[page->headcnt]; int control = le32_to_cpu(desc->sem_control_bits); int last = 0; int idx; if (!(control & DMASCR_DMA_COMPLETE)) { control = dma_status; last = 1; } page->headcnt++; idx = page->idx; page->idx++; if (page->idx >= bio->bi_vcnt) { page->bio = bio->bi_next; if (page->bio) page->idx = page->bio->bi_idx; } pci_unmap_page(card->dev, desc->data_dma_handle, bio_iovec_idx(bio, idx)->bv_len, (control & DMASCR_TRANSFER_READ) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); if (control & DMASCR_HARD_ERROR) { /* error */ clear_bit(BIO_UPTODATE, &bio->bi_flags); dev_printk(KERN_WARNING, &card->dev->dev, "I/O error on sector %d/%d\n", le32_to_cpu(desc->local_addr)>>9, le32_to_cpu(desc->transfer_size)); dump_dmastat(card, control); } else if ((bio->bi_rw & REQ_WRITE) && le32_to_cpu(desc->local_addr) >> 9 == card->init_size) { card->init_size += le32_to_cpu(desc->transfer_size) >> 9; if (card->init_size >> 1 >= card->mm_size) { dev_printk(KERN_INFO, &card->dev->dev, "memory now initialised\n"); set_userbit(card, MEMORY_INITIALIZED, 1); } } if (bio != page->bio) { bio->bi_next = return_bio; return_bio = bio; } if (last) break; } if (debug & DEBUG_LED_ON_TRANSFER) set_led(card, LED_REMOVE, LED_OFF); if (card->check_batteries) { card->check_batteries = 0; check_batteries(card); } if (page->headcnt >= page->cnt) { reset_page(page); card->Active = -1; activate(card); } else { /* haven't finished with this one yet */ pr_debug("do some more\n"); mm_start_io(card); } out_unlock: spin_unlock_bh(&card->lock); while (return_bio) { struct bio *bio = return_bio; return_bio = bio->bi_next; bio->bi_next = NULL; bio_endio(bio, 0); } } static int mm_make_request(struct request_queue *q, struct bio *bio) { struct cardinfo *card = q->queuedata; pr_debug("mm_make_request %llu %u\n", (unsigned long long)bio->bi_sector, bio->bi_size); spin_lock_irq(&card->lock); *card->biotail = bio; bio->bi_next = NULL; card->biotail = &bio->bi_next; spin_unlock_irq(&card->lock); return 0; } static irqreturn_t mm_interrupt(int irq, void *__card) { struct cardinfo *card = (struct cardinfo *) __card; unsigned int dma_status; unsigned short cfg_status; HW_TRACE(0x30); dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL)); if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) { /* interrupt wasn't for me ... */ return IRQ_NONE; } /* clear COMPLETION interrupts */ if (card->flags & UM_FLAG_NO_BYTE_STATUS) writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE), card->csr_remap + DMA_STATUS_CTRL); else writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16, card->csr_remap + DMA_STATUS_CTRL + 2); /* log errors and clear interrupt status */ if (dma_status & DMASCR_ANY_ERR) { unsigned int data_log1, data_log2; unsigned int addr_log1, addr_log2; unsigned char stat, count, syndrome, check; stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS); data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG)); data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4)); addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG)); addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4); count = readb(card->csr_remap + ERROR_COUNT); syndrome = readb(card->csr_remap + ERROR_SYNDROME); check = readb(card->csr_remap + ERROR_CHECK); dump_dmastat(card, dma_status); if (stat & 0x01) dev_printk(KERN_ERR, &card->dev->dev, "Memory access error detected (err count %d)\n", count); if (stat & 0x02) dev_printk(KERN_ERR, &card->dev->dev, "Multi-bit EDC error\n"); dev_printk(KERN_ERR, &card->dev->dev, "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n", addr_log2, addr_log1, data_log2, data_log1); dev_printk(KERN_ERR, &card->dev->dev, "Fault Check 0x%02x, Fault Syndrome 0x%02x\n", check, syndrome); writeb(0, card->csr_remap + ERROR_COUNT); } if (dma_status & DMASCR_PARITY_ERR_REP) { dev_printk(KERN_ERR, &card->dev->dev, "PARITY ERROR REPORTED\n"); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_PARITY_ERR_DET) { dev_printk(KERN_ERR, &card->dev->dev, "PARITY ERROR