/* * i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters * Copyright (C) 2004 Arcom Control Systems * Copyright (C) 2008 Pengutronix * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/i2c-algo-pca.h> #define DEB1(fmt, args...) do { if (i2c_debug >= 1) \ printk(KERN_DEBUG fmt, ## args); } while (0) #define DEB2(fmt, args...) do { if (i2c_debug >= 2) \ printk(KERN_DEBUG fmt, ## args); } while (0) #define DEB3(fmt, args...) do { if (i2c_debug >= 3) \ printk(KERN_DEBUG fmt, ## args); } while (0) static int i2c_debug; #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val) #define pca_inw(adap, reg) adap->read_byte(adap->data, reg) #define pca_status(adap) pca_inw(adap, I2C_PCA_STA) #define pca_clock(adap) adap->i2c_clock #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val) #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON) #define pca_wait(adap) adap->wait_for_completion(adap->data) #define pca_reset(adap) adap->reset_chip(adap->data) static void pca9665_reset(void *pd) { struct i2c_algo_pca_data *adap = pd; pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET); pca_outw(adap, I2C_PCA_IND, 0xA5); pca_outw(adap, I2C_PCA_IND, 0x5A); } /* * Generate a start condition on the i2c bus. * * returns after the start condition has occurred */ static int pca_start(struct i2c_algo_pca_data *adap) { int sta = pca_get_con(adap); DEB2("=== START\n"); sta |= I2C_PCA_CON_STA; sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI); pca_set_con(adap, sta); return pca_wait(adap); } /* * Generate a repeated start condition on the i2c bus * * return after the repeated start condition has occurred */ static int pca_repeated_start(struct i2c_algo_pca_data *adap) { int sta = pca_get_con(adap); DEB2("=== REPEATED START\n"); sta |= I2C_PCA_CON_STA; sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI); pca_set_con(adap, sta); return pca_wait(adap); } /* * Generate a stop condition on the i2c bus * * returns after the stop condition has been generated * * STOPs do not generate an interrupt or set the SI flag, since the * part returns the idle state (0xf8). Hence we don't need to * pca_wait here. */ static void pca_stop(struct i2c_algo_pca_data *adap) { int sta = pca_get_con(adap); DEB2("=== STOP\n"); sta |= I2C_PCA_CON_STO; sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI); pca_set_con(adap, sta); } /* * Send the slave address and R/W bit * * returns after the address has been sent */ static int pca_address(struct i2c_algo_pca_data *adap, struct i2c_msg *msg) { int sta = pca_get_con(adap); int addr; addr = ((0x7f & msg->addr) << 1); if (msg->flags & I2C_M_RD) addr |= 1; DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n", msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr); pca_outw(adap, I2C_PCA_DAT, addr); sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI); pca_set_con(adap, sta); return pca_wait(adap); } /* * Transmit a byte. * * Returns after the byte has been transmitted */ static int pca_tx_byte(struct i2c_algo_pca_data *adap, __u8 b) { int sta = pca_get_con(adap); DEB2("=== WRITE %#04x\n", b); pca_outw(adap, I2C_PCA_DAT, b); sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI); pca_set_con(adap, sta); return pca_wait(adap); } /* * Receive a byte * * returns immediately. */ static void pca_rx_byte(struct i2c_algo_pca_data *adap, __u8 *b, int ack) { *b = pca_inw(adap, I2C_PCA_DAT); DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK"); } /* * Setup ACK or NACK for next received byte and wait for it to arrive. * * Returns after next byte has arrived. */ static int pca_rx_ack(struct i2c_algo_pca_data *adap, int ack) { int sta = pca_get_con(adap); sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA); if (ack) sta |= I2C_PCA_CON_AA; pca_set_con(adap, sta); return pca_wait(adap); } static int pca_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { struct i2c_algo_pca_data *adap = i2c_adap->algo_data; struct i2c_msg *msg = NULL; int curmsg; int numbytes = 0; int state; int ret; int completed = 1; unsigned long timeout = jiffies + i2c_adap->timeout; while ((state = pca_status(adap)) != 0xf8) { if (time_before(jiffies, timeout)) { msleep(10); } else { dev_dbg(&i2c_adap->dev, "bus is not idle. status is " "%#04x\n", state); return -EAGAIN; } } DEB1("{{{ XFER %d messages\n", num); if (i2c_debug >= 2) { for (curmsg = 0; curmsg < num; curmsg++) { int addr, i; msg = &msgs[curmsg]; addr = (0x7f & msg->addr) ; if (msg->flags & I2C_M_RD) printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n", curmsg, msg->len, addr, (addr << 1) | 1); else { printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s", curmsg, msg->len, addr, addr << 1, msg->len == 0 ? "" : ", "); for (i = 0; i < msg->len; i++) printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", "); printk("]\n"); } } } curmsg = 0; ret = -EREMOTEIO; while (curmsg < num) { state = pca_status(adap); DEB3("STATE is 0x%02x\n", state); msg = &msgs[curmsg]; switch (state) { case 0xf8: /* On reset or stop the bus is idle */ completed = pca_start(adap); break; case 0x08: /* A START condition has been transmitted */ case 0x10: /* A repeated start condition has been transmitted */ completed = pca_address(adap, msg); break; case 0x18: /* SLA+W has been transmitted; ACK has been received */ case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */ if (numbytes < msg->len) { completed = pca_tx_byte(adap, msg->buf[numbytes]); numbytes++; break; } curmsg++; numbytes = 0; if (curmsg == num) pca_stop(adap); else completed = pca_repeated_start(adap); break; case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */ DEB2("NOT ACK received after SLA+W\n"); pca_stop(adap); goto out; case 0x40: /* SLA+R has been transmitted; ACK has been received */ completed = pca_rx_ack(adap, msg->len > 1); break; case 0x50: /* Data bytes has been received; ACK has been returned */ if (numbytes < msg->len) { pca_rx_byte(adap, &msg->buf[numbytes], 1); numbytes++; completed = pca_rx_ack(adap, numbytes < msg->len - 1); break; } curmsg++; numbytes = 0; if (curmsg == num) pca_stop(adap); else completed = pca_repeated_start(adap); break; case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */ DEB2("NOT ACK received after SLA+R\n"); pca_stop(adap); goto out; case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */ DEB2("NOT ACK received after data byte\n"); pca_stop(adap); goto out; case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */ DEB2("Arbitration lost\n"); /* * The PCA9564 data sheet (2006-09-01) says "A * START condition will be transmitted when the * bus becomes free (STOP or SCL and SDA high)" * when the STA bit is set (p. 11). * * In case this won't work, try pca_reset() * instead. */ pca_start(adap); goto out; case 0x58: /* Data byte has been received; NOT ACK has been returned */ if (numbytes == msg->len - 1) { pca_rx_byte(adap, &msg->buf[numbytes], 0); curmsg++; numbytes = 0; if (curmsg == num) pca_stop(adap); else completed = pca_repeated_start(adap); } else { DEB2("NOT ACK sent after data byte received. " "Not final byte. numbytes %d. len %d\n", numbytes, msg->len); pca_stop(adap); goto out; } break; case 0x70: /* Bus error - SDA stuck low */ DEB2("BUS ERROR - SDA Stuck low\n"); pca_reset(adap); goto out; case 0x90: /* Bus error - SCL stuck low */ DEB2("BUS ERROR - SCL Stuck low\n"); pca_reset(adap); goto out; case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */ DEB2("BUS ERROR - Illegal START or STOP\n"); pca_reset(adap); goto out; default: dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state); break; } if (!completed) goto out; } ret = curmsg; out: DEB1("}}} transferred %d/%d messages. " "status is %#04x. control is %#04x\n", curmsg, num, pca_status(adap), pca_get_con(adap)); return ret; } static u32 pca_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm pca_algo = { .master_xfer = pca_xfer, .functionality = pca_func, }; static unsigned int pca_probe_chip(struct i2c_adapter *adap) { struct i2c_algo_pca_data *pca_data = adap->algo_data; /* The trick here is to check if there is an indirect register * available. If there is one, we will read the value we first * wrote on I2C_PCA_IADR. Otherwise, we will read the last value * we wrote on I2C_PCA_ADR */ pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR); pca_outw(pca_data, I2C_PCA_IND, 0xAA); pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO); pca_outw(pca_data, I2C_PCA_IND, 0x00); pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR); if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) { printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name); return I2C_PCA_CHIP_9665; } else { printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name); return I2C_PCA_CHIP_9564; } } static int pca_init(struct i2c_adapter *adap) { struct