/* * Device driver for the via-pmu on Apple Powermacs. * * The VIA (versatile interface adapter) interfaces to the PMU, * a 6805 microprocessor core whose primary function is to control * battery charging and system power on the PowerBook 3400 and 2400. * The PMU also controls the ADB (Apple Desktop Bus) which connects * to the keyboard and mouse, as well as the non-volatile RAM * and the RTC (real time clock) chip. * * Copyright (C) 1998 Paul Mackerras and Fabio Riccardi. * Copyright (C) 2001-2002 Benjamin Herrenschmidt * Copyright (C) 2006-2007 Johannes Berg * * THIS DRIVER IS BECOMING A TOTAL MESS ! * - Cleanup atomically disabling reply to PMU events after * a sleep or a freq. switch * */ #include <stdarg.h> #include <linux/mutex.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/miscdevice.h> #include <linux/blkdev.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/cuda.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/pm.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/sysdev.h> #include <linux/freezer.h> #include <linux/syscalls.h> #include <linux/suspend.h> #include <linux/cpu.h> #include <linux/compat.h> #include <asm/prom.h> #include <asm/machdep.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/sections.h> #include <asm/irq.h> #include <asm/pmac_feature.h> #include <asm/pmac_pfunc.h> #include <asm/pmac_low_i2c.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/cputable.h> #include <asm/time.h> #include <asm/backlight.h> #include "via-pmu-event.h" /* Some compile options */ #undef DEBUG_SLEEP /* Misc minor number allocated for /dev/pmu */ #define PMU_MINOR 154 /* How many iterations between battery polls */ #define BATTERY_POLLING_COUNT 2 static DEFINE_MUTEX(pmu_info_proc_mutex); static volatile unsigned char __iomem *via; /* VIA registers - spaced 0x200 bytes apart */ #define RS 0x200 /* skip between registers */ #define B 0 /* B-side data */ #define A RS /* A-side data */ #define DIRB (2*RS) /* B-side direction (1=output) */ #define DIRA (3*RS) /* A-side direction (1=output) */ #define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */ #define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */ #define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */ #define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */ #define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */ #define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */ #define SR (10*RS) /* Shift register */ #define ACR (11*RS) /* Auxiliary control register */ #define PCR (12*RS) /* Peripheral control register */ #define IFR (13*RS) /* Interrupt flag register */ #define IER (14*RS) /* Interrupt enable register */ #define ANH (15*RS) /* A-side data, no handshake */ /* Bits in B data register: both active low */ #define TACK 0x08 /* Transfer acknowledge (input) */ #define TREQ 0x10 /* Transfer request (output) */ /* Bits in ACR */ #define SR_CTRL 0x1c /* Shift register control bits */ #define SR_EXT 0x0c /* Shift on external clock */ #define SR_OUT 0x10 /* Shift out if 1 */ /* Bits in IFR and IER */ #define IER_SET 0x80 /* set bits in IER */ #define IER_CLR 0 /* clear bits in IER */ #define SR_INT 0x04 /* Shift register full/empty */ #define CB2_INT 0x08 #define CB1_INT 0x10 /* transition on CB1 input */ static volatile enum pmu_state { idle, sending, intack, reading, reading_intr, locked, } pmu_state; static volatile enum int_data_state { int_data_empty, int_data_fill, int_data_ready, int_data_flush } int_data_state[2] = { int_data_empty, int_data_empty }; static struct adb_request *current_req; static struct adb_request *last_req; static struct adb_request *req_awaiting_reply; static unsigned char interrupt_data[2][32]; static int interrupt_data_len[2]; static int int_data_last; static unsigned char *reply_ptr; static int data_index; static int data_len; static volatile int adb_int_pending; static volatile int disable_poll; static struct device_node *vias; static int pmu_kind = PMU_UNKNOWN; static int pmu_fully_inited; static int pmu_has_adb; static struct device_node *gpio_node; static unsigned char __iomem *gpio_reg; static int gpio_irq = NO_IRQ; static int gpio_irq_enabled = -1; static volatile int pmu_suspended; static spinlock_t pmu_lock; static u8 pmu_intr_mask; static int pmu_version; static int drop_interrupts; #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) static int option_lid_wakeup = 1; #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ static unsigned long async_req_locks; static unsigned int pmu_irq_stats[11]; static struct proc_dir_entry *proc_pmu_root; static struct proc_dir_entry *proc_pmu_info; static struct proc_dir_entry *proc_pmu_irqstats; static struct proc_dir_entry *proc_pmu_options; static int option_server_mode; int pmu_battery_count; int pmu_cur_battery; unsigned int pmu_power_flags = PMU_PWR_AC_PRESENT; struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES]; static int query_batt_timer = BATTERY_POLLING_COUNT; static struct adb_request batt_req; static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES]; int __fake_sleep; int asleep; #ifdef CONFIG_ADB static int adb_dev_map; static int pmu_adb_flags; static int pmu_probe(void); static int pmu_init(void); static int pmu_send_request(struct adb_request *req, int sync); static int pmu_adb_autopoll(int devs); static int pmu_adb_reset_bus(void); #endif /* CONFIG_ADB */ static int init_pmu(void); static void pmu_start(void); static irqreturn_t via_pmu_interrupt(int irq, void *arg); static irqreturn_t gpio1_interrupt(int irq, void *arg); static const struct file_operations pmu_info_proc_fops; static const struct file_operations pmu_irqstats_proc_fops; static void pmu_pass_intr(unsigned char *data, int len); static const struct file_operations pmu_battery_proc_fops; static const struct file_operations pmu_options_proc_fops; #ifdef CONFIG_ADB struct adb_driver via_pmu_driver = { "PMU", pmu_probe, pmu_init, pmu_send_request, pmu_adb_autopoll, pmu_poll_adb, pmu_adb_reset_bus }; #endif /* CONFIG_ADB */ extern void low_sleep_handler(void); extern void enable_kernel_altivec(void); extern void enable_kernel_fp(void); #ifdef DEBUG_SLEEP int pmu_polled_request(struct adb_request *req); void pmu_blink(int n); #endif /* * This table indicates for each PMU opcode: * - the number of data bytes to be sent with the command, or -1 * if a length byte should be sent, * - the number of response bytes which the PMU will return, or * -1 if it will send a length byte. */ static const s8 pmu_data_len[256][2] = { /* 0 1 2 3 4 5 6 7 */ /*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0}, /*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0}, /*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1}, /*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0}, /*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1}, /*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0}, /*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1}, /*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1}, /*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1}, /*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0}, /*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1}, /*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0}, /*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0}, /*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, }; static char *pbook_type[] = { "Unknown PowerBook", "PowerBook 2400/3400/3500(G3)", "PowerBook G3 Series", "1999 PowerBook G3", "Core99" }; int __init find_via_pmu(void) { u64 taddr; const u32 *reg; if (via != 0) return 1; vias = of_find_node_by_name(NULL, "via-pmu"); if (vias == NULL) return 0; reg = of_get_property(vias, "reg", NULL); if (reg == NULL) { printk(KERN_ERR "via-pmu: No \"reg\" property !