DETECTED\n"); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_SYSTEM_ERR_SIG) { dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n"); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_TARGET_ABT) { dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n"); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_MASTER_ABT) { dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n"); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } /* and process the DMA descriptors */ card->dma_status = dma_status; tasklet_schedule(&card->tasklet); HW_TRACE(0x36); return IRQ_HANDLED; } /* * If both batteries are good, no LED * If either battery has been warned, solid LED * If both batteries are bad, flash the LED quickly * If either battery is bad, flash the LED semi quickly */ static void set_fault_to_battery_status(struct cardinfo *card) { if (card->battery[0].good && card->battery[1].good) set_led(card, LED_FAULT, LED_OFF); else if (card->battery[0].warned || card->battery[1].warned) set_led(card, LED_FAULT, LED_ON); else if (!card->battery[0].good && !card->battery[1].good) set_led(card, LED_FAULT, LED_FLASH_7_0); else set_led(card, LED_FAULT, LED_FLASH_3_5); } static void init_battery_timer(void); static int check_battery(struct cardinfo *card, int battery, int status) { if (status != card->battery[battery].good) { card->battery[battery].good = !card->battery[battery].good; card->battery[battery].last_change = jiffies; if (card->battery[battery].good) { dev_printk(KERN_ERR, &card->dev->dev, "Battery %d now good\n", battery + 1); card->battery[battery].warned = 0; } else dev_printk(KERN_ERR, &card->dev->dev, "Battery %d now FAILED\n", battery + 1); return 1; } else if (!card->battery[battery].good && !card->battery[battery].warned && time_after_eq(jiffies, card->battery[battery].last_change + (HZ * 60 * 60 * 5))) { dev_printk(KERN_ERR, &card->dev->dev, "Battery %d still FAILED after 5 hours\n", battery + 1); card->battery[battery].warned = 1; return 1; } return 0; } static void check_batteries(struct cardinfo *card) { /* NOTE: this must *never* be called while the card * is doing (bus-to-card) DMA, or you will need the * reset switch */ unsigned char status; int ret1, ret2; status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); if (debug & DEBUG_BATTERY_POLLING) dev_printk(KERN_DEBUG, &card->dev->dev, "checking battery status, 1 = %s, 2 = %s\n", (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK", (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK"); ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE)); ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE)); if (ret1 || ret2) set_fault_to_battery_status(card); } static void check_all_batteries(unsigned long ptr) { int i; for (i = 0; i < num_cards; i++) if (!(cards[i].flags & UM_FLAG_NO_BATT)) { struct cardinfo *card = &cards[i]; spin_lock_bh(&card->lock); if (card->Active >= 0) card->check_batteries = 1; else check_batteries(card); spin_unlock_bh(&card->lock); } init_battery_timer(); } static void init_battery_timer(void) { init_timer(&battery_timer); battery_timer.function = check_all_batteries; battery_timer.expires = jiffies + (HZ * 60); add_timer(&battery_timer); } static void del_battery_timer(void) { del_timer(&battery_timer); } /* * Note no locks taken out here. In a worst case scenario, we could drop * a chunk of system memory. But that should never happen, since validation * happens at open or mount time, when locks are held. * * That's crap, since doing that while some partitions are opened * or mounted will give you really nasty results. */ static int mm_revalidate(struct gendisk *disk) { struct cardinfo *card = disk->private_data; set_capacity(disk, card->mm_size << 1); return 0; } static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct cardinfo *card = bdev->bd_disk->private_data; int size = card->mm_size * (1024 / MM_HARDSECT); /* * get geometry: we have to fake one... trim the size to a * multiple of 2048 (1M): tell we have 32 sectors, 64 heads, * whatever cylinders. */ geo->heads = 64; geo->sectors = 32; geo->cylinders = size / (geo->heads * geo->sectors); return 0; } static const struct block_device_operations mm_fops = { .owner = THIS_MODULE, .getgeo = mm_getgeo, .revalidate_disk = mm_revalidate, }; static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { int ret = -ENODEV; struct cardinfo *card = &cards[num_cards]; unsigned char mem_present; unsigned char batt_status; unsigned int saved_bar, data; unsigned long csr_base; unsigned long csr_len; int magic_number; static int printed_version; if (!printed_version++) printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n"); ret = pci_enable_device(dev); if (ret) return ret; pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8); pci_set_master(dev); card->dev = dev; csr_base = pci_resource_start(dev, 0); csr_len = pci_resource_len(dev, 0); if (!csr_base || !csr_len) return -ENODEV; dev_printk(KERN_INFO, &dev->dev, "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n"); if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) && pci_set_dma_mask(dev, DMA_BIT_MASK(32))) { dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n"); return -ENOMEM; } ret = pci_request_regions(dev, DRIVER_NAME); if (ret) { dev_printk(KERN_ERR, &card->dev->dev, "Unable to request memory region\n"); goto failed_req_csr; } card->csr_remap = ioremap_nocache(csr_base, csr_len); if (!card->csr_remap) { dev_printk(KERN_ERR, &card->dev->dev, "Unable to remap memory region\n"); ret = -ENOMEM; goto failed_remap_csr; } dev_printk(KERN_INFO, &card->dev->dev, "CSR 0x%08lx -> 0x%p (0x%lx)\n", csr_base, card->csr_remap, csr_len); switch (card->dev->device) { case 0x5415: card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG; magic_number = 0x59; break; case 0x5425: card->flags |= UM_FLAG_NO_BYTE_STATUS; magic_number = 0x5C; break; case 0x6155: card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT; magic_number = 0x99; break; default: magic_number = 0x100; break; } if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) { dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n"); ret = -ENOMEM; goto failed_magic; } card->mm_pages[0].desc = pci_alloc_consistent(card->dev, PAGE_SIZE * 2, &card->mm_pages[0].page_dma); card->mm_pages[1].desc = pci_alloc_consistent(card->dev, PAGE_SIZE * 2, &card->mm_pages[1].page_dma); if (card->mm_pages[0].desc == NULL || card->mm_pages[1].desc == NULL) { dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n"); goto failed_alloc; } reset_page(&card->mm_pages[0]); reset_page(&card->mm_pages[1]); card->Ready = 0; /* page 0 is ready */ card->Active = -1; /* no page is active */ card->bio = NULL; card->biotail = &card->bio; card->queue = blk_alloc_queue(GFP_KERNEL); if (!card->queue) goto failed_alloc; blk_queue_make_request(card->queue, mm_make_request); card->queue->queue_lock = &card->lock; card->queue->queuedata = card; tasklet_init(&card->tasklet, process_page, (unsigned long)card); card->check_batteries = 0; mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY); switch (mem_present) { case MEM_128_MB: card->mm_size = 1024 * 128; break; case MEM_256_MB: card->mm_size = 1024 * 256; break; case MEM_512_MB: card->mm_size = 1024 * 512; break; case MEM_1_GB: card->mm_size = 1024 * 1024; break; case MEM_2_GB: card->mm_size = 1024 * 2048; break; default: card->mm_size = 0; break; } /* Clear the LED's we control */ set_led(card, LED_REMOVE, LED_OFF); set_led(card, LED_FAULT, LED_OFF); batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); card->battery[0].good = !(batt_status & BATTERY_1_FAILURE); card->battery[1].good = !(batt_status & BATTERY_2_FAILURE); card->battery[0].last_change = card->battery[1].last_change = jiffies; if (card->flags & UM_FLAG_NO_BATT) dev_printk(KERN_INFO, &card->dev->dev, "Size %d KB\n", card->mm_size); else { dev_printk(KERN_INFO, &card->dev->dev, "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n", card->mm_size, batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled", card->battery[0].good ? "OK" : "FAILURE", batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled", card->battery[1].good ? "OK" : "FAILURE"); set_fault_to_battery_status(card); } pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar); data = 