i2c_algo_pca_data *pca_data = adap->algo_data; adap->algo = &pca_algo; if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) { static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36}; int clock; if (pca_data->i2c_clock > 7) { switch (pca_data->i2c_clock) { case 330000: pca_data->i2c_clock = I2C_PCA_CON_330kHz; break; case 288000: pca_data->i2c_clock = I2C_PCA_CON_288kHz; break; case 217000: pca_data->i2c_clock = I2C_PCA_CON_217kHz; break; case 146000: pca_data->i2c_clock = I2C_PCA_CON_146kHz; break; case 88000: pca_data->i2c_clock = I2C_PCA_CON_88kHz; break; case 59000: pca_data->i2c_clock = I2C_PCA_CON_59kHz; break; case 44000: pca_data->i2c_clock = I2C_PCA_CON_44kHz; break; case 36000: pca_data->i2c_clock = I2C_PCA_CON_36kHz; break; default: printk(KERN_WARNING "%s: Invalid I2C clock speed selected." " Using default 59kHz.\n", adap->name); pca_data->i2c_clock = I2C_PCA_CON_59kHz; } } else { printk(KERN_WARNING "%s: " "Choosing the clock frequency based on " "index is deprecated." " Use the nominal frequency.\n", adap->name); } pca_reset(pca_data); clock = pca_clock(pca_data); printk(KERN_INFO "%s: Clock frequency is %dkHz\n", adap->name, freqs[clock]); pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock); } else { int clock; int mode; int tlow, thi; /* Values can be found on PCA9665 datasheet section 7.3.2.6 */ int min_tlow, min_thi; /* These values are the maximum raise and fall values allowed * by the I2C operation mode (Standard, Fast or Fast+) * They are used (added) below to calculate the clock dividers * of PCA9665. Note that they are slightly different of the * real maximum, to allow the change on mode exactly on the * maximum clock rate for each mode */ int raise_fall_time; /* Ignore the reset function from the module, * we can use the parallel bus reset */ pca_data->reset_chip = pca9665_reset; if (pca_data->i2c_clock > 1265800) { printk(KERN_WARNING "%s: I2C clock speed too high." " Using 1265.8kHz.\n", adap->name); pca_data->i2c_clock = 1265800; } if (pca_data->i2c_clock < 60300) { printk(KERN_WARNING "%s: I2C clock speed too low." " Using 60.3kHz.\n", adap->name); pca_data->i2c_clock = 60300; } /* To avoid integer overflow, use clock/100 for calculations */ clock = pca_clock(pca_data) / 100; if (pca_data->i2c_clock > 10000) { mode = I2C_PCA_MODE_TURBO; min_tlow = 14; min_thi = 5; raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */ } else if (pca_data->i2c_clock > 4000) { mode = I2C_PCA_MODE_FASTP; min_tlow = 17; min_thi = 9; raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */ } else if (pca_data->i2c_clock > 1000) { mode = I2C_PCA_MODE_FAST; min_tlow = 44; min_thi = 20; raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */ } else { mode = I2C_PCA_MODE_STD; min_tlow = 157; min_thi = 134; raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */ } /* The minimum clock that respects the thi/tlow = 134/157 is * 64800 Hz. Below that, we have to fix the tlow to 255 and * calculate the thi factor. */ if (clock < 648) { tlow = 255; thi = 1000000 - clock * raise_fall_time; thi /= (I2C_PCA_OSC_PER * clock) - tlow; } else { tlow = (1000000 - clock * raise_fall_time) * min_tlow; tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow); thi = tlow * min_thi / min_tlow; } pca_reset(pca_data); printk(KERN_INFO "%s: Clock frequency is %dHz\n", adap->name, clock * 100); pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE); pca_outw(pca_data, I2C_PCA_IND, mode); pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL); pca_outw(pca_data, I2C_PCA_IND, tlow); pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH); pca_outw(pca_data, I2C_PCA_IND, thi); pca_set_con(pca_data, I2C_PCA_CON_ENSIO); } udelay(500); /* 500 us for oscilator to stabilise */ return 0; } /* * registering functions to load algorithms at runtime */ int i2c_pca_add_bus(struct i2c_adapter *adap) { int rval; rval = pca_init(adap); if (rval) return rval; return i2c_add_adapter(adap); } EXPORT_SYMBOL(i2c_pca_add_bus); int i2c_pca_add_numbered_bus(struct i2c_adapter *adap) { int rval; rval = pca_init(adap); if (rval) return rval; return i2c_add_numbered_adapter(adap); } EXPORT_SYMBOL(i2c_pca_add_numbered_bus); MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, " "Wolfram Sang <w.sang@pengutronix.de>"); MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm"); MODULE_LICENSE("GPL"); module_param(i2c_debug, int, 0);