/*************************************************************************/ /* $Id: hfc4s8s_l1.c,v 1.10 2005/02/09 16:31:09 martinb1 Exp $ */ /* HFC-4S/8S low layer interface for Cologne Chip HFC-4S/8S isdn chips */ /* The low layer (L1) is implemented as a loadable module for usage with */ /* the HiSax isdn driver for passive cards. */ /* */ /* Author: Werner Cornelius */ /* (C) 2003 Cornelius Consult (werner@cornelius-consult.de) */ /* */ /* Driver maintained by Cologne Chip */ /* - Martin Bachem, support@colognechip.com */ /* */ /* This driver only works with chip revisions >= 1, older revision 0 */ /* engineering samples (only first manufacturer sample cards) will not */ /* work and are rejected by the driver. */ /* */ /* This file distributed under the GNU GPL. */ /* */ /* See Version History at the end of this file */ /* */ /*************************************************************************/ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/skbuff.h> #include <linux/wait.h> #include <asm/io.h> #include "hisax_if.h" #include "hfc4s8s_l1.h" static const char hfc4s8s_rev[] = "Revision: 1.10"; /***************************************************************/ /* adjustable transparent mode fifo threshold */ /* The value defines the used fifo threshold with the equation */ /* */ /* notify number of bytes = 2 * 2 ^ TRANS_FIFO_THRES */ /* */ /* The default value is 5 which results in a buffer size of 64 */ /* and an interrupt rate of 8ms. */ /* The maximum value is 7 due to fifo size restrictions. */ /* Values below 3-4 are not recommended due to high interrupt */ /* load of the processor. For non critical applications the */ /* value should be raised to 7 to reduce any interrupt overhead*/ /***************************************************************/ #define TRANS_FIFO_THRES 5 /*************/ /* constants */ /*************/ #define CLOCKMODE_0 0 /* ext. 24.576 MhZ clk freq, int. single clock mode */ #define CLOCKMODE_1 1 /* ext. 49.576 MhZ clk freq, int. single clock mode */ #define CHIP_ID_SHIFT 4 #define HFC_MAX_ST 8 #define MAX_D_FRAME_SIZE 270 #define MAX_B_FRAME_SIZE 1536 #define TRANS_TIMER_MODE (TRANS_FIFO_THRES & 0xf) #define TRANS_FIFO_BYTES (2 << TRANS_FIFO_THRES) #define MAX_F_CNT 0x0f #define CLKDEL_NT 0x6c #define CLKDEL_TE 0xf #define CTRL0_NT 4 #define CTRL0_TE 0 #define L1_TIMER_T4 2 /* minimum in jiffies */ #define L1_TIMER_T3 (7 * HZ) /* activation timeout */ #define L1_TIMER_T1 ((120 * HZ) / 1000) /* NT mode deactivation timeout */ /******************/ /* types and vars */ /******************/ static int card_cnt; /* private driver_data */ typedef struct { int chip_id; int clock_mode; int max_st_ports; char *device_name; } hfc4s8s_param; static struct pci_device_id hfc4s8s_ids[] = { {.vendor = PCI_VENDOR_ID_CCD, .device = PCI_DEVICE_ID_4S, .subvendor = 0x1397, .subdevice = 0x08b4, .driver_data = (unsigned long) &((hfc4s8s_param) {CHIP_ID_4S, CLOCKMODE_0, 4, "HFC-4S Evaluation Board"}), }, {.vendor = PCI_VENDOR_ID_CCD, .device = PCI_DEVICE_ID_8S, .subvendor = 0x1397, .subdevice = 0x16b8, .driver_data = (unsigned long) &((hfc4s8s_param) {CHIP_ID_8S, CLOCKMODE_0, 8, "HFC-8S Evaluation Board"}), }, {.vendor = PCI_VENDOR_ID_CCD, .device = PCI_DEVICE_ID_4S, .subvendor = 0x1397, .subdevice = 0xb520, .driver_data = (unsigned long) &((hfc4s8s_param) {CHIP_ID_4S, CLOCKMODE_1, 4, "IOB4ST"}), }, {.vendor = PCI_VENDOR_ID_CCD, .device = PCI_DEVICE_ID_8S, .subvendor = 0x1397, .subdevice = 0xb522, .driver_data = (unsigned long) &((hfc4s8s_param) {CHIP_ID_8S, CLOCKMODE_1, 8, "IOB8ST"}), }, {} }; MODULE_DEVICE_TABLE(pci, hfc4s8s_ids); MODULE_AUTHOR("Werner Cornelius, werner@cornelius-consult.de"); MODULE_DESCRIPTION("ISDN layer 1 for Cologne Chip HFC-4S/8S chips"); MODULE_LICENSE("GPL"); /***********/ /* layer 1 */ /***********/ struct hfc4s8s_btype { spinlock_t lock; struct hisax_b_if b_if; struct hfc4s8s_l1 *l1p; struct sk_buff_head tx_queue; struct sk_buff *tx_skb; struct sk_buff *rx_skb; __u8 *rx_ptr; int tx_cnt; int bchan; int mode; }; struct _hfc4s8s_hw; struct hfc4s8s_l1 { spinlock_t lock; struct _hfc4s8s_hw *hw; /* pointer to hardware area */ int l1_state; /* actual l1 state */ struct timer_list l1_timer; /* layer 1 timer structure */ int nt_mode; /* set to nt mode */ int st_num; /* own index */ int enabled; /* interface is enabled */ struct sk_buff_head d_tx_queue; /* send queue */ int tx_cnt; /* bytes to send */ struct hisax_d_if d_if; /* D-channel interface */ struct hfc4s8s_btype b_ch[2]; /* B-channel data */ struct hisax_b_if *b_table[2]; }; /**********************/ /* hardware structure */ /**********************/ typedef struct _hfc4s8s_hw { spinlock_t lock; int cardnum; int ifnum; int iobase; int nt_mode; u_char *membase; u_char *hw_membase; void *pdev; int