0xffffffff; pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data); pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data); pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar); data &= 0xfffffff0; data = ~data; data += 1; if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME, card)) { dev_printk(KERN_ERR, &card->dev->dev, "Unable to allocate IRQ\n"); ret = -ENODEV; goto failed_req_irq; } dev_printk(KERN_INFO, &card->dev->dev, "Window size %d bytes, IRQ %d\n", data, dev->irq); spin_lock_init(&card->lock); pci_set_drvdata(dev, card); if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */ pci_write_cmd = 0x07; /* then Memory Write command */ if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */ unsigned short cfg_command; pci_read_config_word(dev, PCI_COMMAND, &cfg_command); cfg_command |= 0x10; /* Memory Write & Invalidate Enable */ pci_write_config_word(dev, PCI_COMMAND, cfg_command); } pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24); num_cards++; if (!get_userbit(card, MEMORY_INITIALIZED)) { dev_printk(KERN_INFO, &card->dev->dev, "memory NOT initialized. Consider over-writing whole device.\n"); card->init_size = 0; } else { dev_printk(KERN_INFO, &card->dev->dev, "memory already initialized\n"); card->init_size = card->mm_size; } /* Enable ECC */ writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL); return 0; failed_req_irq: failed_alloc: if (card->mm_pages[0].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[0].desc, card->mm_pages[0].page_dma); if (card->mm_pages[1].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[1].desc, card->mm_pages[1].page_dma); failed_magic: iounmap(card->csr_remap); failed_remap_csr: pci_release_regions(dev); failed_req_csr: return ret; } static void mm_pci_remove(struct pci_dev *dev) { struct cardinfo *card = pci_get_drvdata(dev); tasklet_kill(&card->tasklet); free_irq(dev->irq, card); iounmap(card->csr_remap); if (card->mm_pages[0].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[0].desc, card->mm_pages[0].page_dma); if (card->mm_pages[1].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[1].desc, card->mm_pages[1].page_dma); blk_cleanup_queue(card->queue); pci_release_regions(dev); pci_disable_device(dev); } static const struct pci_device_id mm_pci_ids[] = { {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)}, {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)}, {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)}, { .vendor = 0x8086, .device = 0xB555, .subvendor = 0x1332, .subdevice = 0x5460, .class = 0x050000, .class_mask = 0, }, { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(pci, mm_pci_ids); static struct pci_driver mm_pci_driver = { .name = DRIVER_NAME, .id_table = mm_pci_ids, .probe = mm_pci_probe, .remove = mm_pci_remove, }; static int __init mm_init(void) { int retval, i; int err; retval = pci_register_driver(&mm_pci_driver); if (retval) return -ENOMEM; err = major_nr = register_blkdev(0, DRIVER_NAME); if (err < 0) { pci_unregister_driver(&mm_pci_driver); return -EIO; } for (i = 0; i < num_cards; i++) { mm_gendisk[i] = alloc_disk(1 << MM_SHIFT); if (!mm_gendisk[i]) goto out; } for (i = 0; i < num_cards; i++) { struct gendisk *disk = mm_gendisk[i]; sprintf(disk->disk_name, "umem%c", 'a'+i); spin_lock_init(&cards[i].lock); disk->major = major_nr; disk->first_minor = i << MM_SHIFT; disk->fops = &mm_fops; disk->private_data = &cards[i]; disk->queue = cards[i].queue; set_capacity(disk, cards[i].mm_size << 1); add_disk(disk); } init_battery_timer(); printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE); /* printk("mm_init: Done. 10-19-01 9:00\n"); */ return 0; out: pci_unregister_driver(&mm_pci_driver); unregister_blkdev(major_nr, DRIVER_NAME); while (i--) put_disk(mm_gendisk[i]); return -ENOMEM; } static void __exit mm_cleanup(void) { int i; del_battery_timer(); for (i = 0; i < num_cards ; i++) { del_gendisk(mm_gendisk[i]); put_disk(mm_gendisk[i]); } pci_unregister_driver(&mm_pci_driver); unregister_blkdev(major_nr, DRIVER_NAME); } module_init(mm_init); module_exit(mm_cleanup); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");