/* * Driver for the HP iLO management processor. * * Copyright (C) 2008 Hewlett-Packard Development Company, L.P. * David Altobelli <david.altobelli@hp.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/device.h> #include <linux/file.h> #include <linux/cdev.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/slab.h> #include "hpilo.h" static struct class *ilo_class; static unsigned int ilo_major; static char ilo_hwdev[MAX_ILO_DEV]; static inline int get_entry_id(int entry) { return (entry & ENTRY_MASK_DESCRIPTOR) >> ENTRY_BITPOS_DESCRIPTOR; } static inline int get_entry_len(int entry) { return ((entry & ENTRY_MASK_QWORDS) >> ENTRY_BITPOS_QWORDS) << 3; } static inline int mk_entry(int id, int len) { int qlen = len & 7 ? (len >> 3) + 1 : len >> 3; return id << ENTRY_BITPOS_DESCRIPTOR | qlen << ENTRY_BITPOS_QWORDS; } static inline int desc_mem_sz(int nr_entry) { return nr_entry << L2_QENTRY_SZ; } /* * FIFO queues, shared with hardware. * * If a queue has empty slots, an entry is added to the queue tail, * and that entry is marked as occupied. * Entries can be dequeued from the head of the list, when the device * has marked the entry as consumed. * * Returns true on successful queue/dequeue, false on failure. */ static int fifo_enqueue(struct ilo_hwinfo *hw, char *fifobar, int entry) { struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar); unsigned long flags; int ret = 0; spin_lock_irqsave(&hw->fifo_lock, flags); if (!(fifo_q->fifobar[(fifo_q->tail + 1) & fifo_q->imask] & ENTRY_MASK_O)) { fifo_q->fifobar[fifo_q->tail & fifo_q->imask] |= (entry & ENTRY_MASK_NOSTATE) | fifo_q->merge; fifo_q->tail += 1; ret = 1; } spin_unlock_irqrestore(&hw->fifo_lock, flags); return ret; } static int fifo_dequeue(struct ilo_hwinfo *hw, char *fifobar, int *entry) { struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar); unsigned long flags; int ret = 0; u64 c; spin_lock_irqsave(&hw->fifo_lock, flags); c = fifo_q->fifobar[fifo_q->head & fifo_q->imask]; if (c & ENTRY_MASK_C) { if (entry) *entry = c & ENTRY_MASK_NOSTATE; fifo_q->fifobar[fifo_q->head & fifo_q->imask] = (c | ENTRY_MASK) + 1; fifo_q->head += 1; ret = 1; } spin_unlock_irqrestore(&hw->fifo_lock, flags); return ret; } static int fifo_check_recv(struct ilo_hwinfo *hw, char *fifobar) { struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar); unsigned long flags; int ret = 0; u64 c; spin_lock_irqsave(&hw->fifo_lock, flags); c = fifo_q->fifobar[fifo_q->head & fifo_q->imask]; if (c & ENTRY_MASK_C) ret = 1; spin_unlock_irqrestore(&hw->fifo_lock, flags); return ret; } static int ilo_pkt_enqueue(struct ilo_hwinfo *hw, struct ccb *ccb, int dir, int id, int len) { char *fifobar; int entry; if (dir == SENDQ) fifobar = ccb->ccb_u1.send_fifobar; else fifobar = ccb->ccb_u3.recv_fifobar; entry = mk_entry(id, len); return fifo_enqueue(hw, fifobar, entry); } static int ilo_pkt_dequeue(struct ilo_hwinfo *hw, struct ccb *ccb, int dir, int *id, int *len, void **pkt) { char *fifobar, *desc; int entry = 0, pkt_id = 0; int ret; if (dir == SENDQ) { fifobar = ccb->ccb_u1.send_fifobar; desc = ccb->ccb_u2.send_desc; } else { fifobar = ccb->ccb_u3.recv_fifobar; desc = ccb->ccb_u4.recv_desc; } ret = fifo_dequeue(hw, fifobar, &entry); if (ret) { pkt_id = get_entry_id(entry); if (id) *id = pkt_id; if (len) *len = get_entry_len(entry); if (pkt) *pkt = (void *)(desc + desc_mem_sz(pkt_id)); } return ret; } static int ilo_pkt_recv(struct ilo_hwinfo *hw, struct ccb *ccb) { char *fifobar = ccb->ccb_u3.recv_fifobar; return fifo_check_recv(hw, fifobar); } static inline void doorbell_set(struct ccb *ccb) { iowrite8(1, ccb->ccb_u5.db_base); } static inline void doorbell_clr(struct ccb *ccb) { iowrite8(2, ccb->ccb_u5.db_base); } static inline int ctrl_set(int l2sz, int idxmask, int desclim) { int active = 0, go = 1; return l2sz << CTRL_BITPOS_L2SZ | idxmask << CTRL_BITPOS_FIFOINDEXMASK | desclim << CTRL_BITPOS_DESCLIMIT | active << CTRL_BITPOS_A | go << CTRL_BITPOS_G; } static void ctrl_setup(struct ccb *ccb, int nr_desc, int l2desc_sz) { /* for simplicity, use the same parameters for send and recv ctrls */ ccb->send_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1); ccb->recv_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1); } static inline int fifo_sz(int nr_entry) { /* size of a fifo is determined by the number of entries it contains */ return (nr_entry * sizeof(u64)) + FIFOHANDLESIZE; } static void fifo_setup(void *base_addr, int nr_entry) { struct fifo *fifo_q = base_addr; int i; /* set up an empty fifo */ fifo_q->head = 0; fifo_q->tail = 0; fifo_q->reset = 0; fifo_q->nrents = nr_entry; fifo_q->imask = nr_entry - 1; fifo_q->merge = ENTRY_MASK_O; for (i = 0; i < nr_entry; i++) fifo_q->fifobar[i] = 0; } static void ilo_ccb_close(struct pci_dev *pdev, struct ccb_data *data) { struct ccb *driver_ccb = &data->driver_ccb; struct ccb __iomem *device_ccb = data->mapped_ccb; int retries; /* complicated dance to tell the hw we are stopping */ doorbell_clr(driver_ccb); iowrite32(ioread32(&device_ccb->send_ctrl) & ~(1 << CTRL_BITPOS_G), &device_ccb->send_ctrl); iowrite32(ioread32(&device_ccb->recv_ctrl) & ~(1 << CTRL_BITPOS_G), &device_ccb->recv_ctrl); /* give iLO some time to process stop request */ for (retries = MAX_WAIT; retries > 0; retries--) { doorbell_set(driver_ccb); udelay(WAIT_TIME); if (!(ioread32(&device_ccb->send_ctrl) & (1 << CTRL_BITPOS_A)) && !(ioread32(&device_ccb->recv_ctrl) & (1 << CTRL_BITPOS_A))) break; } if (retries == 0) dev_err(&pdev->dev, "Closing, but controller still active\n"); /* clear the hw ccb */ memset_io(device_ccb, 0, sizeof(struct ccb)); /* free resources used to back send/recv queues */ pci_free_consistent(pdev, data->dma_size, data->dma_va, data->dma_pa); } static int ilo_ccb_setup(struct ilo_hwinfo *hw, struct ccb_data *data, int slot) { char *dma_va; dma_addr_t dma_pa; struct ccb *driver_ccb, *ilo_ccb; driver_ccb = &data->driver_ccb; ilo_ccb = &data->ilo_ccb; data->dma_size = 2 * fifo_sz(NR_QENTRY) + 2 * desc_mem_sz(NR_QENTRY) + ILO_START_ALIGN + ILO_CACHE_SZ; data->dma_va = pci_alloc_consistent(hw->ilo_dev, data->dma_size, &data->dma_pa); if (!data->dma_va) return -ENOMEM; dma_va = (char *)data->dma_va; dma_pa = data->dma_pa; memset(dma_va, 0, data->dma_size); dma_va = (char *)roundup((unsigned long)dma_va, ILO_START_ALIGN); dma_pa = roundup(dma_pa, ILO_START_ALIGN); /* * Create two ccb's, one with virt addrs, one with phys addrs. * Copy the phys addr ccb to device shared mem. */ ctrl_setup(driver_ccb, NR_QENTRY, L2_QENTRY_SZ); ctrl_setup(ilo_ccb, NR_QENTRY, L2_QENTRY_SZ); fifo_setup(dma_va, NR_QENTRY); driver_ccb->ccb_u1.send_fifobar = dma_va + FIFOHANDLESIZE; ilo_ccb->ccb_u1.send_fifobar_pa = dma_pa + FIFOHANDLESIZE; dma_va += fifo_sz(NR_QENTRY); dma_pa += fifo_sz(NR_QENTRY); dma_va = (char *)roundup((unsigned long)dma_va, ILO_CACHE_SZ); dma_pa = roundup(dma_pa, ILO_CACHE_SZ); fifo_setup(dma_va, NR_QENTRY); driver_ccb->ccb_u3.recv_fifobar = dma_va + FIFOHANDLESIZE; ilo_ccb->ccb_u3.recv_fifobar_pa = dma_pa + FIFOHANDLESIZE; dma_va += fifo_sz(NR_QENTRY); dma_pa += fifo_sz(NR_QENTRY); driver_ccb->ccb_u2.send_desc = dma_va; ilo_ccb->ccb_u2.send_desc_pa = dma_pa; dma_pa += desc_mem_sz(NR_QENTRY); dma_va += desc_mem_sz(NR_QENTRY); driver_ccb->ccb_u4.recv_desc = dma_va; ilo_ccb->ccb_u4.recv_desc_pa = dma_pa; driver_ccb->channel = slot; ilo_ccb->channel = slot; driver_ccb->ccb_u5.db_base = hw->db_vaddr + (slot << L2_DB_SIZE); ilo_ccb->ccb_u5.db_base = NULL; /* hw ccb's doorbell is not used */ return 0; } static void ilo_ccb_open(struct ilo_hwinfo *hw, struct ccb_data *data, int slot) { int pkt_id, pkt_sz; struct ccb *driver_ccb = &data->driver_ccb; /* copy the ccb with physical addrs to device memory */ data->mapped_ccb = (struct ccb __iomem *) (hw->ram_vaddr + (slot * ILOHW_CCB_SZ)); memcpy_toio(data->mapped_ccb, &data->ilo_ccb, sizeof(struct ccb)); /* put packets on the send and receive queues */ pkt_sz = 0; for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++) { ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, pkt_sz); doorbell_set(driver_ccb); } pkt_sz = desc_mem_sz(1); for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++) ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, pkt_sz); /* the ccb is ready to use */ doorbell_clr(driver_ccb); } static int ilo_ccb_verify(struct ilo_hwinfo *hw, struct ccb_data *data) { int pkt_id, i; struct ccb *driver_ccb = &data->driver_ccb; /* make sure iLO is really handling requests */ for (i = MAX_WAIT; i > 0; i--) { if (ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, NULL, NULL)) break; udelay(WAIT_TIME); } if (i == 0) { dev_err(&hw->ilo_dev->dev, "Open could not dequeue a packet\n"); return -EBUSY; } ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, 0); doorbell_set(driver_ccb); return 0; } static inline int is_channel_reset(struct ccb *ccb) { /* check for this particular channel needing a reset */ return FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset; } static inline void set_channel_reset(struct ccb *ccb) { /* set a flag indicating this channel needs a reset */ FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset = 1; } static inline int get_device_outbound(struct ilo_hwinfo *hw) { return ioread32(&hw->mmio_vaddr[DB_OUT]); } static inline int is_db_reset(int db_out) { return db_out & (1 << DB_RESET); } static inline int is_device_reset(struct ilo_hwinfo *hw) { /* check for global reset condition */ return is_db_reset(get_device_outbound(hw)); } static inline void clear_pending_db(struct ilo_hwinfo *hw, int clr) { iowrite32(clr, &hw->mmio_vaddr[DB_OUT]); } static inline void clear_device(struct ilo_hwinfo *hw) { /* clear the device (reset bits, pending channel entries) */ clear_pending_db(hw, -1); } static inline void ilo_enable_interrupts(struct ilo_hwinfo *hw) { iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) | 1, &hw->mmio_vaddr[DB_IRQ]); } static inline void ilo_disable_interrupts(struct ilo_hwinfo *hw) { iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) & ~1, &hw->mmio_vaddr[DB_IRQ]); } static void ilo_set_reset(struct ilo_hwinfo *hw) { int slot; /* * Mapped memory is zeroed on ilo reset, so set a per ccb flag * to indicate that this ccb needs to be closed and reopened. */ for (slot = 0; slot < MAX_CCB; slot++) { if (!hw->ccb_alloc[slot]) continue; set_channel_reset(&hw->ccb_alloc[slot]->driver_ccb); } } static ssize_t ilo_read(struct file *fp, char __user *buf, size_t len, loff_t *off) { int err, found, cnt, pkt_id, pkt_len; struct ccb_data *data = fp->private_data; struct ccb *driver_ccb = &data->driver_ccb; struct ilo_hwinfo *hw = data->ilo_hw; void *pkt; if (is_channel_reset(driver_ccb)) { /* * If the device has been reset, applications * need to close and reopen all ccbs. */ return -ENODEV; } /* * This function is to be called when data is expected * in the channel, and will return an error if no packet is found * during the loop below. The sleep/retry logic is to allow * applications to call read() immediately post write(), * and give iLO some time to process the sent packet. */ cnt = 20; do { /* look for a received packet */ found = ilo_pkt_dequeue(hw, driver_ccb, RECVQ, &pkt_id, &pkt_len, &pkt); if (found) break; cnt--; msleep(100); } while (!found && cnt); if (!found) return -EAGAIN; /* only copy the length of the received packet */ if (pkt_len < len) len = pkt_len; err = copy_to_user(buf, pkt, len); /* return the received packet to the queue */ ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, desc_mem_sz(1)); return err ? -EFAULT : len; } static ssize_t ilo_write(struct file *fp, const char __user *buf, size_t len, loff_t *off) { int err, pkt_id, pkt_len; struct ccb_data *data = fp->private_data; struct ccb *driver_ccb = &data->driver_ccb; struct ilo_hwinfo *hw = data->ilo_hw; void *pkt; if (is_channel_reset(driver_ccb)) return -ENODEV; /* get a packet to send the user command */ if (!ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, &pkt_len, &pkt)) return -EBUSY; /* limit the length to the length of the packet */ if (pkt_len < len) len = pkt_len; /* on failure, set the len to 0 to return empty packet to the device */ err = copy_from_user(pkt, buf, len); if (err) len = 0; /* send the packet */ ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, len); doorbell_set(driver_ccb); return err ? -EFAULT : len; } static unsigned int ilo_poll(struct file *fp, poll_table *wait) { struct ccb_data *data = fp->private_data; struct ccb *driver_ccb = &data->driver_ccb; poll_wait(fp, &data->ccb_waitq, wait); if (is_channel_reset(driver_ccb)) return POLLERR; else if (ilo_pkt_recv(data->ilo_hw, driver_ccb)) return POLLIN | POLLRDNORM; return 0; } static int ilo_close(struct inode *ip, struct file *fp) { int slot; struct ccb_data *data; struct ilo_hwinfo *hw; unsigned long flags; slot = iminor(ip) % MAX_CCB; hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev); spin_lock(&hw->open_lock); if (hw->ccb_alloc[slot]->ccb_cnt == 1) { data = fp->private_data; spin_lock_irqsave(&hw->alloc_lock, flags); hw->ccb_alloc[slot] = NULL; spin_unlock_irqrestore(&hw->alloc_lock, flags); ilo_ccb_close(hw->ilo_dev, data); kfree(data); } else hw->ccb_alloc[slot]->ccb_cnt--; spin_unlock(&hw->open_lock); return 0; } static int ilo_open(struct inode *ip, struct file *fp) { int slot, error; struct