max_fifo; hfc4s8s_param driver_data; int irq; int fifo_sched_cnt; struct work_struct tqueue; struct hfc4s8s_l1 l1[HFC_MAX_ST]; char card_name[60]; struct { u_char r_irq_ctrl; u_char r_ctrl0; volatile u_char r_irq_statech; /* active isdn l1 status */ u_char r_irqmsk_statchg; /* enabled isdn status ints */ u_char r_irq_fifo_blx[8]; /* fifo status registers */ u_char fifo_rx_trans_enables[8]; /* mask for enabled transparent rx fifos */ u_char fifo_slow_timer_service[8]; /* mask for fifos needing slower timer service */ volatile u_char r_irq_oview; /* contents of overview register */ volatile u_char timer_irq; int timer_usg_cnt; /* number of channels using timer */ } mr; } hfc4s8s_hw; /***************************/ /* inline function defines */ /***************************/ #ifdef HISAX_HFC4S8S_PCIMEM /* inline functions memory mapped */ /* memory write and dummy IO read to avoid PCI byte merge problems */ #define Write_hfc8(a,b,c) {(*((volatile u_char *)(a->membase+b)) = c); inb(a->iobase+4);} /* memory write without dummy IO access for fifo data access */ #define fWrite_hfc8(a,b,c) (*((volatile u_char *)(a->membase+b)) = c) #define Read_hfc8(a,b) (*((volatile u_char *)(a->membase+b))) #define Write_hfc16(a,b,c) (*((volatile unsigned short *)(a->membase+b)) = c) #define Read_hfc16(a,b) (*((volatile unsigned short *)(a->membase+b))) #define Write_hfc32(a,b,c) (*((volatile unsigned long *)(a->membase+b)) = c) #define Read_hfc32(a,b) (*((volatile unsigned long *)(a->membase+b))) #define wait_busy(a) {while ((Read_hfc8(a, R_STATUS) & M_BUSY));} #define PCI_ENA_MEMIO 0x03 #else /* inline functions io mapped */ static inline void SetRegAddr(hfc4s8s_hw * a, u_char b) { outb(b, (a->iobase) + 4); } static inline u_char GetRegAddr(hfc4s8s_hw * a) { return (inb((volatile u_int) (a->iobase + 4))); } static inline void Write_hfc8(hfc4s8s_hw * a, u_char b, u_char c) { SetRegAddr(a, b); outb(c, a->iobase); } static inline void fWrite_hfc8(hfc4s8s_hw * a, u_char c) { outb(c, a->iobase); } static inline void Write_hfc16(hfc4s8s_hw * a, u_char b, u_short c) { SetRegAddr(a, b); outw(c, a->iobase); } static inline void Write_hfc32(hfc4s8s_hw * a, u_char b, u_long c) { SetRegAddr(a, b); outl(c, a->iobase); } static inline void fWrite_hfc32(hfc4s8s_hw * a, u_long c) { outl(c, a->iobase); } static inline u_char Read_hfc8(hfc4s8s_hw * a, u_char b) { SetRegAddr(a, b); return (inb((volatile u_int) a->iobase)); } static inline u_char fRead_hfc8(hfc4s8s_hw * a) { return (inb((volatile u_int) a->iobase)); } static inline u_short Read_hfc16(hfc4s8s_hw * a, u_char b) { SetRegAddr(a, b); return (inw((volatile u_int) a->iobase)); } static inline u_long Read_hfc32(hfc4s8s_hw * a, u_char b) { SetRegAddr(a, b); return (inl((volatile u_int) a->iobase)); } static inline u_long fRead_hfc32(hfc4s8s_hw * a) { return (inl((volatile u_int) a->iobase)); } static inline void wait_busy(hfc4s8s_hw * a) { SetRegAddr(a, R_STATUS); while (inb((volatile u_int) a->iobase) & M_BUSY); } #define PCI_ENA_REGIO 0x01 #endif /* HISAX_HFC4S8S_PCIMEM */ /******************************************************/ /* function to read critical counter registers that */ /* may be updated by the chip during read */ /******************************************************/ static u_char Read_hfc8_stable(hfc4s8s_hw * hw, int reg) { u_char ref8; u_char in8; ref8 = Read_hfc8(hw, reg); while (((in8 = Read_hfc8(hw, reg)) != ref8)) { ref8 = in8; } return in8; } static int Read_hfc16_stable(hfc4s8s_hw * hw, int reg) { int ref16; int in16; ref16 = Read_hfc16(hw, reg); while (((in16 = Read_hfc16(hw, reg)) != ref16)) { ref16 = in16; } return in16; } /*****************************/ /* D-channel call from HiSax */ /*****************************/ static void dch_l2l1(struct hisax_d_if *iface, int pr, void *arg) { struct hfc4s8s_l1 *l1 = iface->ifc.priv; struct sk_buff *skb = (struct sk_buff *) arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): if (!l1->enabled) { dev_kfree_skb(skb); break; } spin_lock_irqsave(&l1->lock, flags); skb_queue_tail(&l1->d_tx_queue, skb); if ((skb_queue_len(&l1->d_tx_queue) == 1) && (l1->tx_cnt <= 0)) { l1->hw->mr.r_irq_fifo_blx[l1->st_num] |= 0x10; spin_unlock_irqrestore(&l1->lock, flags); schedule_work(&l1->hw->tqueue); } else spin_unlock_irqrestore(&l1->lock, flags); break; case (PH_ACTIVATE | REQUEST): if (!l1->enabled) break; if (!l1->nt_mode) { if (l1->l1_state < 6) { spin_lock_irqsave(&l1->lock, flags); Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); Write_hfc8(l1->hw, A_ST_WR_STA, 0x60); mod_timer(&l1->l1_timer, jiffies + L1_TIMER_T3); spin_unlock_irqrestore(&l1->lock, flags); } else if (l1->l1_state == 7) l1->d_if.ifc.l1l2(&l1->d_if.ifc, PH_ACTIVATE | INDICATION, NULL); } else { if (l1->l1_state != 