\n"); goto fail; } taddr = of_translate_address(vias, reg); if (taddr == OF_BAD_ADDR) { printk(KERN_ERR "via-pmu: Can't translate address !\n"); goto fail; } spin_lock_init(&pmu_lock); pmu_has_adb = 1; pmu_intr_mask = PMU_INT_PCEJECT | PMU_INT_SNDBRT | PMU_INT_ADB | PMU_INT_TICK; if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0) || of_device_is_compatible(vias->parent, "ohare"))) pmu_kind = PMU_OHARE_BASED; else if (of_device_is_compatible(vias->parent, "paddington")) pmu_kind = PMU_PADDINGTON_BASED; else if (of_device_is_compatible(vias->parent, "heathrow")) pmu_kind = PMU_HEATHROW_BASED; else if (of_device_is_compatible(vias->parent, "Keylargo") || of_device_is_compatible(vias->parent, "K2-Keylargo")) { struct device_node *gpiop; struct device_node *adbp; u64 gaddr = OF_BAD_ADDR; pmu_kind = PMU_KEYLARGO_BASED; adbp = of_find_node_by_type(NULL, "adb"); pmu_has_adb = (adbp != NULL); of_node_put(adbp); pmu_intr_mask = PMU_INT_PCEJECT | PMU_INT_SNDBRT | PMU_INT_ADB | PMU_INT_TICK | PMU_INT_ENVIRONMENT; gpiop = of_find_node_by_name(NULL, "gpio"); if (gpiop) { reg = of_get_property(gpiop, "reg", NULL); if (reg) gaddr = of_translate_address(gpiop, reg); if (gaddr != OF_BAD_ADDR) gpio_reg = ioremap(gaddr, 0x10); } if (gpio_reg == NULL) { printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n"); goto fail_gpio; } } else pmu_kind = PMU_UNKNOWN; via = ioremap(taddr, 0x2000); if (via == NULL) { printk(KERN_ERR "via-pmu: Can't map address !\n"); goto fail; } out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */ out_8(&via[IFR], 0x7f); /* clear IFR */ pmu_state = idle; if (!init_pmu()) { via = NULL; return 0; } printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n", PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version); sys_ctrler = SYS_CTRLER_PMU; return 1; fail: of_node_put(vias); iounmap(gpio_reg); gpio_reg = NULL; fail_gpio: vias = NULL; return 0; } #ifdef CONFIG_ADB static int pmu_probe(void) { return vias == NULL? -ENODEV: 0; } static int __init pmu_init(void) { if (vias == NULL) return -ENODEV; return 0; } #endif /* CONFIG_ADB */ /* * We can't wait until pmu_init gets called, that happens too late. * It happens after IDE and SCSI initialization, which can take a few * seconds, and by that time the PMU could have given up on us and * turned us off. * Thus this is called with arch_initcall rather than device_initcall. */ static int __init via_pmu_start(void) { unsigned int irq; if (vias == NULL) return -ENODEV; batt_req.complete = 1; irq = irq_of_parse_and_map(vias, 0); if (irq == NO_IRQ) { printk(KERN_ERR "via-pmu: can't map interrupt\n"); return -ENODEV; } /* We set IRQF_NO_SUSPEND because we don't want the interrupt * to be disabled between the 2 passes of driver suspend, we * control our own disabling for that one */ if (request_irq(irq, via_pmu_interrupt, IRQF_NO_SUSPEND, "VIA-PMU", (void *)0)) { printk(KERN_ERR "via-pmu: can't request irq %d\n", irq); return -ENODEV; } if (pmu_kind == PMU_KEYLARGO_BASED) { gpio_node = of_find_node_by_name(NULL, "extint-gpio1"); if (gpio_node == NULL) gpio_node = of_find_node_by_name(NULL, "pmu-interrupt"); if (gpio_node) gpio_irq = irq_of_parse_and_map(gpio_node, 0); if (gpio_irq != NO_IRQ) { if (request_irq(gpio_irq, gpio1_interrupt, IRQF_TIMER, "GPIO1 ADB", (void *)0)) printk(KERN_ERR "pmu: can't get irq %d" " (GPIO1)\n", gpio_irq); else gpio_irq_enabled = 1; } } /* Enable interrupts */ out_8(&via[IER], IER_SET | SR_INT | CB1_INT); pmu_fully_inited = 1; /* Make sure PMU settle down before continuing. This is _very_ important * since the IDE probe may shut interrupts down for quite a bit of time. If * a PMU communication is pending while this happens, the PMU may timeout * Not that on Core99 machines, the PMU keeps sending us environement * messages, we should find a way to either fix IDE or make it call * pmu_suspend() before masking interrupts. This can also happens while * scolling with some fbdevs. */ do { pmu_poll(); } while (pmu_state != idle); return 0; } arch_initcall(via_pmu_start); /* * This has to be done after pci_init, which is a subsys_initcall. */ static int __init via_pmu_dev_init(void) { if (vias == NULL) return -ENODEV; #ifdef CONFIG_PMAC_BACKLIGHT /* Initialize backlight */ pmu_backlight_init(); #endif #ifdef CONFIG_PPC32 if (of_machine_is_compatible("AAPL,3400/2400") || of_machine_is_compatible("AAPL,3500")) { int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO, NULL, PMAC_MB_INFO_MODEL, 0); pmu_battery_count = 1; if (mb == PMAC_TYPE_COMET) pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET; else pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER; } else if (of_machine_is_compatible("AAPL,PowerBook1998") || of_machine_is_compatible("PowerBook1,1")) { pmu_battery_count = 2; pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART; pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART; } else { struct device_node* prim = of_find_node_by_name(NULL, "power-mgt"); const u32 *prim_info = NULL; if (prim) prim_info = of_get_property(prim, "prim-info", NULL); if (prim_info) { /* Other stuffs here yet unknown */ pmu_battery_count = (prim_info[6] >> 16) & 0xff; pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART; if (pmu_battery_count > 1) pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART; } of_node_put(prim); } #endif /* CONFIG_PPC32 */ /* Create /proc/pmu */ proc_pmu_root = proc_mkdir("pmu", NULL); if (proc_pmu_root) { long i; for (i=0; i<pmu_battery_count; i++) { char title[16]; sprintf(title, "battery_%ld", i); proc_pmu_batt[i] = proc_create_data(title, 0, proc_pmu_root, &pmu_battery_proc_fops, (void *)i); } proc_pmu_info = proc_create("info", 0, proc_pmu_root, &pmu_info_proc_fops); proc_pmu_irqstats = proc_create("interrupts", 0, proc_pmu_root, &pmu_irqstats_proc_fops); proc_pmu_options = proc_create("options", 0600, proc_pmu_root, &pmu_options_proc_fops); } return 0; } device_initcall(via_pmu_dev_init); static int init_pmu(void) { int timeout; struct adb_request req; out_8(&via[B], via[B] | TREQ); /* negate TREQ */ out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK); /* TACK in, TREQ out */ pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); timeout = 100000; while (!req.complete) { if (--timeout < 0) { printk(KERN_ERR "init_pmu: no response from PMU\n"); return 0; } udelay(10); pmu_poll(); } /* ack all pending interrupts */ timeout = 100000; interrupt_data[0][0] = 1; while (interrupt_data[0][0] || pmu_state != idle) { if (--timeout < 0) { printk(KERN_ERR "init_pmu: timed out acking intrs\n"); return 0; } if (pmu_state == idle) adb_int_pending = 1; via_pmu_interrupt(0, NULL); udelay(10); } /* Tell PMU we are ready. */ if (pmu_kind == PMU_KEYLARGO_BASED) { pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); while (!req.complete) pmu_poll(); } /* Read