ccb_data *data; struct ilo_hwinfo *hw; unsigned long flags; slot = iminor(ip) % MAX_CCB; hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev); /* new ccb allocation */ data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; spin_lock(&hw->open_lock); /* each fd private_data holds sw/hw view of ccb */ if (hw->ccb_alloc[slot] == NULL) { /* create a channel control block for this minor */ error = ilo_ccb_setup(hw, data, slot); if (error) { kfree(data); goto out; } data->ccb_cnt = 1; data->ccb_excl = fp->f_flags & O_EXCL; data->ilo_hw = hw; init_waitqueue_head(&data->ccb_waitq); /* write the ccb to hw */ spin_lock_irqsave(&hw->alloc_lock, flags); ilo_ccb_open(hw, data, slot); hw->ccb_alloc[slot] = data; spin_unlock_irqrestore(&hw->alloc_lock, flags); /* make sure the channel is functional */ error = ilo_ccb_verify(hw, data); if (error) { spin_lock_irqsave(&hw->alloc_lock, flags); hw->ccb_alloc[slot] = NULL; spin_unlock_irqrestore(&hw->alloc_lock, flags); ilo_ccb_close(hw->ilo_dev, data); kfree(data); goto out; } } else { kfree(data); if (fp->f_flags & O_EXCL || hw->ccb_alloc[slot]->ccb_excl) { /* * The channel exists, and either this open * or a previous open of this channel wants * exclusive access. */ error = -EBUSY; } else { hw->ccb_alloc[slot]->ccb_cnt++; error = 0; } } out: spin_unlock(&hw->open_lock); if (!error) fp->private_data = hw->ccb_alloc[slot]; return error; } static const struct file_operations ilo_fops = { .owner = THIS_MODULE, .read = ilo_read, .write = ilo_write, .poll = ilo_poll, .open = ilo_open, .release = ilo_close, .llseek = noop_llseek, }; static irqreturn_t ilo_isr(int irq, void *data) { struct ilo_hwinfo *hw = data; int pending, i; spin_lock(&hw->alloc_lock); /* check for ccbs which have data */ pending = get_device_outbound(hw); if (!pending) { spin_unlock(&hw->alloc_lock); return IRQ_NONE; } if (is_db_reset(pending)) { /* wake up all ccbs if the device was reset */ pending = -1; ilo_set_reset(hw); } for (i = 0; i < MAX_CCB; i++) { if (!hw->ccb_alloc[i]) continue; if (pending & (1 << i)) wake_up_interruptible(&hw->ccb_alloc[i]->ccb_waitq); } /* clear the device of the channels that have been handled */ clear_pending_db(hw, pending); spin_unlock(&hw->alloc_lock); return IRQ_HANDLED; } static void ilo_unmap_device(struct pci_dev *pdev, struct ilo_hwinfo *hw) { pci_iounmap(pdev, hw->db_vaddr); pci_iounmap(pdev, hw->ram_vaddr); pci_iounmap(pdev, hw->mmio_vaddr); } static int __devinit ilo_map_device(struct pci_dev *pdev, struct ilo_hwinfo *hw) { int error = -ENOMEM; /* map the memory mapped i/o registers */ hw->mmio_vaddr = pci_iomap(pdev, 1, 0); if (hw->mmio_vaddr == NULL) { dev_err(&pdev->dev, "Error mapping mmio\n"); goto out; } /* map the adapter shared memory region */ hw->ram_vaddr = pci_iomap(pdev, 2, MAX_CCB * ILOHW_CCB_SZ); if (hw->ram_vaddr == NULL) { dev_err(&pdev->dev, "Error mapping shared mem\n"); goto mmio_free; } /* map the doorbell aperture */ hw->db_vaddr = pci_iomap(pdev, 3, MAX_CCB * ONE_DB_SIZE); if (hw->db_vaddr == NULL) { dev_err(&pdev->dev, "Error mapping doorbell\n"); goto ram_free; } return 0; ram_free: pci_iounmap(pdev, hw->ram_vaddr); mmio_free: pci_iounmap(pdev, hw->mmio_vaddr); out: return error; } static void ilo_remove(struct pci_dev *pdev) { int i, minor; struct ilo_hwinfo *ilo_hw = pci_get_drvdata(pdev); clear_device(ilo_hw); minor = MINOR(ilo_hw->cdev.dev); for (i = minor; i < minor + MAX_CCB; i++) device_destroy(ilo_class, MKDEV(ilo_major, i)); cdev_del(&ilo_hw->cdev); ilo_disable_interrupts(ilo_hw); free_irq(pdev->irq, ilo_hw); ilo_unmap_device(pdev, ilo_hw); pci_release_regions(pdev); pci_disable_device(pdev); kfree(ilo_hw); ilo_hwdev[(minor / MAX_CCB)] = 0; } static int __devinit ilo_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int devnum, minor, start, error; struct ilo_hwinfo *ilo_hw; /* find a free range for device files */ for (devnum = 0; devnum < MAX_ILO_DEV; devnum++) { if (ilo_hwdev[devnum] == 0) { ilo_hwdev[devnum] = 1; break; } } if (devnum == MAX_ILO_DEV) { dev_err(&pdev->dev, "Error finding free device\n"); return -ENODEV; } /* track global allocations for this device */ error = -ENOMEM; ilo_hw = kzalloc(sizeof(*ilo_hw), GFP_KERNEL); if (!ilo_hw) goto out; ilo_hw->ilo_dev = pdev; spin_lock_init(&ilo_hw->alloc_lock); spin_lock_init(&ilo_hw->fifo_lock); spin_lock_init(&ilo_hw->open_lock); error = pci_enable_device(pdev); if (error) goto free; pci_set_master(pdev); error = pci_request_regions(pdev, ILO_NAME); if (error) goto disable; error = ilo_map_device(pdev, ilo_hw); if (error) goto free_regions; pci_set_drvdata(pdev, ilo_hw); clear_device(ilo_hw); error = request_irq(pdev->irq, ilo_isr, IRQF_SHARED, "hpilo", ilo_hw); if (error) goto unmap; ilo_enable_interrupts(ilo_hw); cdev_init(&ilo_hw->cdev, &ilo_fops); ilo_hw->cdev.owner = THIS_MODULE; start = devnum * MAX_CCB; error = cdev_add(&ilo_hw->cdev, MKDEV(ilo_major, start), MAX_CCB); if (error) { dev_err(&pdev->dev, "Could not add cdev\n"); goto remove_isr; } for (minor = 0 ; minor < MAX_CCB; minor++) { struct device *dev; dev = device_create(ilo_class, &pdev->dev, MKDEV(ilo_major, minor), NULL, "hpilo!d%dccb%d", devnum, minor); if (IS_ERR(dev)) dev_err(&pdev->dev, "Could not create files\n"); } return 0; remove_isr: ilo_disable_interrupts(ilo_hw); free_irq(pdev->irq, ilo_hw); unmap: ilo_unmap_device(pdev, ilo_hw); free_regions: pci_release_regions(pdev); disable: pci_disable_device(pdev); free: kfree(ilo_hw); out: ilo_hwdev[devnum] = 0; return error; } static struct pci_device_id ilo_devices[] = { { PCI_DEVICE(PCI_VENDOR_ID_COMPAQ, 0xB204) }, { PCI_DEVICE(PCI_VENDOR_ID_HP, 0x3307) }, { } }; MODULE_DEVICE_TABLE(pci, ilo_devices); static struct pci_driver ilo_driver = { .name = ILO_NAME, .id_table = ilo_devices, .probe = ilo_probe, .remove = __devexit_p(ilo_remove), }; static int __init ilo_init(void) { int error; dev_t dev; ilo_class = class_create(THIS_MODULE, "iLO"); if (IS_ERR(ilo_class)) { error = PTR_ERR(ilo_class); goto out; } error = alloc_chrdev_region(&dev, 0, MAX_OPEN, ILO_NAME); if (error) goto class_destroy; ilo_major = MAJOR(dev); error = pci_register_driver(&ilo_driver); if (error) goto chr_remove; return 0; chr_remove: unregister_chrdev_region(dev, MAX_OPEN); class_destroy: class_destroy(ilo_class); out: return error; } static void __exit ilo_exit(void) { pci_unregister_driver(&ilo_driver); unregister_chrdev_region(MKDEV(ilo_major, 0), MAX_OPEN); class_destroy(ilo_class); } MODULE_VERSION("1.2"); MODULE_ALIAS(ILO_NAME); MODULE_DESCRIPTION(ILO_NAME); MODULE_AUTHOR("David Altobelli <david.altobelli@hp.com>"); MODULE_LICENSE("GPL v2"); module_init(ilo_init); module_exit(ilo_exit);