3) { spin_lock_irqsave(&l1->lock, flags); Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); Write_hfc8(l1->hw, A_ST_WR_STA, 0x60); spin_unlock_irqrestore(&l1->lock, flags); } else if (l1->l1_state == 3) l1->d_if.ifc.l1l2(&l1->d_if.ifc, PH_ACTIVATE | INDICATION, NULL); } break; default: printk(KERN_INFO "HFC-4S/8S: Unknown D-chan cmd 0x%x received, ignored\n", pr); break; } if (!l1->enabled) l1->d_if.ifc.l1l2(&l1->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); } /* dch_l2l1 */ /*****************************/ /* B-channel call from HiSax */ /*****************************/ static void bch_l2l1(struct hisax_if *ifc, int pr, void *arg) { struct hfc4s8s_btype *bch = ifc->priv; struct hfc4s8s_l1 *l1 = bch->l1p; struct sk_buff *skb = (struct sk_buff *) arg; long mode = (long) arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): if (!l1->enabled || (bch->mode == L1_MODE_NULL)) { dev_kfree_skb(skb); break; } spin_lock_irqsave(&l1->lock, flags); skb_queue_tail(&bch->tx_queue, skb); if (!bch->tx_skb && (bch->tx_cnt <= 0)) { l1->hw->mr.r_irq_fifo_blx[l1->st_num] |= ((bch->bchan == 1) ? 1 : 4); spin_unlock_irqrestore(&l1->lock, flags); schedule_work(&l1->hw->tqueue); } else spin_unlock_irqrestore(&l1->lock, flags); break; case (PH_ACTIVATE | REQUEST): case (PH_DEACTIVATE | REQUEST): if (!l1->enabled) break; if (pr == (PH_DEACTIVATE | REQUEST)) mode = L1_MODE_NULL; switch (mode) { case L1_MODE_HDLC: spin_lock_irqsave(&l1->lock, flags); l1->hw->mr.timer_usg_cnt++; l1->hw->mr. fifo_slow_timer_service[l1-> st_num] |= ((bch->bchan == 1) ? 0x2 : 0x8); Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 0 : 2))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_CON_HDLC, 0xc); /* HDLC mode, flag fill, connect ST */ Write_hfc8(l1->hw, A_SUBCH_CFG, 0); /* 8 bits */ Write_hfc8(l1->hw, A_IRQ_MSK, 1); /* enable TX interrupts for hdlc */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(l1->hw); Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 1 : 3))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_CON_HDLC, 0xc); /* HDLC mode, flag fill, connect ST */ Write_hfc8(l1->hw, A_SUBCH_CFG, 0); /* 8 bits */ Write_hfc8(l1->hw, A_IRQ_MSK, 1); /* enable RX interrupts for hdlc */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 2); /* reset fifo */ Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); l1->hw->mr.r_ctrl0 |= (bch->bchan & 3); Write_hfc8(l1->hw, A_ST_CTRL0, l1->hw->mr.r_ctrl0); bch->mode = L1_MODE_HDLC; spin_unlock_irqrestore(&l1->lock, flags); bch->b_if.ifc.l1l2(&bch->b_if.ifc, PH_ACTIVATE | INDICATION, NULL); break; case L1_MODE_TRANS: spin_lock_irqsave(&l1->lock, flags); l1->hw->mr. fifo_rx_trans_enables[l1-> st_num] |= ((bch->bchan == 1) ? 0x2 : 0x8); l1->hw->mr.timer_usg_cnt++; Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 0 : 2))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_CON_HDLC, 0xf); /* Transparent mode, 1 fill, connect ST */ Write_hfc8(l1->hw, A_SUBCH_CFG, 0); /* 8 bits */ Write_hfc8(l1->hw, A_IRQ_MSK, 0); /* disable TX interrupts */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(l1->hw); Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 1 : 3))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_CON_HDLC, 0xf); /* Transparent mode, 1 fill, connect ST */ Write_hfc8(l1->hw, A_SUBCH_CFG, 0); /* 8 bits */ Write_hfc8(l1->hw, A_IRQ_MSK, 0); /* disable RX interrupts */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 2); /* reset fifo */ Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); l1->hw->mr.r_ctrl0 |= (bch->bchan & 3); Write_hfc8(l1->hw, A_ST_CTRL0, l1->hw->mr.r_ctrl0); bch->mode = L1_MODE_TRANS; spin_unlock_irqrestore(&l1->lock, flags); bch->b_if.ifc.l1l2(&bch->b_if.ifc, PH_ACTIVATE | INDICATION, NULL); break; default: if (bch->mode == L1_MODE_NULL) break; spin_lock_irqsave(&l1->lock, flags); l1->hw->mr. fifo_slow_timer_service[l1-> st_num] &= ~((bch->bchan == 1) ? 0x3 : 0xc); l1->hw->mr. fifo_rx_trans_enables[l1-> st_num] &= ~((bch->bchan == 1) ? 0x3 : 0xc); l1->hw->mr.timer_usg_cnt--; Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 0 : 2))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_IRQ_MSK, 0); /* disable TX interrupts */ wait_busy(l1->hw); Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 1 : 3))); wait_busy(l1->hw); Write_hfc8(l1->hw, A_IRQ_MSK, 0); /* disable RX interrupts */ Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); l1->hw->mr.r_ctrl0 &= ~(bch->bchan & 3); Write_hfc8(l1->hw, A_ST_CTRL0, l1->hw->mr.r_ctrl0); spin_unlock_irqrestore(&l1->lock, flags); bch->mode = L1_MODE_NULL; bch->b_if.ifc.l1l2(&bch->b_if.ifc, PH_DEACTIVATE | INDICATION, NULL); if (bch->tx_skb) { dev_kfree_skb(bch->tx_skb); bch->tx_skb = NULL; } if (bch->rx_skb) { dev_kfree_skb(bch->rx_skb); bch->rx_skb = NULL; } skb_queue_purge(&bch->tx_queue); bch->tx_cnt = 0; bch->rx_ptr = NULL; break; } /* timer is only used when at least one b channel */ /* is set up to transparent mode */ if (l1->hw->mr.timer_usg_cnt) { Write_hfc8(l1->hw, R_IRQMSK_MISC, M_TI_IRQMSK); } else { Write_hfc8(l1->hw, R_IRQMSK_MISC, 0); } break; default: printk(KERN_INFO "HFC-4S/8S: Unknown B-chan cmd 0x%x received, ignored\n", pr); break; } if (!l1->enabled) bch->b_if.ifc.l1l2(&bch->b_if.ifc, PH_DEACTIVATE | INDICATION, NULL); } /* bch_l2l1 */ /**************************/ /* layer 1 timer function */ /**************************/ static void hfc_l1_timer(struct hfc4s8s_l1 *l1) { u_long flags; if (!l1->enabled) return; spin_lock_irqsave(&l1->lock, flags); if (l1->nt_mode) { l1->l1_state = 1; Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); Write_hfc8(l1->hw, A_ST_WR_STA, 0x11); spin_unlock_irqrestore(&l1->lock, flags); l1->d_if.ifc.l1l2(&l1->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); spin_lock_irqsave(&l1->lock, flags); l1->l1_state = 1; Write_hfc8(l1->hw, A_ST_WR_STA, 0x1); spin_unlock_irqrestore(&l1->lock, flags); } else { /* activation timed out */ Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); Write_hfc8(l1->hw, A_ST_WR_STA, 0x13); spin_unlock_irqrestore(&l1->lock, flags); l1->d_if.ifc.l1l2(&l1->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); spin_lock_irqsave(&l1->lock, flags); Write_hfc8(l1->hw, R_ST_SEL, l1->st_num); Write_hfc8(l1->hw, A_ST_WR_STA, 0x3); spin_unlock_irqrestore(&l1->lock, flags); } } /* hfc_l1_timer */ /****************************************/ /* a complete D-frame has been received */ /****************************************/ static void rx_d_frame(struct hfc4s8s_l1 *l1p, int ech) { int z1, z2; u_char f1, f2, df; struct sk_buff *skb; u_char *cp; if (!l1p->enabled) return; do { /* E/D RX fifo */ Write_hfc8(l1p->hw, R_FIFO, (l1p->st_num * 8 + ((ech) ? 7 : 5))); wait_busy(l1p->hw); f1 = Read_hfc8_stable(l1p->hw, A_F1); f2 = Read_hfc8(l1p->hw, A_F2); df = f1 - f2; if ((f1 - f2) < 0) df = f1 - f2 + MAX_F_CNT + 1; if (!df) { return; /* no complete frame in fifo */ } z1 = Read_hfc16_stable(l1p->hw, A_Z1); z2 = Read_hfc16(l1p->hw, A_Z2); z1 = z1 - z2 + 1; if (z1 < 0) z1 += 384; if (!(skb = dev_alloc_skb(MAX_D_FRAME_SIZE))) { printk(KERN_INFO "HFC-4S/8S: Could not allocate D/E " "channel receive buffer"); Write_hfc8(l1p->hw, A_INC_RES_FIFO, 2); wait_busy(l1p->hw); return; } if (((z1 < 4) || (z1 > MAX_D_FRAME_SIZE))) { if (skb) dev_kfree_skb(skb); /* remove errornous D frame */ if (df == 1) { /* reset fifo */ Write_hfc8(l1p->hw, A_INC_RES_FIFO, 2); wait_busy(l1p->hw); return; } else { /* read errornous D frame */ #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(l1p->hw, A_FIFO_DATA0); #endif while (z1 >= 4) { #ifdef HISAX_HFC4S8S_PCIMEM Read_hfc32(l1p->hw, A_FIFO_DATA0); #else fRead_hfc32(l1p->hw); #endif z1 -= 4; } while (z1--) #ifdef HISAX_HFC4S8S_PCIMEM Read_hfc8(l1p->hw, A_FIFO_DATA0); #else fRead_hfc8(l1p->hw); #endif Write_hfc8(l1p->hw, A_INC_RES_FIFO, 1); wait_busy(l1p->hw); return; } } cp = skb->data; #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(l1p->hw, A_FIFO_DATA0); #endif while (z1 >= 4) { #ifdef HISAX_HFC4S8S_PCIMEM *((unsigned long *) cp) = Read_hfc32(l1p->hw, A_FIFO_DATA0); #else *((unsigned long *) cp) = fRead_hfc32(l1p->hw); #endif cp += 4; z1 -= 4; } while (z1--) #ifdef HISAX_HFC4S8S_PCIMEM *cp++ = Read_hfc8(l1p->hw, A_FIFO_DATA0); #else *cp++ = fRead_hfc8(l1p->hw); #endif Write_hfc8(l1p->hw, A_INC_RES_FIFO, 1); /* increment f counter */ wait_busy(l1p->hw); if (*(--cp)) { dev_kfree_skb(skb); } else { skb->len = (cp - skb->data) - 2; if (ech) l1p->d_if.ifc.l1l2(&l1p->d_if.ifc, PH_DATA_E | INDICATION, skb); else l1p->d_if.ifc.l1l2(&l1p->d_if.ifc, PH_DATA | INDICATION, skb); } } while (1); } /* rx_d_frame */ /*************************************************************/ /* a B-frame has been received (perhaps not fully completed) */ /*************************************************************/ static void rx_b_frame(struct hfc4s8s_btype *bch) { int z1, z2, hdlc_complete; u_char f1, f2; struct hfc4s8s_l1 *l1 = bch->l1p; struct sk_buff *skb; if (!l1->enabled || (bch->mode == L1_MODE_NULL)) return; do { /* RX Fifo */ Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 1 : 3))); wait_busy(l1->hw); if (bch->mode == L1_MODE_HDLC) { f1 = Read_hfc8_stable(l1->hw, A_F1); f2 = Read_hfc8(l1->hw, A_F2); hdlc_complete = ((f1 ^ f2) & MAX_F_CNT); } else hdlc_complete = 0; z1 = Read_hfc16_stable(l1->hw, A_Z1); z2 = Read_hfc16(l1->hw, A_Z2); z1 = (z1 - z2); if (hdlc_complete) z1++; if (z1 < 0) z1 += 384; if (!z1) break; if (!