PMU version */ pmu_request(&req, NULL, 1, PMU_GET_VERSION); pmu_wait_complete(&req); if (req.reply_len > 0) pmu_version = req.reply[0]; /* Read server mode setting */ if (pmu_kind == PMU_KEYLARGO_BASED) { pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS); pmu_wait_complete(&req); if (req.reply_len == 2) { if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT) option_server_mode = 1; printk(KERN_INFO "via-pmu: Server Mode is %s\n", option_server_mode ? "enabled" : "disabled"); } } return 1; } int pmu_get_model(void) { return pmu_kind; } static void pmu_set_server_mode(int server_mode) { struct adb_request req; if (pmu_kind != PMU_KEYLARGO_BASED) return; option_server_mode = server_mode; pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS); pmu_wait_complete(&req); if (req.reply_len < 2) return; if (server_mode) pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_POWERUP_EVENTS, req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); else pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_POWERUP_EVENTS, req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); pmu_wait_complete(&req); } /* This new version of the code for 2400/3400/3500 powerbooks * is inspired from the implementation in gkrellm-pmu */ static void done_battery_state_ohare(struct adb_request* req) { /* format: * [0] : flags * 0x01 : AC indicator * 0x02 : charging * 0x04 : battery exist * 0x08 : * 0x10 : * 0x20 : full charged * 0x40 : pcharge reset * 0x80 : battery exist * * [1][2] : battery voltage * [3] : CPU temperature * [4] : battery temperature * [5] : current * [6][7] : pcharge * --tkoba */ unsigned int bat_flags = PMU_BATT_TYPE_HOOPER; long pcharge, charge, vb, vmax, lmax; long vmax_charging, vmax_charged; long amperage, voltage, time, max; int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO, NULL, PMAC_MB_INFO_MODEL, 0); if (req->reply[0] & 0x01) pmu_power_flags |= PMU_PWR_AC_PRESENT; else pmu_power_flags &= ~PMU_PWR_AC_PRESENT; if (mb == PMAC_TYPE_COMET) { vmax_charged = 189; vmax_charging = 213; lmax = 6500; } else { vmax_charged = 330; vmax_charging = 330; lmax = 6500; } vmax = vmax_charged; /* If battery installed */ if (req->reply[0] & 0x04) { bat_flags |= PMU_BATT_PRESENT; if (req->reply[0] & 0x02) bat_flags |= PMU_BATT_CHARGING; vb = (req->reply[1] << 8) | req->reply[2]; voltage = (vb * 265 + 72665) / 10; amperage = req->reply[5]; if ((req->reply[0] & 0x01) == 0) { if (amperage > 200) vb += ((amperage - 200) * 15)/100; } else if (req->reply[0] & 0x02) { vb = (vb * 97) / 100; vmax = vmax_charging; } charge = (100 * vb) / vmax; if (req->reply[0] & 0x40) { pcharge = (req->reply[6] << 8) + req->reply[7]; if (pcharge > lmax) pcharge = lmax; pcharge *= 100; pcharge = 100 - pcharge / lmax; if (pcharge < charge) charge = pcharge; } if (amperage > 0) time = (charge * 16440) / amperage; else time = 0; max = 100; amperage = -amperage; } else charge = max = amperage = voltage = time = 0; pmu_batteries[pmu_cur_battery].flags = bat_flags; pmu_batteries[pmu_cur_battery].charge = charge; pmu_batteries[pmu_cur_battery].max_charge = max; pmu_batteries[pmu_cur_battery].amperage = amperage; pmu_batteries[pmu_cur_battery].voltage = voltage; pmu_batteries[pmu_cur_battery].time_remaining = time; clear_bit(0, &async_req_locks); } static void done_battery_state_smart(struct adb_request* req) { /* format: * [0] : format of this structure (known: 3,4,5) * [1] : flags * * format 3 & 4: * * [2] : charge * [3] : max charge * [4] : current * [5] : voltage * * format 5: * * [2][3] : charge * [4][5] : max charge * [6][7] : current * [8][9] : voltage */ unsigned int bat_flags = PMU_BATT_TYPE_SMART; int amperage; unsigned int capa, max, voltage; if (req->reply[1] & 0x01) pmu_power_flags |= PMU_PWR_AC_PRESENT; else pmu_power_flags &= ~PMU_PWR_AC_PRESENT; capa = max = amperage = voltage = 0; if (req->reply[1] & 0x04) { bat_flags |= PMU_BATT_PRESENT; switch(req->reply[0]) { case 3: case 4: capa = req->reply[2]; max = req->reply[3]; amperage = *((signed char *)&req->reply[4]); voltage = req->reply[5]; break; case 5: capa = (req->reply[2] << 8) | req->reply[3]; max = (req->reply[4] << 8) | req->reply[5]; amperage = *((signed short *)&req->reply[6]); voltage = (req->reply[8] << 8) | req->reply[9]; break; default: printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n", req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]); break; } } if ((req->reply[1] & 0x01) && (amperage > 0)) bat_flags |= PMU_BATT_CHARGING; pmu_batteries[pmu_cur_battery].flags = bat_flags; pmu_batteries[pmu_cur_battery].charge = capa; pmu_batteries[pmu_cur_battery].max_charge = max; pmu_batteries[pmu_cur_battery].amperage = amperage; pmu_batteries[pmu_cur_battery].voltage = voltage; if (amperage) { if ((req->reply[1] & 0x01) && (amperage > 0)) pmu_batteries[pmu_cur_battery].time_remaining = ((max-capa) * 3600) / amperage; else pmu_batteries[pmu_cur_battery].time_remaining = (capa * 3600) / (-amperage); } else pmu_batteries[pmu_cur_battery].time_remaining = 0; pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count; clear_bit(0, &async_req_locks); } static void query_battery_state(void) { if (test_and_set_bit(0, &async_req_locks)) return; if (pmu_kind == PMU_OHARE_BASED) pmu_request(&batt_req, done_battery_state_ohare, 1, PMU_BATTERY_STATE); else pmu_request(&batt_req, done_battery_state_smart, 2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1); } static int pmu_info_proc_show(struct seq_file *m, void *v) { seq_printf(m, "PMU driver version : %d\n", PMU_DRIVER_VERSION); seq_printf(m, "PMU firmware version : %02x\n", pmu_version); seq_printf(m, "AC Power : %d\n", ((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0) || pmu_battery_count == 0); seq_printf(m, "Battery count : %d\n", pmu_battery_count); return 0; } static int pmu_info_proc_open(struct inode *inode, struct file *file) { return single_open(file, pmu_info_proc_show, NULL); } static const struct file_operations pmu_info_proc_fops = { .owner = THIS_MODULE, .open = pmu_info_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int pmu_irqstats_proc_show(struct seq_file *m, void *v) { int i; static const char *irq_names[] = { "Total CB1 triggered events", "Total GPIO1 triggered events", "PC-Card eject button", "Sound/Brightness button", "ADB message", "Battery state change", "Environment interrupt", "Tick timer", "Ghost interrupt (zero len)", "Empty interrupt (empty mask)", "Max irqs in a row" }; for (i=0; i<11; i++) { seq_printf(m, " %2u: %10u (%s)\n", i, pmu_irq_stats[i], irq_names[i]); } return 0; } static int pmu_irqstats_proc_open(struct inode *inode, struct file *file) { return single_open(file, pmu_irqstats_proc_show, NULL); } static const struct file_operations pmu_irqstats_proc_fops = { .owner = THIS_MODULE, .open = pmu_irqstats_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int pmu_battery_proc_show(struct seq_file *m, void *v) { long batnum = (long)m->private; seq_putc(m, '\n'); seq_printf(m, "flags : %08x\n", pmu_batteries[batnum].flags); seq_printf(m, "charge : %d\n", pmu_batteries[batnum].charge); seq_printf(m, "max_charge : %d\n", pmu_batteries[batnum].max_charge); seq_printf(m, "current : %d\n", pmu_batteries[batnum].amperage); seq_printf(m, "voltage : %d\n", pmu_batteries[batnum].voltage); seq_printf(m, "time