(skb = bch->rx_skb)) { if (! (skb = dev_alloc_skb((bch->mode == L1_MODE_TRANS) ? z1 : (MAX_B_FRAME_SIZE + 3)))) { printk(KERN_ERR "HFC-4S/8S: Could not allocate B " "channel receive buffer"); return; } bch->rx_ptr = skb->data; bch->rx_skb = skb; } skb->len = (bch->rx_ptr - skb->data) + z1; /* HDLC length check */ if ((bch->mode == L1_MODE_HDLC) && ((hdlc_complete && (skb->len < 4)) || (skb->len > (MAX_B_FRAME_SIZE + 3)))) { skb->len = 0; bch->rx_ptr = skb->data; Write_hfc8(l1->hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(l1->hw); return; } #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(l1->hw, A_FIFO_DATA0); #endif while (z1 >= 4) { #ifdef HISAX_HFC4S8S_PCIMEM *((unsigned long *) bch->rx_ptr) = Read_hfc32(l1->hw, A_FIFO_DATA0); #else *((unsigned long *) bch->rx_ptr) = fRead_hfc32(l1->hw); #endif bch->rx_ptr += 4; z1 -= 4; } while (z1--) #ifdef HISAX_HFC4S8S_PCIMEM *(bch->rx_ptr++) = Read_hfc8(l1->hw, A_FIFO_DATA0); #else *(bch->rx_ptr++) = fRead_hfc8(l1->hw); #endif if (hdlc_complete) { /* increment f counter */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 1); wait_busy(l1->hw); /* hdlc crc check */ bch->rx_ptr--; if (*bch->rx_ptr) { skb->len = 0; bch->rx_ptr = skb->data; continue; } skb->len -= 3; } if (hdlc_complete || (bch->mode == L1_MODE_TRANS)) { bch->rx_skb = NULL; bch->rx_ptr = NULL; bch->b_if.ifc.l1l2(&bch->b_if.ifc, PH_DATA | INDICATION, skb); } } while (1); } /* rx_b_frame */ /********************************************/ /* a D-frame has been/should be transmitted */ /********************************************/ static void tx_d_frame(struct hfc4s8s_l1 *l1p) { struct sk_buff *skb; u_char f1, f2; u_char *cp; long cnt; if (l1p->l1_state != 7) return; /* TX fifo */ Write_hfc8(l1p->hw, R_FIFO, (l1p->st_num * 8 + 4)); wait_busy(l1p->hw); f1 = Read_hfc8(l1p->hw, A_F1); f2 = Read_hfc8_stable(l1p->hw, A_F2); if ((f1 ^ f2) & MAX_F_CNT) return; /* fifo is still filled */ if (l1p->tx_cnt > 0) { cnt = l1p->tx_cnt; l1p->tx_cnt = 0; l1p->d_if.ifc.l1l2(&l1p->d_if.ifc, PH_DATA | CONFIRM, (void *) cnt); } if ((skb = skb_dequeue(&l1p->d_tx_queue))) { cp = skb->data; cnt = skb->len; #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(l1p->hw, A_FIFO_DATA0); #endif while (cnt >= 4) { #ifdef HISAX_HFC4S8S_PCIMEM fWrite_hfc32(l1p->hw, A_FIFO_DATA0, *(unsigned long *) cp); #else SetRegAddr(l1p->hw, A_FIFO_DATA0); fWrite_hfc32(l1p->hw, *(unsigned long *) cp); #endif cp += 4; cnt -= 4; } #ifdef HISAX_HFC4S8S_PCIMEM while (cnt--) fWrite_hfc8(l1p->hw, A_FIFO_DATA0, *cp++); #else while (cnt--) fWrite_hfc8(l1p->hw, *cp++); #endif l1p->tx_cnt = skb->truesize; Write_hfc8(l1p->hw, A_INC_RES_FIFO, 1); /* increment f counter */ wait_busy(l1p->hw); dev_kfree_skb(skb); } } /* tx_d_frame */ /******************************************************/ /* a B-frame may be transmitted (or is not completed) */ /******************************************************/ static void tx_b_frame(struct hfc4s8s_btype *bch) { struct sk_buff *skb; struct hfc4s8s_l1 *l1 = bch->l1p; u_char *cp; int cnt, max, hdlc_num; long ack_len = 0; if (!l1->enabled || (bch->mode == L1_MODE_NULL)) return; /* TX fifo */ Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 0 : 2))); wait_busy(l1->hw); do { if (bch->mode == L1_MODE_HDLC) { hdlc_num = Read_hfc8(l1->hw, A_F1) & MAX_F_CNT; hdlc_num -= (Read_hfc8_stable(l1->hw, A_F2) & MAX_F_CNT); if (hdlc_num < 0) hdlc_num += 16; if (hdlc_num >= 15) break; /* fifo still filled up with hdlc frames */ } else hdlc_num = 0; if (!(skb = bch->tx_skb)) { if (!(skb = skb_dequeue(&bch->tx_queue))) { l1->hw->mr.fifo_slow_timer_service[l1-> st_num] &= ~((bch->bchan == 1) ? 1 : 4); break; /* list empty */ } bch->tx_skb = skb; bch->tx_cnt = 0; } if (!hdlc_num) l1->hw->mr.fifo_slow_timer_service[l1->st_num] |= ((bch->bchan == 1) ? 1 : 4); else l1->hw->mr.fifo_slow_timer_service[l1->st_num] &= ~((bch->bchan == 1) ? 1 : 4); max = Read_hfc16_stable(l1->hw, A_Z2); max -= Read_hfc16(l1->hw, A_Z1); if (max <= 0) max += 384; max--; if (max < 16) break; /* don't write to small amounts of bytes */ cnt = skb->len - bch->tx_cnt; if (cnt > max) cnt = max; cp = skb->data + bch->tx_cnt; bch->tx_cnt += cnt; #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(l1->hw, A_FIFO_DATA0); #endif while (cnt >= 4) { #ifdef HISAX_HFC4S8S_PCIMEM fWrite_hfc32(l1->hw, A_FIFO_DATA0, *(unsigned long *) cp); #else fWrite_hfc32(l1->hw, *(unsigned long *) cp); #endif cp += 4; cnt -= 4; } while (cnt--) #ifdef HISAX_HFC4S8S_PCIMEM fWrite_hfc8(l1->hw, A_FIFO_DATA0, *cp++); #else fWrite_hfc8(l1->hw, *cp++); #endif if (bch->tx_cnt >= skb->len) { if (bch->mode == L1_MODE_HDLC) { /* increment f counter */ Write_hfc8(l1->hw, A_INC_RES_FIFO, 1); } ack_len += skb->truesize; bch->tx_skb = NULL; bch->tx_cnt = 0; dev_kfree_skb(skb); } else /* Re-Select */ Write_hfc8(l1->hw, R_FIFO, (l1->st_num * 8 + ((bch->bchan == 1) ? 0 : 2))); wait_busy(l1->hw); } while (1); if (ack_len) bch->b_if.ifc.l1l2((struct hisax_if *) &bch->b_if, PH_DATA | CONFIRM, (void *) ack_len); } /* tx_b_frame */ /*************************************/ /* bottom half handler for interrupt */ /*************************************/ static void hfc4s8s_bh(struct work_struct *work) { hfc4s8s_hw *hw = container_of(work, hfc4s8s_hw, tqueue); u_char b; struct hfc4s8s_l1 *l1p; volatile u_char *fifo_stat; int idx; /* handle layer 1 state changes */ b = 1; l1p = hw->l1; while (b) { if ((b & hw->mr.r_irq_statech)) { /* reset l1 event */ hw->mr.r_irq_statech &= ~b; if (l1p->enabled) { if (l1p->nt_mode) { u_char oldstate = l1p->l1_state; Write_hfc8(l1p->hw, R_ST_SEL, l1p->st_num); l1p->l1_state = Read_hfc8(l1p->hw, A_ST_RD_STA) & 0xf; if ((oldstate == 3) && (l1p->l1_state != 3)) l1p->d_if.ifc.l1l2(&l1p-> d_if. ifc, PH_DEACTIVATE | INDICATION, NULL); if (l1p->l1_state != 2) { del_timer(&l1p->l1_timer); if (l1p->l1_state == 3) { l1p->d_if.ifc. l1l2(&l1p-> d_if.ifc, PH_ACTIVATE | INDICATION, NULL); } } else { /* allow transition */ Write_hfc8(hw, A_ST_WR_STA, M_SET_G2_G3); mod_timer(&l1p->l1_timer, jiffies + L1_TIMER_T1); } printk(KERN_INFO "HFC-4S/8S: NT ch %d l1 state %d -> %d\n", l1p->st_num, oldstate, l1p->l1_state); } else { u_char oldstate = l1p->l1_state; Write_hfc8(l1p->hw, R_ST_SEL, l1p->st_num); l1p->l1_state = Read_hfc8(l1p->hw, A_ST_RD_STA) & 0xf; if (((l1p->l1_state == 3) && ((oldstate == 7) || (oldstate == 8))) || ((timer_pending (&l1p->l1_timer)) && (l1p->l1_state == 8))) { mod_timer(&l1p->l1_timer, L1_TIMER_T4 + jiffies); } else { if (l1p->l1_state == 7) { del_timer(&l1p-> l1_timer); l1p->d_if.ifc. l1l2(&l1p-> d_if.ifc, PH_ACTIVATE | INDICATION, NULL); tx_d_frame(l1p); } if (l1p->l1_state == 3) { if (oldstate != 3) l1p->d_if. ifc. l1l2 (&l1p-> d_if. ifc, PH_DEACTIVATE | INDICATION, NULL); } } printk(KERN_INFO "HFC-4S/8S: TE %d ch %d l1 state %d -> %d\n", l1p->hw->cardnum, l1p->st_num, oldstate, l1p->l1_state); } } } b <<= 1; l1p++; } /* now handle the fifos */ idx = 0; fifo_stat = hw->mr.r_irq_fifo_blx; l1p = hw->l1; while (idx < hw->driver_data.max_st_ports) { if (hw->mr.timer_irq) { *fifo_stat |= hw->mr.fifo_rx_trans_enables[idx]; if (hw->fifo_sched_cnt <= 0) { *fifo_stat |= hw->mr.fifo_slow_timer_service[l1p-> st_num]; } } /* ignore fifo 6 (TX E fifo) */ *fifo_stat &= 0xff - 0x40; while (*fifo_stat) { if (!l1p->nt_mode) { /* RX Fifo has data to read */ if ((*fifo_stat & 0x20)) { *fifo_stat &= ~0x20; rx_d_frame(l1p, 0); } /* E Fifo has data to read */ if ((*fifo_stat & 0x80)) { *fifo_stat &= ~0x80; rx_d_frame(l1p, 1); } /* TX Fifo completed send */ if ((*fifo_stat & 0x10)) { *fifo_stat &= ~0x10; tx_d_frame(l1p); } } /* B1 RX Fifo has data to read */ if ((*fifo_stat & 0x2)) { *fifo_stat &= ~0x2; rx_b_frame(l1p->b_ch); } /* B1 TX Fifo has send completed */ if ((*fifo_stat & 0x1)) { *fifo_stat &= ~0x1; tx_b_frame(l1p->b_ch); } /* B2 RX Fifo has data to read */ if ((*fifo_stat & 0x8)) { *fifo_stat &= ~0x8; rx_b_frame(l1p->b_ch + 1); } /* B2 TX Fifo has send completed */ if ((*fifo_stat & 0x4)) { *fifo_stat &= ~0x4; tx_b_frame(l1p->b_ch + 1); } } fifo_stat++; l1p++; idx++; } if (hw->fifo_sched_cnt <= 0) hw->fifo_sched_cnt += (1 << (7 - TRANS_TIMER_MODE)); hw->mr.timer_irq = 0; /* clear requested timer irq */ } /* hfc4s8s_bh */ /*********************/ /* interrupt handler */ /*********************/ static irqreturn_t hfc4s8s_interrupt(int intno, void *dev_id) { hfc4s8s_hw *hw = dev_id; u_char b, ovr; volatile u_char *ovp; int idx; u_char old_ioreg; if (!hw || !(hw->mr.r_irq_ctrl & M_GLOB_IRQ_EN)) return IRQ_NONE; #ifndef HISAX_HFC4S8S_PCIMEM /* read current selected regsister */ old_ioreg = GetRegAddr(hw); #endif /* Layer 1 State change */ hw->mr.r_irq_statech |= (Read_hfc8(hw, R_SCI) & hw->mr.r_irqmsk_statchg); if (! (b = (Read_hfc8(hw, R_STATUS) & (M_MISC_IRQSTA | M_FR_IRQSTA))) && !hw->mr.r_irq_statech) { #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(hw, old_ioreg); #endif return IRQ_NONE; } /* timer event */ if (Read_hfc8(hw, R_IRQ_MISC) & M_TI_IRQ) { hw->mr.timer_irq = 1; hw->fifo_sched_cnt--; } /* FIFO event */ if ((ovr = Read_hfc8(hw, R_IRQ_OVIEW))) { hw->mr.r_irq_oview |= ovr; idx = R_IRQ_FIFO_BL0; ovp = hw->mr.r_irq_fifo_blx; while (ovr) { if ((ovr & 1)) { *ovp |= Read_hfc8(hw, idx); } ovp++; idx++; ovr >>= 1; } } /* queue the request to allow other cards to interrupt */ schedule_work(&hw->tqueue); #ifndef HISAX_HFC4S8S_PCIMEM SetRegAddr(hw, old_ioreg); #endif return IRQ_HANDLED; } /* hfc4s8s_interrupt */ /***********************************************************************/ /* reset the complete chip, don't release the chips irq but disable it */ /***********************************************************************/ static void chipreset(hfc4s8s_hw * hw) { u_long flags; spin_lock_irqsave(&hw->lock, flags); Write_hfc8(hw, R_CTRL, 