rem. : %d\n", pmu_batteries[batnum].time_remaining); return 0; } static int pmu_battery_proc_open(struct inode *inode, struct file *file) { return single_open(file, pmu_battery_proc_show, PDE(inode)->data); } static const struct file_operations pmu_battery_proc_fops = { .owner = THIS_MODULE, .open = pmu_battery_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int pmu_options_proc_show(struct seq_file *m, void *v) { #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) if (pmu_kind == PMU_KEYLARGO_BASED && pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0) seq_printf(m, "lid_wakeup=%d\n", option_lid_wakeup); #endif if (pmu_kind == PMU_KEYLARGO_BASED) seq_printf(m, "server_mode=%d\n", option_server_mode); return 0; } static int pmu_options_proc_open(struct inode *inode, struct file *file) { return single_open(file, pmu_options_proc_show, NULL); } static ssize_t pmu_options_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { char tmp[33]; char *label, *val; size_t fcount = count; if (!count) return -EINVAL; if (count > 32) count = 32; if (copy_from_user(tmp, buffer, count)) return -EFAULT; tmp[count] = 0; label = tmp; while(*label == ' ') label++; val = label; while(*val && (*val != '=')) { if (*val == ' ') *val = 0; val++; } if ((*val) == 0) return -EINVAL; *(val++) = 0; while(*val == ' ') val++; #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) if (pmu_kind == PMU_KEYLARGO_BASED && pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0) if (!strcmp(label, "lid_wakeup")) option_lid_wakeup = ((*val) == '1'); #endif if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) { int new_value; new_value = ((*val) == '1'); if (new_value != option_server_mode) pmu_set_server_mode(new_value); } return fcount; } static const struct file_operations pmu_options_proc_fops = { .owner = THIS_MODULE, .open = pmu_options_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = pmu_options_proc_write, }; #ifdef CONFIG_ADB /* Send an ADB command */ static int pmu_send_request(struct adb_request *req, int sync) { int i, ret; if ((vias == NULL) || (!pmu_fully_inited)) { req->complete = 1; return -ENXIO; } ret = -EINVAL; switch (req->data[0]) { case PMU_PACKET: for (i = 0; i < req->nbytes - 1; ++i) req->data[i] = req->data[i+1]; --req->nbytes; if (pmu_data_len[req->data[0]][1] != 0) { req->reply[0] = ADB_RET_OK; req->reply_len = 1; } else req->reply_len = 0; ret = pmu_queue_request(req); break; case CUDA_PACKET: switch (req->data[1]) { case CUDA_GET_TIME: if (req->nbytes != 2) break; req->data[0] = PMU_READ_RTC; req->nbytes = 1; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_GET_TIME; ret = pmu_queue_request(req); break; case CUDA_SET_TIME: if (req->nbytes != 6) break; req->data[0] = PMU_SET_RTC; req->nbytes = 5; for (i = 1; i <= 4; ++i) req->data[i] = req->data[i+1]; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_SET_TIME; ret = pmu_queue_request(req); break; } break; case ADB_PACKET: if (!pmu_has_adb) return -ENXIO; for (i = req->nbytes - 1; i > 1; --i) req->data[i+2] = req->data[i]; req->data[3] = req->nbytes - 2; req->data[2] = pmu_adb_flags; /*req->data[1] = req->data[1];*/ req->data[0] = PMU_ADB_CMD; req->nbytes += 2; req->reply_expected = 1; req->reply_len = 0; ret = pmu_queue_request(req); break; } if (ret) { req->complete = 1; return ret; } if (sync) while (!req->complete) pmu_poll(); return 0; } /* Enable/disable autopolling */ static int __pmu_adb_autopoll(int devs) { struct adb_request req; if (devs) { pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86, adb_dev_map >> 8, adb_dev_map); pmu_adb_flags = 2; } else { pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF); pmu_adb_flags = 0; } while (!req.complete) pmu_poll(); return 0; } static int pmu_adb_autopoll(int devs) { if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb) return -ENXIO; adb_dev_map = devs; return __pmu_adb_autopoll(devs); } /* Reset the ADB bus */ static int pmu_adb_reset_bus(void) { struct adb_request req; int save_autopoll = adb_dev_map; if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb) return -ENXIO; /* anyone got a better idea?? */ __pmu_adb_autopoll(0); req.nbytes = 4; req.done = NULL; req.data[0] = PMU_ADB_CMD; req.data[1] = ADB_BUSRESET; req.data[2] = 0; req.data[3] = 0; req.data[4] = 0; req.reply_len = 0; req.reply_expected = 1; if (pmu_queue_request(&req) != 0) { printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n"); return -EIO; } pmu_wait_complete(&req); if (save_autopoll != 0) __pmu_adb_autopoll(save_autopoll); return 0; } #endif /* CONFIG_ADB */ /* Construct and send a pmu request */ int pmu_request(struct adb_request *req, void (*done)(struct adb_request *), int nbytes, ...) { va_list list; int i; if (vias == NULL) return -ENXIO; if (nbytes < 0 || nbytes > 32) { printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes); req->complete = 1; return -EINVAL; } req->nbytes = nbytes; req->done = done; va_start(list, nbytes); for (i = 0; i < nbytes; ++i) req->data[i] = va_arg(list, int); va_end(list); req->reply_len = 0; req->reply_expected = 0; return pmu_queue_request(req); } int pmu_queue_request(struct adb_request *req) { unsigned long flags; int nsend; if (via == NULL) { req->complete = 1; return -ENXIO; } if (req->nbytes <= 0) { req->complete = 1; return 0; } nsend = pmu_data_len[req->data[0]][0]; if (nsend >= 0 && req->nbytes != nsend + 1) { req->complete = 1; return -EINVAL; } req->next = NULL; req->sent = 0; req->complete = 0; spin_lock_irqsave(&pmu_lock, flags); if (current_req != 0) { last_req->next = req; last_req = req; } else { current_req = req; last_req = req; if (pmu_state == idle) pmu_start(); } spin_unlock_irqrestore(&pmu_lock, flags); return 0; } static inline void wait_for_ack(void) { /* Sightly increased the delay, I had one occurrence of the message * reported */ int timeout = 4000; while ((in_8(&via[B]) & TACK) == 0) { if (--timeout < 0) { printk(KERN_ERR "PMU not responding (!ack)\n"); return; } udelay(10); } } /* New PMU seems to be very sensitive to those timings, so we make sure * PCI is flushed immediately */ static inline void send_byte(int x) { volatile unsigned char __iomem *v = via; out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT); out_8(&v[SR], x); out_8(&v[B], in_8(&v[B]) & ~TREQ); /* assert TREQ */ (void)in_8(&v[B]); } static inline void recv_byte(void) { volatile unsigned char __iomem *v = via; out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT); in_8(&v[SR]); /* resets SR */ out_8(&v[B], in_8(&v[B]) & ~TREQ); (void)in_8(&v[B]); } static inline void pmu_done(struct adb_request *req) { void (*done)(struct adb_request *) = req->done; mb(); req->complete = 1; /* Here, we assume that if the request has a done member, the * struct request will survive to setting req->complete to 1 */ if (done) (*done)(req); } static void pmu_start(void) { struct adb_request *req; /* assert pmu_state == idle */ /* get the packet to send */ req = current_req; if (req == 0 || pmu_state != idle || (/*req->reply_expected && */req_awaiting_reply)) return; pmu_state = sending; data_index = 1; data_len = pmu_data_len[req->data[0]][0]; /* Sounds safer to make sure ACK is high before writing. This helped * kill a problem with ADB and some iBooks */ wait_for_ack(); /* set the shift register to shift out and send a byte */ send_byte(req->data[0]); } void pmu_poll(void) { if (!via) return; if (disable_poll) return; via_pmu_interrupt(0, NULL); } void pmu_poll_adb(void) { if (!via) return; if (disable_poll) return; /* Kicks ADB read when PMU is suspended */ adb_int_pending = 1; do { via_pmu_interrupt(0, NULL); } while (pmu_suspended && (adb_int_pending || pmu_state != idle || req_awaiting_reply)); } void pmu_wait_complete(struct adb_request *req) { if (!via) return; while((pmu_state != idle && pmu_state != locked) || !req->complete) via_pmu_interrupt(0, NULL); } /* This function loops until the PMU is idle and prevents it from * anwsering to ADB interrupts. pmu_request can still be called. * This is done to avoid spurrious shutdowns when we know we'll have * interrupts switched off for a long time */ void pmu_suspend(void) { unsigned long flags; if (!via) return; spin_lock_irqsave(&pmu_lock, flags); pmu_suspended++; if (pmu_suspended > 1) { spin_unlock_irqrestore(&pmu_lock, flags); return; } do { spin_unlock_irqrestore(&pmu_lock, flags); if (req_awaiting_reply) adb_int_pending = 1; via_pmu_interrupt(0, NULL); spin_lock_irqsave(&pmu_lock, flags); if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) { if (gpio_irq >= 0) disable_irq_nosync(gpio_irq); out_8(&via[IER], CB1_INT | IER_CLR); spin_unlock_irqrestore(&pmu_lock, flags); break; } } while (1); } void pmu_resume(void) { unsigned long flags; if (!via || (pmu_suspended < 1)) return; spin_lock_irqsave(&pmu_lock, flags); pmu_suspended--; if (pmu_suspended > 0) { spin_unlock_irqrestore(&pmu_lock, flags); return; } adb_int_pending = 1; if (gpio_irq >= 0) enable_irq(gpio_irq); out_8(&via[IER], CB1_INT | IER_SET); spin_unlock_irqrestore(&pmu_lock, flags); pmu_poll(); } /* Interrupt data could be the result data from an ADB cmd */ static void pmu_handle_data(unsigned char *data, int len) { unsigned char ints, pirq; int i = 0; asleep = 0; if (drop_interrupts || len < 1) { adb_int_pending = 0; pmu_irq_stats[8]++; return; } /* Get PMU interrupt mask */ ints = data[0]; /* Record zero interrupts for stats */ if (ints == 0) pmu_irq_stats[9]++; /* Hack to deal with ADB autopoll flag */ if (ints & PMU_INT_ADB) ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL); next: if (ints == 0) { if (i > pmu_irq_stats[10]) pmu_irq_stats[10] = i; return; } for (pirq = 0; pirq < 8; pirq++) if (ints & (1 << pirq)) break; pmu_irq_stats[pirq]++; i++; ints &= ~(1 << pirq); /* Note: for some reason, we get an interrupt with len=1, * data[0]==0 after each normal ADB interrupt, at least * on the Pismo. Still investigating... --BenH */ if ((1 << pirq) & PMU_INT_ADB) { if ((data[0] & PMU_INT_ADB_AUTO) == 0) { struct adb_request *req = req_awaiting_reply; if (req == 0) { printk(KERN_ERR "PMU: extra ADB reply\n"); return; } req_awaiting_reply = NULL; if (len <= 2) req->reply_len = 0; else { memcpy(req->reply, data + 1, len - 1); req->reply_len = len - 1; } pmu_done(req); } else { if (len == 4 && data[1] == 0x2c) { extern int xmon_wants_key, xmon_adb_keycode; if (xmon_wants_key) { xmon_adb_keycode = data[2]; return; } } #ifdef CONFIG_ADB /* * XXX On the [23]400 the PMU gives us an up * event for keycodes 0x74 or 0x75 when the PC * card eject buttons are released, so we * ignore those events. */ if (!(pmu_kind == PMU_OHARE_BASED && len == 4 && data[1] == 0x2c && data[3] == 0xff && (data[2] & ~1) == 0xf4)) adb_input(data+1, len-1, 1); #endif /* CONFIG_ADB */ } } /* Sound/brightness button pressed */ else if ((1 << pirq) & PMU_INT_SNDBRT) { #ifdef CONFIG_PMAC_BACKLIGHT if (len == 3) pmac_backlight_set_legacy_brightness_pmu(data[1] >> 4); #endif } /* Tick interrupt */ else if ((1 << pirq) & PMU_INT_TICK) { /* Environement or tick interrupt, query batteries */ if (pmu_battery_count) { if ((--query_batt_timer) == 0) { query_battery_state(); query_batt_timer = BATTERY_POLLING_COUNT; } } } else if ((1 << pirq) & PMU_INT_ENVIRONMENT) { if (pmu_battery_count) query_battery_state(); pmu_pass_intr(data, len); /* len == 6 is probably a bad check. But how do I * know what PMU versions send what events here? */ if (len == 6) { via_pmu_event(PMU_EVT_POWER, !!(data[1]&8)); via_pmu_event(PMU_EVT_LID, data[1]&1); } } else { pmu_pass_intr(data, len); } goto next; } static struct adb_request* pmu_sr_intr(void) { struct adb_request *req; int bite = 0; if (via[B] & TREQ) { printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]); out_8(&via[IFR], SR_INT); return NULL; } /* The ack may not yet be low when we get the interrupt */ while ((in_8(&via[B]) & TACK) != 0) ; /* if reading grab the byte, and reset the interrupt */ if (pmu_state == reading || pmu_state == reading_intr) bite = in_8(&via[SR]); /* reset TREQ and wait for TACK to go high */ out_8(&via[B], in_8(&via[B]) | TREQ); wait_for_ack(); switch (pmu_state) { case sending: req = current_req; if (data_len < 0) { data_len = req->nbytes - 1; send_byte(data_len); break; } if (data_index <= data_len) { send_byte(req->data[data_index++]); break; } req->sent = 1; data_len = pmu_data_len[req->data[0]][1]; if (data_len == 0) { pmu_state = idle; current_req = req->next; if (req->reply_expected) req_awaiting_reply = req; else return req; } else { pmu_state = reading; data_index = 0; reply_ptr = req->reply + req->reply_len; recv_byte(); } break; case intack: data_index = 0; data_len = -1; pmu_state = reading_intr; reply_ptr = interrupt_data[int_data_last]; recv_byte(); if (gpio_irq >= 0 && !gpio_irq_enabled) { enable_irq(gpio_irq); gpio_irq_enabled = 1; } break; case reading: case reading_intr: if (data_len == -1) { data_len = bite; if (bite > 32) printk(KERN_ERR "PMU: bad reply len %d\n", bite); } else if (data_index < 32) { reply_ptr[data_index++] = bite; } if (data_index < data_len) { recv_byte(); break; } if (pmu_state == reading_intr) { pmu_state = idle; int_data_state[int_data_last] = int_data_ready; interrupt_data_len[int_data_last] = data_len; } else { req = current_req; /* * For PMU sleep and freq change requests, we lock the * PMU until it's explicitly unlocked. This avoids any * spurrious event polling getting in */ current_req = req->next; req->reply_len += data_index; if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED) pmu_state = locked; else pmu_state = idle; return req; } break; default: printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n", pmu_state); } return NULL; } static irqreturn_t via_pmu_interrupt(int irq, void *arg) { unsigned long flags; int intr; int nloop = 0; int int_data = -1; struct adb_request *req = NULL; int handled = 0; /* This is a bit brutal, we can probably do better */ spin_lock_irqsave(&pmu_lock, flags); ++disable_poll; for (;;) { intr = in_8(&via[IFR]) & (SR_INT | CB1_INT); if (intr == 0) break; handled = 1; if (++nloop > 1000) { printk(KERN_DEBUG "PMU: stuck in intr loop, " "intr=%x, ier=%x pmu_state=%d\n", intr, in_8(&via[IER]), pmu_state); break; } out_8(&via[IFR], intr); if (intr & CB1_INT) { adb_int_pending = 1; pmu_irq_stats[0]++; } if (intr & SR_INT) { req = pmu_sr_intr(); if (req) break; } } recheck: if (pmu_state == idle) { if (adb_int_pending) { if (int_data_state[0] == int_data_empty) int_data_last = 0; else if (int_data_state[1] == int_data_empty) int_data_last = 1; else goto no_free_slot; pmu_state = intack; int_data_state[int_data_last] = int_data_fill; /* Sounds safer to make sure ACK is high before writing. * This helped kill a problem with ADB and some iBooks */ wait_for_ack(); send_byte(PMU_INT_ACK); adb_int_pending = 0; } else if (current_req) pmu_start(); } no_free_slot: /* Mark the oldest buffer for flushing */ if (int_data_state[!int_data_last] == int_data_ready) { int_data_state[!int_data_last] = int_data_flush; int_data = !int_data_last; } else if (int_data_state[int_data_last] == int_data_ready) { int_data_state[int_data_last] = int_data_flush; int_data = int_data_last; } --disable_poll; spin_unlock_irqrestore(&pmu_lock, flags); /* Deal with completed PMU requests outside of the lock */ if (req) { pmu_done(req); req = NULL; } /* Deal with interrupt datas outside of the lock */ if (int_data >= 0) { pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data]); spin_lock_irqsave(&pmu_lock, flags); ++disable_poll; int_data_state[int_data] = int_data_empty; int_data = -1; goto recheck; } return IRQ_RETVAL(handled); } void pmu_unlock(void) { unsigned long flags; spin_lock_irqsave(&pmu_lock, flags); if (pmu_state == locked) pmu_state = idle; adb_int_pending = 1; spin_unlock_irqrestore(&pmu_lock, flags); } static irqreturn_t gpio1_interrupt(int irq, void *arg) { unsigned long flags; if ((in_8(gpio_reg + 0x9) & 0x02) == 0) { spin_lock_irqsave(&pmu_lock, flags); if (gpio_irq_enabled > 0) { disable_irq_nosync(gpio_irq); gpio_irq_enabled = 0; } pmu_irq_stats[1]++; adb_int_pending = 1; spin_unlock_irqrestore(&pmu_lock, flags); via_pmu_interrupt(0, NULL); return IRQ_HANDLED; } return IRQ_NONE; } void pmu_enable_irled(int on) { struct adb_request req; if (vias == NULL) return ; if (pmu_kind == PMU_KEYLARGO_BASED) return ; pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED | (on ? PMU_POW_ON : PMU_POW_OFF)); pmu_wait_complete(&req); } void pmu_restart(void) { struct adb_request req; if (via == NULL) return; local_irq_disable(); drop_interrupts = 1; if (pmu_kind != PMU_KEYLARGO_BASED) { pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB | PMU_INT_TICK ); while(!req.complete) pmu_poll(); } pmu_request(&req, NULL, 1, PMU_RESET); pmu_wait_complete(&req); for (;;) ; } void pmu_shutdown(void) { struct adb_request req; if (via == NULL) return; local_irq_disable(); drop_interrupts = 1; if (pmu_kind != PMU_KEYLARGO_BASED) { pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB | PMU_INT_TICK ); pmu_wait_complete(&req); } else { /* Disable server mode on shutdown or we'll just * wake up again */ pmu_set_server_mode(0); } pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 'M', 'A', 'T', 'T'); pmu_wait_complete(&req); for (;;) ; } int pmu_present(void) { return via != 0; } #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) /* * Put the powerbook to sleep. */ static u32 save_via[8]; static void save_via_state(void) { save_via[0] = in_8(&via[ANH]); save_via[1] = in_8(&via[DIRA]); save_via[2] = in_8(&via[B]); save_via[3] = in_8(&via[DIRB]); save_via[4] = in_8(&via[PCR]); save_via[5] = in_8(&via[ACR]); save_via[6] = in_8(&via[T1CL]); save_via[7] = in_8(&via[T1CH]); } static void restore_via_state(void) { out_8(&via[ANH], save_via[0]); out_8(&via[DIRA], save_via[1]); out_8(&via[B], save_via[2]); out_8(&via[DIRB], save_via[3]); out_8(&via[PCR], save_via[4]); out_8(&via[ACR], save_via[5]); out_8(&via[T1CL], save_via[6]); out_8(&via[T1CH], save_via[7]); out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */ out_8(&via[IFR], 0x7f); /* clear IFR */ out_8(&via[IER], IER_SET | SR_INT | CB1_INT); } #define GRACKLE_PM (1<<7) #define GRACKLE_DOZE (1<<5) #define GRACKLE_NAP (1<<4) #define GRACKLE_SLEEP (1<<3) static int powerbook_sleep_grackle(void) { unsigned long save_l2cr; unsigned short pmcr1; struct adb_request req; struct pci_dev *grackle; grackle = pci_get_bus_and_slot(0, 0); if (!grackle) return -ENODEV; /* Turn off various things. Darwin does some retry tests here... */ pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE); pmu_wait_complete(&req); pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY); pmu_wait_complete(&req); /* For 750, save backside cache setting and disable it */ save_l2cr = _get_L2CR(); /* (returns -1 if not available) */ if (!__fake_sleep) { /* Ask the PMU to put us to sleep */ pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); pmu_wait_complete(&req); } /* The VIA is supposed not to be restored correctly*/ save_via_state(); /* We shut down some HW */ pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1); pci_read_config_word(grackle, 0x70, &pmcr1); /* Apparently, MacOS uses NAP mode for Grackle ??? */ pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP); pmcr1 |= GRACKLE_PM|GRACKLE_NAP; pci_write_config_word(grackle, 0x70, pmcr1); /* Call low-level ASM sleep handler */ if (__fake_sleep) mdelay(5000); else low_sleep_handler(); /* We're awake again, stop grackle PM */ pci_read_config_word(grackle, 0x70, &pmcr1); pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP); pci_write_config_word(grackle, 0x70, pmcr1); pci_dev_put(grackle); /* Make sure the PMU is idle */ pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0); restore_via_state(); /* Restore L2 cache */ if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0) _set_L2CR(save_l2cr); /* Restore userland MMU context */ switch_mmu_context(NULL, current->active_mm); /* Power things up */ pmu_unlock(); pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); pmu_wait_complete(&req); pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_ON|PMU_POW0_HARD_DRIVE); pmu_wait_complete(&req); pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY); pmu_wait_complete(&req); return 0; } static int powerbook_sleep_Core99(void) { unsigned long save_l2cr; unsigned long save_l3cr; struct adb_request req; if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) { printk(KERN_ERR "Sleep mode not supported on this machine\n"); return -ENOSYS; } if (num_online_cpus() > 1 || cpu_is_offline(0)) return -EAGAIN; /* Stop environment and ADB interrupts */ pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0); pmu_wait_complete(&req); /* Tell PMU what events will wake us up */ pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS, 0xff, 0xff); pmu_wait_complete(&req); pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS, 0, PMU_PWR_WAKEUP_KEY | (option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0)); pmu_wait_complete(&req); /* Save the state of the L2 and L3 caches */ save_l3cr = _get_L3CR(); /* (returns -1 if not available) */ save_l2cr = _get_L2CR(); /* (returns -1 if not available) */ if (!