0); /* use internal RAM */ Write_hfc8(hw, R_RAM_MISC, 0); /* 32k*8 RAM */ Write_hfc8(hw, R_FIFO_MD, 0); /* fifo mode 386 byte/fifo simple mode */ Write_hfc8(hw, R_CIRM, M_SRES); /* reset chip */ hw->mr.r_irq_ctrl = 0; /* interrupt is inactive */ spin_unlock_irqrestore(&hw->lock, flags); udelay(3); Write_hfc8(hw, R_CIRM, 0); /* disable reset */ wait_busy(hw); Write_hfc8(hw, R_PCM_MD0, M_PCM_MD); /* master mode */ Write_hfc8(hw, R_RAM_MISC, M_FZ_MD); /* transmit fifo option */ if (hw->driver_data.clock_mode == 1) Write_hfc8(hw, R_BRG_PCM_CFG, M_PCM_CLK); /* PCM clk / 2 */ Write_hfc8(hw, R_TI_WD, TRANS_TIMER_MODE); /* timer interval */ memset(&hw->mr, 0, sizeof(hw->mr)); } /* chipreset */ /********************************************/ /* disable/enable hardware in nt or te mode */ /********************************************/ static void hfc_hardware_enable(hfc4s8s_hw * hw, int enable, int nt_mode) { u_long flags; char if_name[40]; int i; if (enable) { /* save system vars */ hw->nt_mode = nt_mode; /* enable fifo and state irqs, but not global irq enable */ hw->mr.r_irq_ctrl = M_FIFO_IRQ; Write_hfc8(hw, R_IRQ_CTRL, hw->mr.r_irq_ctrl); hw->mr.r_irqmsk_statchg = 0; Write_hfc8(hw, R_SCI_MSK, hw->mr.r_irqmsk_statchg); Write_hfc8(hw, R_PWM_MD, 0x80); Write_hfc8(hw, R_PWM1, 26); if (!nt_mode) Write_hfc8(hw, R_ST_SYNC, M_AUTO_SYNC); /* enable the line interfaces and fifos */ for (i = 0; i < hw->driver_data.max_st_ports; i++) { hw->mr.r_irqmsk_statchg |= (1 << i); Write_hfc8(hw, R_SCI_MSK, hw->mr.r_irqmsk_statchg); Write_hfc8(hw, R_ST_SEL, i); Write_hfc8(hw, A_ST_CLK_DLY, ((nt_mode) ? CLKDEL_NT : CLKDEL_TE)); hw->mr.r_ctrl0 = ((nt_mode) ? CTRL0_NT : CTRL0_TE); Write_hfc8(hw, A_ST_CTRL0, hw->mr.r_ctrl0); Write_hfc8(hw, A_ST_CTRL2, 3); Write_hfc8(hw, A_ST_WR_STA, 0); /* enable state machine */ hw->l1[i].enabled = 1; hw->l1[i].nt_mode = nt_mode; if (!nt_mode) { /* setup E-fifo */ Write_hfc8(hw, R_FIFO, i * 8 + 7); /* E fifo */ wait_busy(hw); Write_hfc8(hw, A_CON_HDLC, 0x11); /* HDLC mode, 1 fill, connect ST */ Write_hfc8(hw, A_SUBCH_CFG, 2); /* only 2 bits */ Write_hfc8(hw, A_IRQ_MSK, 1); /* enable interrupt */ Write_hfc8(hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(hw); /* setup D RX-fifo */ Write_hfc8(hw, R_FIFO, i * 8 + 5); /* RX fifo */ wait_busy(hw); Write_hfc8(hw, A_CON_HDLC, 0x11); /* HDLC mode, 1 fill, connect ST */ Write_hfc8(hw, A_SUBCH_CFG, 2); /* only 2 bits */ Write_hfc8(hw, A_IRQ_MSK, 1); /* enable interrupt */ Write_hfc8(hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(hw); /* setup D TX-fifo */ Write_hfc8(hw, R_FIFO, i * 8 + 4); /* TX fifo */ wait_busy(hw); Write_hfc8(hw, A_CON_HDLC, 0x11); /* HDLC mode, 1 fill, connect ST */ Write_hfc8(hw, A_SUBCH_CFG, 2); /* only 2 bits */ Write_hfc8(hw, A_IRQ_MSK, 1); /* enable interrupt */ Write_hfc8(hw, A_INC_RES_FIFO, 2); /* reset fifo */ wait_busy(hw); } sprintf(if_name, "hfc4s8s_%d%d_", hw->cardnum, i); if (hisax_register (&hw->l1[i].d_if, hw->l1[i].b_table, if_name, ((nt_mode) ? 3 : 2))) { hw->l1[i].enabled = 0; hw->mr.r_irqmsk_statchg &= ~(1 << i); Write_hfc8(hw, R_SCI_MSK, hw->mr.r_irqmsk_statchg); printk(KERN_INFO "HFC-4S/8S: Unable to register S/T device %s, break\n", if_name); break; } } spin_lock_irqsave(&hw->lock, flags); hw->mr.r_irq_ctrl |= M_GLOB_IRQ_EN; Write_hfc8(hw, R_IRQ_CTRL, hw->mr.r_irq_ctrl); spin_unlock_irqrestore(&hw->lock, flags); } else { /* disable hardware */ spin_lock_irqsave(&hw->lock, flags); hw->mr.r_irq_ctrl &= ~M_GLOB_IRQ_EN; Write_hfc8(hw, R_IRQ_CTRL, hw->mr.r_irq_ctrl); spin_unlock_irqrestore(&hw->lock, flags); for (i = hw->driver_data.max_st_ports - 1; i >= 0; i--) { hw->l1[i].enabled = 0; hisax_unregister(&hw->l1[i].d_if); del_timer(&hw->l1[i].l1_timer); skb_queue_purge(&hw->l1[i].d_tx_queue); skb_queue_purge(&hw->l1[i].b_ch[0].tx_queue); skb_queue_purge(&hw->l1[i].b_ch[1].tx_queue); } chipreset(hw); } } /* hfc_hardware_enable */ /******************************************/ /* disable memory mapped ports / io ports */ /******************************************/ static void release_pci_ports(hfc4s8s_hw * hw) { pci_write_config_word(hw->pdev, PCI_COMMAND, 0); #ifdef HISAX_HFC4S8S_PCIMEM if (hw->membase) iounmap((void *) hw->membase); #else if (hw->iobase) release_region(hw->iobase, 8); #endif } /*****************************************/ /* enable memory mapped ports / io ports */ /*****************************************/ static void enable_pci_ports(hfc4s8s_hw * hw) { #ifdef HISAX_HFC4S8S_PCIMEM pci_write_config_word(hw->pdev, PCI_COMMAND, PCI_ENA_MEMIO); #else pci_write_config_word(hw->pdev, PCI_COMMAND, PCI_ENA_REGIO); #endif } /*************************************/ /* initialise the HFC-4s/8s hardware */ /* return 0 on success. */ /*************************************/ static int __devinit setup_instance(hfc4s8s_hw * hw) { int err = -EIO; int i; for (i = 0; i < HFC_MAX_ST; i++) { struct hfc4s8s_l1 *l1p; l1p = hw->l1 + i; spin_lock_init(&l1p->lock); l1p->hw = hw; l1p->l1_timer.function = (void *) hfc_l1_timer; l1p->l1_timer.data = (long) (l1p); init_timer(&l1p->l1_timer); l1p->st_num = i; skb_queue_head_init(&l1p->d_tx_queue); l1p->d_if.ifc.priv = hw->l1 + i; l1p->d_if.ifc.l2l1 = (void *) dch_l2l1; spin_lock_init(&l1p->b_ch[0].lock); l1p->b_ch[0].b_if.ifc.l2l1 = (void *) bch_l2l1; l1p->b_ch[0].b_if.ifc.priv = (void *) &l1p->b_ch[0]; l1p->b_ch[0].l1p = hw->l1 + i; l1p->b_ch[0].bchan = 1; l1p->b_table[0] = &l1p->b_ch[0].b_if; skb_queue_head_init(&l1p->b_ch[0].tx_queue); spin_lock_init(&l1p->b_ch[1].lock); l1p->b_ch[1].b_if.ifc.l2l1 = (void *) bch_l2l1; l1p->b_ch[1].b_if.ifc.priv = (void *) &l1p->b_ch[1]; l1p->b_ch[1].l1p = hw->l1 + i; l1p->b_ch[1].bchan = 2; l1p->b_table[1] = &l1p->b_ch[1].b_if; skb_queue_head_init(&l1p->b_ch[1].tx_queue); } enable_pci_ports(hw); chipreset(hw); i = Read_hfc8(hw, R_CHIP_ID) >> CHIP_ID_SHIFT; if (i != hw->driver_data.chip_id) { printk(KERN_INFO "HFC-4S/8S: invalid chip id 0x%x instead of 0x%x, card ignored\n", i, hw->driver_data.chip_id); goto out; } i = Read_hfc8(hw, R_CHIP_RV) & 0xf; if (!i) { printk(KERN_INFO "HFC-4S/8S: chip revision 0 not supported, card ignored\n"); goto out; } INIT_WORK(&hw->tqueue, hfc4s8s_bh); if (request_irq (hw->irq, hfc4s8s_interrupt, IRQF_SHARED, hw->card_name, hw)) { printk(KERN_INFO "HFC-4S/8S: unable to alloc irq %d, card ignored\n", hw->irq); goto out; } #ifdef HISAX_HFC4S8S_PCIMEM printk(KERN_INFO "HFC-4S/8S: found PCI card at membase 0x%p, irq %d\n", hw->hw_membase, hw->irq); #else printk(KERN_INFO "HFC-4S/8S: found PCI card at iobase 0x%x, irq %d\n", hw->iobase, hw->irq); #endif hfc_hardware_enable(hw, 1, 0); return (0); out: hw->irq = 0; release_pci_ports(hw); kfree(hw); return (err); } /*****************************************/ /* PCI hotplug interface: probe new card */ /*****************************************/ static int __devinit hfc4s8s_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = -ENOMEM; hfc4s8s_param *driver_data = (hfc4s8s_param *) ent->driver_data; hfc4s8s_hw *hw; if (!(hw = kzalloc(sizeof(hfc4s8s_hw), GFP_ATOMIC))) { printk(KERN_ERR "No kmem for HFC-4S/8S card\n"); return (err); } hw->pdev = pdev; err = pci_enable_device(pdev); if (err) goto out; hw->cardnum = card_cnt; sprintf(hw->card_name, "hfc4s8s_%d", hw->cardnum); printk(KERN_INFO "HFC-4S/8S: found adapter %s (%s) at %s\n", driver_data->device_name, hw->card_name, pci_name(pdev)); spin_lock_init(&hw->lock); hw->driver_data = *driver_data; hw->irq = pdev->irq; hw->iobase = pci_resource_start(pdev, 0); #ifdef HISAX_HFC4S8S_PCIMEM hw->hw_membase = (u_char *) pci_resource_start(pdev, 1); hw->membase = ioremap((ulong) hw->hw_membase, 256); #else if (!request_region(hw->iobase, 8, hw->card_name)) { printk(KERN_INFO "HFC-4S/8S: failed to rquest address space at 0x%04x\n", hw->iobase); goto out; } #endif pci_set_drvdata(pdev, hw); err = setup_instance(hw); if (!err) card_cnt++; return (err); out: kfree(hw); return (err); } /**************************************/ /* PCI hotplug interface: remove card */ /**************************************/ static void __devexit hfc4s8s_remove(struct pci_dev *pdev) { hfc4s8s_hw *hw = pci_get_drvdata(pdev); printk(KERN_INFO "HFC-4S/8S: removing card %d\n", hw->cardnum); hfc_hardware_enable(hw, 0, 0); if (hw->irq) free_irq(hw->irq, hw); hw->irq = 0; release_pci_ports(hw); card_cnt--; pci_disable_device(pdev); kfree(hw); return; } static struct pci_driver hfc4s8s_driver = { .name = "hfc4s8s_l1", .probe = hfc4s8s_probe, .remove = __devexit_p(hfc4s8s_remove), .id_table = hfc4s8s_ids, }; /**********************/ /* driver Module init */ /**********************/ static int __init hfc4s8s_module_init(void) { int err; printk(KERN_INFO "HFC-4S/8S: Layer 1 driver module for HFC-4S/8S isdn chips, %s\n", hfc4s8s_rev); printk(KERN_INFO "HFC-4S/8S: (C) 2003 Cornelius Consult, www.cornelius-consult.de\n"); card_cnt = 0; err = pci_register_driver(&hfc4s8s_driver); if (err < 0) { goto out; } printk(KERN_INFO "HFC-4S/8S: found %d cards\n", card_cnt); #if !defined(CONFIG_HOTPLUG) if (err == 0) { err = -ENODEV; pci_unregister_driver(&hfc4s8s_driver); goto out; } #endif return 0; out: return (err); } /* hfc4s8s_init_hw */ /*************************************/ /* driver module exit : */ /* release the HFC-4s/8s hardware */ /*************************************/ static void __exit hfc4s8s_module_exit(void) { pci_unregister_driver(&hfc4s8s_driver); printk(KERN_INFO "HFC-4S/8S: module removed\n"); } /* hfc4s8s_release_hw */ module_init(hfc4s8s_module_init); module_exit(hfc4s8s_module_exit);