__fake_sleep) { /* Ask the PMU to put us to sleep */ pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); pmu_wait_complete(&req); } /* The VIA is supposed not to be restored correctly*/ save_via_state(); /* Shut down various ASICs. There's a chance that we can no longer * talk to the PMU after this, so I moved it to _after_ sending the * sleep command to it. Still need to be checked. */ pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1); /* Call low-level ASM sleep handler */ if (__fake_sleep) mdelay(5000); else low_sleep_handler(); /* Restore Apple core ASICs state */ pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0); /* Restore VIA */ restore_via_state(); /* tweak LPJ before cpufreq is there */ loops_per_jiffy *= 2; /* Restore video */ pmac_call_early_video_resume(); /* Restore L2 cache */ if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0) _set_L2CR(save_l2cr); /* Restore L3 cache */ if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0) _set_L3CR(save_l3cr); /* Restore userland MMU context */ switch_mmu_context(NULL, current->active_mm); /* Tell PMU we are ready */ pmu_unlock(); pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); pmu_wait_complete(&req); pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); pmu_wait_complete(&req); /* Restore LPJ, cpufreq will adjust the cpu frequency */ loops_per_jiffy /= 2; return 0; } #define PB3400_MEM_CTRL 0xf8000000 #define PB3400_MEM_CTRL_SLEEP 0x70 static void __iomem *pb3400_mem_ctrl; static void powerbook_sleep_init_3400(void) { /* map in the memory controller registers */ pb3400_mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100); if (pb3400_mem_ctrl == NULL) printk(KERN_WARNING "ioremap failed: sleep won't be possible"); } static int powerbook_sleep_3400(void) { int i, x; unsigned int hid0; unsigned long msr; struct adb_request sleep_req; unsigned int __iomem *mem_ctrl_sleep; if (pb3400_mem_ctrl == NULL) return -ENOMEM; mem_ctrl_sleep = pb3400_mem_ctrl + PB3400_MEM_CTRL_SLEEP; /* Set the memory controller to keep the memory refreshed while we're asleep */ for (i = 0x403f; i >= 0x4000; --i) { out_be32(mem_ctrl_sleep, i); do { x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff; } while (x == 0); if (x >= 0x100) break; } /* Ask the PMU to put us to sleep */ pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); pmu_wait_complete(&sleep_req); pmu_unlock(); pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1); asleep = 1; /* Put the CPU into sleep mode */ hid0 = mfspr(SPRN_HID0); hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP; mtspr(SPRN_HID0, hid0); local_irq_enable(); msr = mfmsr() | MSR_POW; while (asleep) { mb(); mtmsr(msr); isync(); } local_irq_disable(); /* OK, we're awake again, start restoring things */ out_be32(mem_ctrl_sleep, 0x3f); pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0); return 0; } #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ /* * Support for /dev/pmu device */ #define RB_SIZE 0x10 struct pmu_private { struct list_head list; int rb_get; int rb_put; struct rb_entry { unsigned short len; unsigned char data[16]; } rb_buf[RB_SIZE]; wait_queue_head_t wait; spinlock_t lock; #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) int backlight_locker; #endif }; static LIST_HEAD(all_pmu_pvt); static DEFINE_SPINLOCK(all_pvt_lock); static void pmu_pass_intr(unsigned char *data, int len) { struct pmu_private *pp; struct list_head *list; int i; unsigned long flags; if (len > sizeof(pp->rb_buf[0].data)) len = sizeof(pp->rb_buf[0].data); spin_lock_irqsave(&all_pvt_lock, flags); for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) { pp = list_entry(list, struct pmu_private, list); spin_lock(&pp->lock); i = pp->rb_put + 1; if (i >= RB_SIZE) i = 0; if (i != pp->rb_get) { struct rb_entry *rp = &pp->rb_buf[pp->rb_put]; rp->len = len; memcpy(rp->data, data, len); pp->rb_put = i; wake_up_interruptible(&pp->wait); } spin_unlock(&pp->lock); } spin_unlock_irqrestore(&all_pvt_lock, flags); } static int pmu_open(struct inode *inode, struct file *file) { struct pmu_private *pp; unsigned long flags; pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL); if (pp == 0) return -ENOMEM; pp->rb_get = pp->rb_put = 0; spin_lock_init(&pp->lock); init_waitqueue_head(&pp->wait); mutex_lock(&pmu_info_proc_mutex); spin_lock_irqsave(&all_pvt_lock, flags); #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) pp->backlight_locker = 0; #endif list_add(&pp->list, &all_pmu_pvt); spin_unlock_irqrestore(&all_pvt_lock, flags); file->private_data = pp; mutex_unlock(&pmu_info_proc_mutex); return 0; } static ssize_t pmu_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct pmu_private *pp = file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long flags; int ret = 0; if (count < 1 || pp == 0) return -EINVAL; if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; spin_lock_irqsave(&pp->lock, flags); add_wait_queue(&pp->wait, &wait); current->state = TASK_INTERRUPTIBLE; for (;;) { ret = -EAGAIN; if (pp->rb_get != pp->rb_put) { int i = pp->rb_get; struct rb_entry *rp = &pp->rb_buf[i]; ret = rp->len; spin_unlock_irqrestore(&pp->lock, flags); if (ret > count) ret = count; if (ret > 0 && copy_to_user(buf, rp->data, ret)) ret = -EFAULT; if (++i >= RB_SIZE) i = 0; spin_lock_irqsave(&pp->lock, flags); pp->rb_get = i; } if (ret >= 0) break; if (file->f_flags & O_NONBLOCK) break; ret = -ERESTARTSYS; if (signal_pending(current)) break; spin_unlock_irqrestore(&pp->lock, flags); schedule(); spin_lock_irqsave(&pp->lock, flags); } current->state = TASK_RUNNING; remove_wait_queue(&pp->wait, &wait); spin_unlock_irqrestore(&pp->lock, flags); return ret; } static ssize_t pmu_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { return 0; } static unsigned int pmu_fpoll(struct file *filp, poll_table *wait) { struct pmu_private *pp = filp->private_data; unsigned int mask = 0; unsigned long flags; if (pp == 0) return 0; poll_wait(filp, &pp->wait, wait); spin_lock_irqsave(&pp->lock, flags); if (pp->rb_get != pp->rb_put) mask |= POLLIN; spin_unlock_irqrestore(&pp->lock, flags); return mask; } static int pmu_release(struct inode *inode, struct file *file) { struct pmu_private *pp = file->private_data; unsigned long flags; if (pp != 0) { file->private_data = NULL; spin_lock_irqsave(&all_pvt_lock, flags); list_del(&pp->list); spin_unlock_irqrestore(&all_pvt_lock, flags); #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) if (pp->backlight_locker) pmac_backlight_enable(); #endif kfree(pp); } return 0; } #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) static void pmac_suspend_disable_irqs(void) { /* Call platform functions marked "on sleep" */ pmac_pfunc_i2c_suspend(); pmac_pfunc_base_suspend(); } static int powerbook_sleep(suspend_state_t state) { int error = 0; /* Wait for completion of async requests */ while (!batt_req.complete) pmu_poll(); /* Giveup the lazy FPU & vec so we don't have to back them * up from the low level code */ enable_kernel_fp(); #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC)) enable_kernel_altivec(); #endif /* CONFIG_ALTIVEC */ switch (pmu_kind) { case PMU_OHARE_BASED: error = powerbook_sleep_3400(); break; case PMU_HEATHROW_BASED: case PMU_PADDINGTON_BASED: error = powerbook_sleep_grackle(); break; case PMU_KEYLARGO_BASED: error = powerbook_sleep_Core99(); break; default: return -ENOSYS; } if (error) return error; mdelay(100); return 0; } static void pmac_suspend_enable_irqs(void) { /* Force a poll of ADB interrupts */ adb_int_pending = 1; via_pmu_interrupt(0, NULL); mdelay(10); /* Call platform functions marked "on wake" */ pmac_pfunc_base_resume(); pmac_pfunc_i2c_resume(); } static int pmu_sleep_valid(suspend_state_t state) { return state == PM_SUSPEND_MEM && (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) >= 0); } static const struct platform_suspend_ops pmu_pm_ops = { .enter = powerbook_sleep, .valid = pmu_sleep_valid, }; static int register_pmu_pm_ops(void) { if (pmu_kind == PMU_OHARE_BASED) powerbook_sleep_init_3400(); ppc_md.suspend_disable_irqs = pmac_suspend_disable_irqs; ppc_md.suspend_enable_irqs = pmac_suspend_enable_irqs; suspend_set_ops(&pmu_pm_ops); return 0; } device_initcall(register_pmu_pm_ops); #endif static int pmu_ioctl(struct file *filp, u_int cmd, u_long arg) { __u32 __user *argp = (__u32 __user *)arg; int error = -EINVAL; switch (cmd) { case PMU_IOC_SLEEP: if (!capable(CAP_SYS_ADMIN)) return -EACCES; return pm_suspend(PM_SUSPEND_MEM); case PMU_IOC_CAN_SLEEP: if (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) < 0) return put_user(0, argp); else return put_user(1, argp); #ifdef CONFIG_PMAC_BACKLIGHT_LEGACY /* Compatibility ioctl's for backlight */ case PMU_IOC_GET_BACKLIGHT: { int brightness; brightness = pmac_backlight_get_legacy_brightness(); if (brightness < 0) return brightness; else return put_user(brightness, argp); } case PMU_IOC_SET_BACKLIGHT: { int brightness; error = get_user(brightness, argp); if (error) return error; return pmac_backlight_set_legacy_brightness(brightness); } #ifdef CONFIG_INPUT_ADBHID case PMU_IOC_GRAB_BACKLIGHT: { struct pmu_private *pp = filp->private_data; if (pp->backlight_locker) return 0; pp->backlight_locker = 1; pmac_backlight_disable(); return 0; } #endif /* CONFIG_INPUT_ADBHID */ #endif /* CONFIG_PMAC_BACKLIGHT_LEGACY */ case PMU_IOC_GET_MODEL: return put_user(pmu_kind, argp); case PMU_IOC_HAS_ADB: return put_user(pmu_has_adb, argp); } return error; } static long pmu_unlocked_ioctl(struct file *filp, u_int cmd, u_long arg) { int ret; mutex_lock(&pmu_info_proc_mutex); ret = pmu_ioctl(filp, cmd, arg); mutex_unlock(&pmu_info_proc_mutex); return ret; } #ifdef CONFIG_COMPAT #define PMU_IOC_GET_BACKLIGHT32 _IOR('B', 1, compat_size_t) #define PMU_IOC_SET_BACKLIGHT32 _IOW('B', 2, compat_size_t) #define PMU_IOC_GET_MODEL32 _IOR('B', 3, compat_size_t) #define PMU_IOC_HAS_ADB32 _IOR('B', 4, compat_size_t) #define PMU_IOC_CAN_SLEEP32 _IOR('B', 5, compat_size_t) #define PMU_IOC_GRAB_BACKLIGHT32 _IOR('B', 6, compat_size_t) static long compat_pmu_ioctl (struct file *filp, u_int cmd, u_long arg) { switch (cmd) { case PMU_IOC_SLEEP: break; case PMU_IOC_GET_BACKLIGHT32: cmd = PMU_IOC_GET_BACKLIGHT; break; case PMU_IOC_SET_BACKLIGHT32: cmd = PMU_IOC_SET_BACKLIGHT; break; case PMU_IOC_GET_MODEL32: cmd = PMU_IOC_GET_MODEL; break; case PMU_IOC_HAS_ADB32: cmd = PMU_IOC_HAS_ADB; break; case PMU_IOC_CAN_SLEEP32: cmd = PMU_IOC_CAN_SLEEP; break; case PMU_IOC_GRAB_BACKLIGHT32: cmd = PMU_IOC_GRAB_BACKLIGHT; break; default: return -ENOIOCTLCMD; } return pmu_unlocked_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); } #endif static const struct file_operations pmu_device_fops = { .read = pmu_read, .write = pmu_write, .poll = pmu_fpoll, .unlocked_ioctl = pmu_unlocked_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_pmu_ioctl, #endif .open = pmu_open, .release = pmu_release, .llseek = noop_llseek, }; static struct miscdevice pmu_device = { PMU_MINOR, "pmu", &pmu_device_fops }; static int pmu_device_init(void) { if (!via) return 0; if (misc_register(&pmu_device) < 0) printk(KERN_ERR "via-pmu: cannot register misc device.\n"); return 0; } device_initcall(pmu_device_init); #ifdef DEBUG_SLEEP static inline void polled_handshake(volatile unsigned char __iomem *via) { via[B] &= ~TREQ; eieio(); while ((via[B] & TACK) != 0) ; via[B] |= TREQ; eieio(); while ((via[B] & TACK) == 0) ; } static inline void polled_send_byte(volatile unsigned char __iomem *via, int x) { via[ACR] |= SR_OUT | SR_EXT; eieio(); via[SR] = x; eieio(); polled_handshake(via); } static inline int polled_recv_byte(volatile unsigned char __iomem *via) { int x; via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio(); x = via[SR]; eieio(); polled_handshake(via); x = via[SR]; eieio(); return x; } int pmu_polled_request(struct adb_request *req) { unsigned long flags; int i, l, c; volatile unsigned char __iomem *v = via; req->complete = 1; c = req->data[0]; l = pmu_data_len[c][0]; if (l >= 0 && req->nbytes != l + 1) return -EINVAL; local_irq_save(flags); while (pmu_state != idle) pmu_poll(); while ((via[B] & TACK) == 0) ; polled_send_byte(v, c); if (l < 0) { l = req->nbytes - 1; polled_send_byte(v, l); } for (i = 1; i <= l; ++i) polled_send_byte(v, req->data[i]); l = pmu_data_len[c][1]; if (l < 0) l = polled_recv_byte(v); for (i = 0; i < l; ++i) req->reply[i + req->reply_len] = polled_recv_byte(v); if (req->done) (*req->done)(req); local_irq_restore(flags); return 0; } /* N.B. This doesn't work on the 3400 */ void pmu_blink(int n) { struct adb_request req; memset(&req, 0, sizeof(req)); for (; n > 0; --n) { req.nbytes = 4; req.done = NULL; req.data[0] = 0xee; req.data[1] = 4; req.data[2] = 0; req.data[3] = 1; req.reply[0] = ADB_RET_OK; req.reply_len = 1; req.reply_expected = 0; pmu_polled_request(&req); mdelay(50); req.nbytes = 4; req.done = NULL; req.data[0] = 0xee; req.data[1] = 4; req.data[2] = 0; req.data[3] = 0; req.reply[0] = ADB_RET_OK; req.reply_len = 1; req.reply_expected = 0; pmu_polled_request(&req); mdelay(50); } mdelay(50); } #endif /* DEBUG_SLEEP */ #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) int pmu_sys_suspended; static int pmu_sys_suspend(struct sys_device *sysdev, pm_message_t state) { if (state.event != PM_EVENT_SUSPEND || pmu_sys_suspended) return 0; /* Suspend PMU event interrupts */\ pmu_suspend(); pmu_sys_suspended = 1; #ifdef CONFIG_PMAC_BACKLIGHT /* Tell backlight code not to muck around with the chip anymore */ pmu_backlight_set_sleep(1); #endif return 0; } static int pmu_sys_resume(struct sys_device *sysdev) { struct adb_request req; if (!pmu_sys_suspended) return 0; /* Tell PMU we are ready */ pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); pmu_wait_complete(&req); #ifdef CONFIG_PMAC_BACKLIGHT /* Tell backlight code it can use the chip again */ pmu_backlight_set_sleep(0); #endif /* Resume PMU event interrupts */ pmu_resume(); pmu_sys_suspended = 0; return 0; } #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ static struct sysdev_class pmu_sysclass = { .name = "pmu", }; static struct sys_device device_pmu = { .cls = &pmu_sysclass, }; static struct sysdev_driver driver_pmu = { #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) .suspend = &pmu_sys_suspend, .resume = &pmu_sys_resume, #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ }; static int __init init_pmu_sysfs(void) { int rc; rc = sysdev_class_register(&pmu_sysclass); if (rc) { printk(KERN_ERR "Failed registering PMU sys class\n"); return -ENODEV; } rc = sysdev_register(&device_pmu); if (rc) { printk(KERN_ERR "Failed registering PMU sys device\n"); return -ENODEV; } rc = sysdev_driver_register(&pmu_sysclass, &driver_pmu); if (rc) { printk(KERN_ERR "Failed registering PMU sys driver\n"); return -ENODEV; } return 0; } subsys_initcall(init_pmu_sysfs); EXPORT_SYMBOL(pmu_request); EXPORT_SYMBOL(pmu_queue_request); EXPORT_SYMBOL(pmu_poll); EXPORT_SYMBOL(pmu_poll_adb); EXPORT_SYMBOL(pmu_wait_complete); EXPORT_SYMBOL(pmu_suspend); EXPORT_SYMBOL(pmu_resume); EXPORT_SYMBOL(pmu_unlock); #if defined(CONFIG_PPC32) EXPORT_SYMBOL(pmu_enable_irled); EXPORT_SYMBOL(pmu_battery_count); EXPORT_SYMBOL(pmu_batteries); EXPORT_SYMBOL(pmu_power_flags); #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */