/* drivers/android/pmem.c * * Copyright (C) 2007 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/miscdevice.h> #include <linux/platform_device.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/debugfs.h> #include <linux/android_pmem.h> #include <linux/mempolicy.h> #include <linux/sched.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/cacheflush.h> #define PMEM_MAX_DEVICES 10 #define PMEM_MAX_ORDER 128 #define PMEM_MIN_ALLOC PAGE_SIZE #define PMEM_DEBUG 1 /* indicates that a refernce to this file has been taken via get_pmem_file, * the file should not be released until put_pmem_file is called */ #define PMEM_FLAGS_BUSY 0x1 /* indicates that this is a suballocation of a larger master range */ #define PMEM_FLAGS_CONNECTED 0x1 << 1 /* indicates this is a master and not a sub allocation and that it is mmaped */ #define PMEM_FLAGS_MASTERMAP 0x1 << 2 /* submap and unsubmap flags indicate: * 00: subregion has never been mmaped * 10: subregion has been mmaped, reference to the mm was taken * 11: subretion has ben released, refernece to the mm still held * 01: subretion has been released, reference to the mm has been released */ #define PMEM_FLAGS_SUBMAP 0x1 << 3 #define PMEM_FLAGS_UNSUBMAP 0x1 << 4 struct pmem_data { /* in alloc mode: an index into the bitmap * in no_alloc mode: the size of the allocation */ int index; /* see flags above for descriptions */ unsigned int flags; /* protects this data field, if the mm_mmap sem will be held at the * same time as this sem, the mm sem must be taken first (as this is * the order for vma_open and vma_close ops */ struct rw_semaphore sem; /* info about the mmaping process */ struct vm_area_struct *vma; /* task struct of the mapping process */ struct task_struct *task; /* process id of teh mapping process */ pid_t pid; /* file descriptor of the master */ int master_fd; /* file struct of the master */ struct file *master_file; /* a list of currently available regions if this is a suballocation */ struct list_head region_list; /* a linked list of data so we can access them for debugging */ struct list_head list; #if PMEM_DEBUG int ref; #endif }; struct pmem_bits { unsigned allocated:1; /* 1 if allocated, 0 if free */ unsigned order:7; /* size of the region in pmem space */ }; struct pmem_region_node { struct pmem_region region; struct list_head list; }; #define PMEM_DEBUG_MSGS 0 #if PMEM_DEBUG_MSGS #define DLOG(fmt,args...) \ do { printk(KERN_INFO "[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \ ##args); } \ while (0) #else #define DLOG(x...) do {} while (0) #endif struct pmem_info { struct miscdevice dev; /* physical start address of the remaped pmem space */ unsigned long base; /* vitual start address of the remaped pmem space */ unsigned char __iomem *vbase; /* total size of the pmem space */ unsigned long size; /* number of entries in the pmem space */ unsigned long num_entries; /* pfn of the garbage page in memory */ unsigned long garbage_pfn; /* index of the garbage page in the pmem space */ int garbage_index; /* the bitmap for the region indicating which entries are allocated * and which are free */ struct pmem_bits *bitmap; /* indicates the region should not be managed with an allocator */ unsigned no_allocator; /* indicates maps of this region should be cached, if a mix of * cached and uncached is desired, set this and open the device with * O_SYNC to get an uncached region */ unsigned cached; unsigned buffered; /* in no_allocator mode the first mapper gets the whole space and sets * this flag */ unsigned allocated; /* for debugging, creates a list of pmem file structs, the * data_list_lock should be taken before pmem_data->sem if both are * needed */ struct mutex data_list_lock; struct list_head data_list; /* pmem_sem protects the bitmap array * a write lock should be held when modifying entries in bitmap * a read lock should be held when reading data from bits or * dereferencing a pointer into bitmap * * pmem_data->sem protects the pmem data of a particular file * Many of the function that require the pmem_data->sem have a non- * locking version for when the caller is already holding that sem. * * IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER: * down(pmem_data->sem) => down(bitmap_sem) */ struct rw_semaphore bitmap_sem; long (*ioctl)(struct file *, unsigned int, unsigned long); int (*release)(struct inode *, struct file *); }; static struct pmem_info pmem[PMEM_MAX_DEVICES]; static int id_count; #define PMEM_IS_FREE(id, index) !(pmem[id].bitmap[index].allocated) #define PMEM_ORDER(id, index) pmem[id].bitmap[index].order #define PMEM_BUDDY_INDEX(id, index) (index ^ (1 << PMEM_ORDER(id, index))) #define PMEM_NEXT_INDEX(id, index) (index + (1 << PMEM_ORDER(id, index))) #define PMEM_OFFSET(index) (index * PMEM_MIN_ALLOC) #define PMEM_START_ADDR(id, index) (PMEM_OFFSET(index) + pmem[id].base) #define PMEM_LEN(id, index) ((1 << PMEM_ORDER(id, index)) * PMEM_MIN_ALLOC) #define PMEM_END_ADDR(id, index) (PMEM_START_ADDR(id, index) + \ PMEM_LEN(id, index)) #define PMEM_START_VADDR(id, index) (PMEM_OFFSET(id, index) + pmem[id].vbase) #define PMEM_END_VADDR(id, index) (PMEM_START_VADDR(id, index) + \ PMEM_LEN(id, index)) #define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED) #define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK))) #define PMEM_IS_SUBMAP(data) ((data->flags & PMEM_FLAGS_SUBMAP) && \ (!(data->flags & PMEM_FLAGS_UNSUBMAP))) static int pmem_release(struct inode *, struct file *); static int pmem_mmap(struct file *, struct vm_area_struct *); static int pmem_open(struct inode *, struct file *); static long pmem_ioctl(struct file *, unsigned int, unsigned long); struct file_operations pmem_fops = { .release = pmem_release, .mmap = pmem_mmap, .open = pmem_open, .unlocked_ioctl = pmem_ioctl, }; static int get_id(struct file *file) { return MINOR(file->f_dentry->d_inode->i_rdev); } int is_pmem_file(struct file *file) { int id; if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode)) return 0; id = get_id(file); if (unlikely(id >= PMEM_MAX_DEVICES)) return 0; if (unlikely(file->f_dentry->d_inode->i_rdev != MKDEV(MISC_MAJOR, pmem[id].dev.minor))) return 0; return 1; } static int has_allocation(struct file *file) { struct pmem_data *data; /* check is_pmem_file first if not accessed via pmem_file_ops */ if (unlikely(!file->private_data)) return 0; data = (struct pmem_data *)file->private_data; if (unlikely(data->index < 0)) return 0; return 1; } static int is_master_owner(struct file *file) { struct file *master_file; struct pmem_data *data; int put_needed, ret = 0; if (!is_pmem_file(file) || !has_allocation(file)) return 0; data = (struct pmem_data *)file->private_data; if (PMEM_FLAGS_MASTERMAP & data->flags) return 1; master_file = fget_light(data->master_fd, &put_needed); if (master_file && data->master_file == master_file) ret = 1; fput_light(master_file, put_needed); return ret; } static int pmem_free(int id, int index) { /* caller should hold the write lock on pmem_sem! */ int buddy, curr = index; DLOG("index %d\n", index); if (pmem[id].no_allocator) { pmem[id].allocated = 0; return 0; } /* clean up the bitmap, merging any buddies */ pmem[id].bitmap[curr].allocated = 0; /* find a slots buddy Buddy# = Slot# ^ (1 << order) * if the buddy is also free merge them * repeat until the buddy is not free or end of the bitmap is reached */ do { buddy = PMEM_BUDDY_INDEX(id, curr); if (PMEM_IS_FREE(id, buddy) && PMEM_ORDER(id, buddy) == PMEM_ORDER(id, curr)) { PMEM_ORDER(id, buddy)++; PMEM_ORDER(id, curr)++; curr = min(buddy, curr); } else { break; } } while (curr < pmem[id].num_entries); return 0; } static void pmem_revoke(struct file *file, struct pmem_data *data); static int pmem_release(struct inode *inode, struct file *file) { struct pmem_data *data = (struct pmem_data *)file->private_data; struct pmem_region_node *region_node; struct list_head *elt, *elt2; int id = get_id(file), ret = 0; mutex_lock(&pmem[id].data_list_lock); /* if this file is a master, revoke all the memory in the connected * files */ if (PMEM_FLAGS_MASTERMAP & data->flags) { struct pmem_data *sub_data; list_for_each(elt, &pmem[id].data_list) { sub_data = list_entry(elt, struct pmem_data, list); down_read(&sub_data->sem); if (PMEM_IS_SUBMAP(sub_data) && file == sub_data->master_file) { up_read(&sub_data->sem); pmem_revoke(file, sub_data); } else up_read(&sub_data->sem); } } list_del(&data->list); mutex_unlock(&pmem[id].data_list_lock); down_write(&data->sem); /* if its not a conencted file and it has an allocation, free it */ if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) { down_write(&pmem[id].bitmap_sem); ret = pmem_free(id, data->index); up_write(&pmem[id].bitmap_sem); } /* if this file is a submap (mapped, connected file), downref the * task struct */ if (PMEM_FLAGS_SUBMAP & data->flags) if (data->task) { put_task_struct(data->task); data->task = NULL; } file->private_data = NULL; list_for_each_safe(elt, elt2, &data->region_list) { region_node = list_entry(elt, struct pmem_region_node, list); list_del(elt); kfree(region_node); } BUG_ON(!list_empty(&data->region_list)); up_write(&data->sem); kfree(data); if (pmem[id].release) ret = pmem[id].release(inode, file); return ret; } static int pmem_open(struct inode *inode, struct file *file) { struct pmem_data *data; int id = get_id(file); int ret = 0; DLOG("current %u file %p(%d)\n", current->pid, file, file_count(file)); /* setup file->private_data to indicate its unmapped */ /* you can only open a pmem device one time */ if (file->private_data != NULL) return -1; data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL); if (!data) { printk("pmem: unable to allocate memory for pmem metadata."); return -1; } data->flags = 0; data->index = -1; data->task = NULL; data->vma = NULL; data->pid = 0; data->master_file = NULL; #if PMEM_DEBUG data->ref = 0; #endif INIT_LIST_HEAD(&data->region_list); init_rwsem(&data->sem); file->private_data = data; INIT_LIST_HEAD(&data->list); mutex_lock(&pmem[id].data_list_lock); list_add(&data->list, &pmem[id].data_list); mutex_unlock(&pmem[id].data_list_lock); return ret; } static unsigned long pmem_order(unsigned long len) { int i; len = (len + PMEM_MIN_ALLOC - 1)/PMEM_MIN_ALLOC; len--; for (i = 0; i < sizeof(len)*8; i++) if (len >> i == 0) break; return i; } static int pmem_allocate(int id, unsigned long len) { /* caller should hold the write lock on pmem_sem! */ /* return the corresponding pdata[] entry */ int curr = 0; int end = pmem[id].num_entries; int best_fit = -1; unsigned long order = pmem_order(len); if (pmem[id].no_allocator) { DLOG("no allocator"); if ((len > pmem[id].size) || pmem[id].allocated) return -1; pmem[id].allocated = 1; return len; } if (order > PMEM_MAX_ORDER) return -1; DLOG("order %lx\n", order); /* look through the bitmap: * if you find a free slot of the correct order use it * otherwise, use the best fit (smallest with size > order) slot */ while (curr < end) { if (PMEM_IS_FREE(id, curr)) { if (PMEM_ORDER(id, curr) == (unsigned char)order) { /* set the not free bit and clear others */ best_fit = curr; break; } if (PMEM_ORDER(id, curr) > (unsigned char)order && (best_fit < 0 || PMEM_ORDER(id, curr) < PMEM_ORDER(id, best_fit))) best_fit = curr; } curr = PMEM_NEXT_INDEX(id, curr); } /* if best_fit < 0, there are no suitable slots, * return an error */ if (best_fit < 0) { printk("pmem: no space left to allocate!\n"); return -1; } /* now partition the best fit: * split the slot into 2 buddies of order - 1 * repeat until the slot is of the correct order */ while (PMEM_ORDER(id, best_fit) > (unsigned char)order) { int buddy; PMEM_ORDER(id, best_fit) -= 1; buddy = PMEM_BUDDY_INDEX(id, best_fit); PMEM_ORDER(id, buddy) = PMEM_ORDER(id, best_fit); } pmem[id].bitmap[best_fit].allocated = 1; return best_fit; } static pgprot_t pmem_access_prot(struct file *file, pgprot_t vma_prot) { int id = get_id(file); #ifdef pgprot_noncached if (pmem[id].cached == 0 || file->f_flags & O_SYNC) return pgprot_noncached(vma_prot); #endif #ifdef pgprot_ext_buffered else if (pmem[id].buffered) return pgprot_ext_buffered(vma_prot); #endif return vma_prot; } static unsigned long pmem_start_addr(int id, struct pmem_data *data) { if (pmem[id].no_allocator) return PMEM_START_ADDR(id, 0); else return PMEM_START_ADDR(id, data->index); } static void *pmem_start_vaddr(int id, struct pmem_data *data) { return pmem_start_addr(id, data) - pmem[id].base + pmem[id].vbase; } static unsigned long pmem_len(int id, struct pmem_data *data) { if (pmem[id].no_allocator) return data->index; else return PMEM_LEN(id, data->index); } static int pmem_map_garbage(int id, struct vm_area_struct *vma, struct pmem_data *data, unsigned long offset, unsigned long len) { int i, garbage_pages = len >> PAGE_SHIFT; vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE; for (i = 0; i < garbage_pages; i++) { if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE), pmem[id].garbage_pfn)) return -EAGAIN; } return 0; } static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma, struct pmem_data *data, unsigned long offset, unsigned long len) { int garbage_pages; DLOG("unmap offset %lx len %lx\n", offset, len); BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); garbage_pages = len >> PAGE_SHIFT; zap_page_range(vma, vma->vm_start + offset, len, NULL); pmem_map_garbage(id, vma, data, offset, len); return 0; } static int pmem_map_pfn_range(int id, struct vm_area_struct *vma, struct pmem_data *data, unsigned long offset, unsigned long len) { DLOG("map offset %lx len %lx\n", offset, len); BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start)); BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end)); BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset)); if (io_remap_pfn_range(vma, vma->vm_start + offset, (pmem_start_addr(id, data) + offset) >> PAGE_SHIFT, len, vma->vm_page_prot)) { return -EAGAIN; } return 0; } static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma, struct pmem_data *data, unsigned long offset, unsigned long len) { /* hold the mm semp for the vma you are modifying when you call this */ BUG_ON(!vma); zap_page_range(vma, vma->vm_start + offset, len, NULL); return pmem_map_pfn_range(id, vma, data, offset, len); } static void pmem_vma_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct pmem_data *data = file->private_data; int id = get_id(file); /* this should never be called as we don't support copying pmem * ranges via fork */ BUG_ON(!has_allocation(file)); down_write(&data->sem); /* remap the garbage pages, forkers don't get access to the data */ pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end); up_write(&data->sem); } static void pmem_vma_close(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct pmem_data *data = file->private_data; DLOG("current %u ppid %u file %p count %d\n", current->pid, current->parent->pid, file, file_count(file)); if (unlikely(!is_pmem_file(file) || !has_allocation(file))) { printk(KERN_WARNING "pmem: something is very wrong, you are " "closing a vm backing an allocation that doesn't " "exist!\n"); return; } down_write(&data->sem); if (data->vma == vma) { data->vma = NULL; if ((data->flags & PMEM_FLAGS_CONNECTED) && (data->flags & PMEM_FLAGS_SUBMAP)) data->flags |= PMEM_FLAGS_UNSUBMAP; } /* the kernel is going to free this vma now anyway */ up_write(&data->sem); } static struct vm_operations_struct vm_ops = { .open = pmem_vma_open, .close = pmem_vma_close, }; static int pmem_mmap(struct file *file, struct vm_area_struct *vma) { struct pmem_data *data; int index; unsigned long vma_size = vma->vm_end - vma->vm_start; int ret = 0, id = get_id(file); if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) { #if PMEM_DEBUG printk(KERN_ERR "pmem: mmaps must be at offset zero, aligned" " and a multiple of pages_size.\n"); #endif return -EINVAL; } data = (struct pmem_data *)file->private_data; down_write(&data->sem); /* check this file isn't already mmaped, for submaps check this file * has never been mmaped */ if ((data->flags & PMEM_FLAGS_SUBMAP) || (data->flags & PMEM_FLAGS_UNSUBMAP)) { #if PMEM_DEBUG printk(KERN_ERR "pmem: you can only mmap a pmem file once, " "this file is already mmaped. %x\n", data->flags); #endif ret = -EINVAL; goto error; } /* if file->private_data == unalloced, alloc*/ if (data && data->index == -1) { down_write(&pmem[id].bitmap_sem); index = pmem_allocate(id, vma->vm_end - vma->vm_start); up_write(&pmem[id].bitmap_sem); data->index = index; } /* either no space was available or an error occured */ if (!has_allocation(file)) { ret = -EINVAL; printk("pmem: could not find allocation for map.\n"); goto error; } if (pmem_len(id, data) < vma_size) { #if PMEM_DEBUG printk(KERN_WARNING "pmem: mmap size [%lu] does not match" "size of backing region [%lu].\n", vma_size, pmem_len(id, data)); #endif ret = -EINVAL; goto error; } vma->vm_pgoff = pmem_start_addr(id, data) >> PAGE_SHIFT; vma->vm_page_prot = pmem_access_prot(file, vma->vm_page_prot); if (data->flags & PMEM_FLAGS_CONNECTED) { struct pmem_region_node *region_node; struct list_head *elt; if (pmem_map_garbage(id, vma, data, 0, vma_size)) { printk("pmem: mmap failed in kernel!\n"); ret = -EAGAIN; goto error; } list_for_each(elt, &data->region_list) { region_node = list_entry(elt, struct pmem_region_node, list); DLOG("remapping file: %p %lx %lx\n", file, region_node->region.offset, region_node->region.len); if (pmem_remap_pfn_range(id, vma, data, region_node->region.offset, region_node->region.len)) { ret = -EAGAIN; goto error; } } data->flags |= PMEM_FLAGS_SUBMAP; get_task_struct(current->group_leader); data->task = current->group_leader; data->vma = vma; #if PMEM_DEBUG data->pid = current->pid; #endif DLOG("submmapped file %p vma %p pid %u\n", file, vma, current->pid); } else { if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) { printk(KERN_INFO "pmem: mmap failed in kernel!\n"); ret = -EAGAIN; goto error; } data->flags |= PMEM_FLAGS_MASTERMAP; data->pid = current->pid; } vma->vm_ops = &vm_ops; error: up_write(&data->sem); return ret; } /* the following are the api for accessing pmem regions by other drivers * from inside the kernel */ int get_pmem_user_addr(struct file *file, unsigned long *start, unsigned long *len) { struct pmem_data *data; if (!is_pmem_file(file) || !has_allocation(file)) { #if PMEM_DEBUG printk(KERN_INFO "pmem: requested pmem data from invalid" "file.\n"); #endif return -1; } data = (struct pmem_data *)file->private_data; down_read(&data->sem); if (data->vma) { *start = data->vma->vm_start; *len = data->vma->vm_end - data->vma->vm_start; } else { *start = 0; *len = 0; } up_read(&data->sem); return 0; } int get_pmem_addr(struct file *file, unsigned long *start, unsigned long *vstart, unsigned long *len) { struct pmem_data *data; int id; if (!is_pmem_file(file) || !has_allocation(file)) { return -1; } data = (struct pmem_data *)file->private_data; if (data->index == -1) { #if PMEM_DEBUG printk(KERN_INFO "pmem: requested pmem data from file with no " "allocation.\n"); return -1; #endif } id = get_id(file); down_read(&data->sem); *start = pmem_start_addr(id, data); *len = pmem_len(id, data); *vstart = (unsigned long)pmem_start_vaddr(id, data); up_read(&data->sem); #if PMEM_DEBUG down_write(&data->sem); data->ref++; up_write(&data->sem); #endif return 0; } int get_pmem_file(int fd, unsigned long *start, unsigned long *vstart, unsigned long *len, struct file **filp) { struct file *file; file = fget(fd); if (unlikely(file == NULL)) { printk(KERN_INFO "pmem: requested data from file descriptor " "that doesn't exist."); return -1; } if (get_pmem_addr(file, start, vstart, len)) goto end; if (filp) *filp = file; return 0; end: fput(file); return -1; } void put_pmem_file(struct file *file) { struct pmem_data *data; int id; if (!is_pmem_file(file)) return; id = get_id(file); data = (struct pmem_data *)file->private_data; #if PMEM_DEBUG down_write(&data->sem); if (data->ref == 0) { printk("pmem: pmem_put > pmem_get %s (pid %d)\n", pmem[id].dev.name, data->pid); BUG(); } data->ref--; up_write(&data->sem); #endif fput(file); } void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len) { struct pmem_data *data; int id; void *vaddr; struct pmem_region_node *region_node; struct list_head *elt; void *flush_start, *flush_end; if (!is_pmem_file(file) || !has_allocation(file)) { return; } id = get_id(file); data = (struct pmem_data *)file->private_data; if (!pmem[id].cached || file->f_flags & O_SYNC) return; down_read(&data->sem); vaddr = pmem_start_vaddr(id, data); /* if this isn't a submmapped file, flush the whole thing */ if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) { dmac_flush_range(vaddr, vaddr + pmem_len(id, data)); goto end; } /* otherwise, flush the region of the file we are drawing */ list_for_each(elt, &data->region_list) { region_node = list_entry(elt, struct pmem_region_node, list); if ((offset >= region_node->region.offset) && ((offset + len) <= (region_node->region.offset + region_node->region.len))) { flush_start = vaddr + region_node->region.offset; flush_end = flush_start + region_node->region.len; dmac_flush_range(flush_start, flush_end); break; } } end: up_read(&data->sem); } static int pmem_connect(unsigned long connect, struct file *file) { struct pmem_data *data = (struct pmem_data *)file->private_data; struct pmem_data *src_data; struct file *src_file; int ret = 0, put_needed; down_write(&data->sem); /* retrieve the src file and check it is a pmem file with an alloc */ src_file = fget_light(connect, &put_needed); DLOG("connect %p to %p\n", file, src_file); if (!src_file) { printk("pmem: src file not found!\n"); ret = -EINVAL; goto err_no_file; } if (unlikely(!is_pmem_file(src_file) || !has_allocation(src_file))) { printk(KERN_INFO "pmem: src file is not a pmem file or has no " "alloc!\n"); ret = -EINVAL; goto err_bad_file; } src_data = (struct pmem_data *)src_file->private_data; if (has_allocation(file) && (data->index != src_data->index)) { printk("pmem: file is already mapped but doesn't match this" " src_file!\n"); ret = -EINVAL; goto err_bad_file; } data->index = src_data->index; data->flags |= PMEM_FLAGS_CONNECTED; data->master_fd = connect; data->master_file = src_file; err_bad_file: fput_light(src_file, put_needed); err_no_file: up_write(&data->sem); return ret; } static void pmem_unlock_data_and_mm(struct pmem_data *data, struct mm_struct *mm) { up_write(&data->sem); if (mm != NULL) { up_write(&mm->mmap_sem); mmput(mm); } } static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data, struct mm_struct **locked_mm) { int ret = 0; struct mm_struct *mm = NULL; *locked_mm = NULL; lock_mm: down_read(&data->sem); if (PMEM_IS_SUBMAP(data)) { mm = get_task_mm(data->task); if (!mm) { #if PMEM_DEBUG printk("pmem: can't remap task is gone!\n"); #endif up_read(&data->sem); return -1; } } up_read(&data->sem); if (mm) down_write(&mm->mmap_sem); down_write(&data->sem); /* check that the file didn't get mmaped before we could take the * data sem, this should be safe b/c you can only submap each file * once */ if (PMEM_IS_SUBMAP(data) && !mm) { pmem_unlock_data_and_mm(data, mm); up_write(&data->sem); goto lock_mm; } /* now check that vma.mm is still there, it could have been * deleted by vma_close before we could get the data->sem */ if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) { /* might as well release this */ if (data->flags & PMEM_FLAGS_SUBMAP) { put_task_struct(data->task); data->task = NULL; /* lower the submap flag to show the mm is gone */ data->flags &= ~(PMEM_FLAGS_SUBMAP); } pmem_unlock_data_and_mm(data, mm); return -1; } *locked_mm = mm; return ret; } int pmem_remap(struct pmem_region *region, struct file *file, unsigned operation) { int ret; struct pmem_region_node *region_node; struct mm_struct *mm = NULL; struct list_head *elt, *elt2; int id = get_id(file); struct pmem_data *data = (struct pmem_data *)file->private_data; /* pmem region must be aligned on a page boundry */ if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) || !PMEM_IS_PAGE_ALIGNED(region->len))) { #if PMEM_DEBUG printk("pmem: request for unaligned pmem suballocation " "%lx %lx\n", region->offset, region->len); #endif return -EINVAL; } /* if userspace requests a region of len 0, there's nothing to do */ if (region->len == 0) return 0; /* lock the mm and data */ ret = pmem_lock_data_and_mm(file, data, &mm); if (ret) return 0; /* only the owner of the master file can remap the client fds * that back in it */ if (!is_master_owner(file)) { #if PMEM_DEBUG printk("pmem: remap requested from non-master process\n"); #endif ret = -EINVAL; goto err; } /* check that the requested range is within the src allocation */ if (unlikely((region->offset > pmem_len(id, data)) || (region->len > pmem_len(id, data)) || (region->offset + region->len > pmem_len(id, data)))) { #if PMEM_DEBUG printk(KERN_INFO "pmem: suballoc doesn't fit in src_file!\n"); #endif ret = -EINVAL; goto err; } if (operation == PMEM_MAP) { region_node = kmalloc(sizeof(struct pmem_region_node), GFP_KERNEL); if (!region_node) { ret = -ENOMEM; #if PMEM_DEBUG printk(KERN_INFO "No space to allocate metadata!"); #endif goto err; } region_node->region = *region; list_add(®ion_node->list, &data->region_list); } else if (operation == PMEM_UNMAP) { int found = 0; list_for_each_safe(elt, elt2, &data->region_list) { region_node = list_entry(elt, struct pmem_region_node, list); if (region->len == 0 || (region_node->region.offset == region->offset && region_node->region.len == region->len)) { list_del(elt); kfree(region_node); found = 1; } } if (!found) { #if PMEM_DEBUG printk("pmem: Unmap region does not map any mapped " "region!"); #endif ret = -EINVAL; goto err; } } if (data->vma && PMEM_IS_SUBMAP(data)) { if (operation == PMEM_MAP) ret = pmem_remap_pfn_range(id, data->vma, data, region->offset, region->len); else if (operation == PMEM_UNMAP) ret = pmem_unmap_pfn_range(id, data->vma, data, region->offset, region->len); } err: pmem_unlock_data_and_mm(data, mm); return ret; } static void pmem_revoke(struct file *file, struct pmem_data *data) { struct pmem_region_node *region_node; struct list_head *elt, *elt2; struct mm_struct *mm = NULL; int id = get_id(file); int ret = 0; data->master_file = NULL; ret = pmem_lock_data_and_mm(file, data, &mm); /* if lock_data_and_mm fails either the task that mapped the fd, or * the vma that mapped it have already gone away, nothing more * needs to be done */ if (ret) return; /* unmap everything */ /* delete the regions and region list nothing is mapped any more */ if (data->vma) list_for_each_safe(elt, elt2, &data->region_list) { region_node = list_entry(elt, struct pmem_region_node, list); pmem_unmap_pfn_range(id, data->vma, data, region_node->region.offset, region_node->region.len); list_del(elt); kfree(region_node); } /* delete the master file */ pmem_unlock_data_and_mm(data, mm); } static void pmem_get_size(struct pmem_region *region, struct file *file) { struct pmem_data *data = (struct pmem_data *)file->private_data; int id = get_id(file); if (!has_allocation(file)) { region->offset = 0; region->len = 0; return; } else { region->offset = pmem_start_addr(id, data); region->len = pmem_len(id, data); } DLOG("offset %lx len %lx\n", region->offset, region->len); } static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct pmem_data *data; int id = get_id(file); switch (cmd) { case PMEM_GET_PHYS: { struct pmem_region region; DLOG("get_phys\n"); if (!has_allocation(file)) { region.offset = 0; region.len = 0; } else { data = (struct pmem_data *)file->private_data; region.offset = pmem_start_addr(id, data); region.len = pmem_len(id, data); } printk(KERN_INFO "pmem: request for physical address of pmem region " "from process %d.\n", current->pid); if (copy_to_user((void __user *)arg, ®ion, sizeof(struct pmem_region))) return -EFAULT; break; } case PMEM_MAP: { struct pmem_region region; if (copy_from_user(®ion, (void __user *)arg, sizeof(struct pmem_region))) return -EFAULT; data = (struct pmem_data *)file->private_data; return pmem_remap(®ion, file, PMEM_MAP); } break; case PMEM_UNMAP: { struct pmem_region region; if (copy_from_user(®ion, (void __user *)arg, sizeof(struct pmem_region))) return -EFAULT; data = (struct pmem_data *)file->private_data; return pmem_remap(®ion, file, PMEM_UNMAP); break; } case PMEM_GET_SIZE: { struct pmem_region region; DLOG("get_size\n"); pmem_get_size(®ion, file); if (copy_to_user((void __user *)arg, ®ion, sizeof(struct pmem_region))) return -EFAULT; break; } case PMEM_GET_TOTAL_SIZE: { struct pmem_region region; DLOG("get total size\n"); region.offset = 0; get_id(file); region.len = pmem[id].size; if (copy_to_user((void __user *)arg, ®ion, sizeof(struct pmem_region))) return -EFAULT; break; } case PMEM_ALLOCATE: { if (has_allocation(file)) return -EINVAL; data = (struct pmem_data *)file->private_data; data->index = pmem_allocate(id, arg); break; } case PMEM_CONNECT: DLOG("connect\n"); return pmem_connect(arg, file); break; case PMEM_CACHE_FLUSH: { struct pmem_region region; DLOG("flush\n"); if (copy_from_user(®ion, (void __user *)arg, sizeof(struct pmem_region))) return -EFAULT; flush_pmem_file(file, region.offset, region.len); break; } default: if (pmem[id].ioctl) return pmem[id].ioctl(file, cmd, arg); return -EINVAL; } return 0; } #if PMEM_DEBUG static ssize_t debug_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t debug_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct list_head *elt, *elt2; struct pmem_data *data; struct pmem_region_node *region_node; int id = (int)file->private_data; const int debug_bufmax = 4096; static char buffer[4096]; int n = 0; DLOG("debug open\n"); n = scnprintf(buffer, debug_bufmax, "pid #: mapped regions (offset, len) (offset,len)...\n"); mutex_lock(&pmem[id].data_list_lock); list_for_each(elt, &pmem[id].data_list) { data = list_entry(elt, struct pmem_data, list); down_read(&data->sem); n += scnprintf(buffer + n, debug_bufmax - n, "pid %u:", data->pid); list_for_each(elt2, &data->region_list) { region_node = list_entry(elt2, struct pmem_region_node, list); n += scnprintf(buffer + n, debug_bufmax - n, "(%lx,%lx) ", region_node->region.offset, region_node->region.len); } n += scnprintf(buffer + n, debug_bufmax - n, "\n"); up_read(&data->sem); } mutex_unlock(&pmem[id].data_list_lock); n++; buffer[n] = 0; return simple_read_from_buffer(buf, count, ppos, buffer, n); } static struct file_operations debug_fops = { .read = debug_read, .open = debug_open, }; #endif #if 0 static struct miscdevice pmem_dev = { .name = "pmem", .fops = &pmem_fops, }; #endif int pmem_setup(struct android_pmem_platform_data *pdata, long (*ioctl)(struct file *, unsigned int, unsigned long), int (*release)(struct inode *, struct file *)) { int err = 0; int i, index = 0; int id = id_count; id_count++; pmem[id].no_allocator = pdata->no_allocator; pmem[id].cached = pdata->cached; pmem[id].buffered = pdata->buffered; pmem[id].base = pdata->start; pmem[id].size = pdata->size; pmem[id].ioctl = ioctl; pmem[id].release = release; init_rwsem(&pmem[id].bitmap_sem); mutex_init(&pmem[id].data_list_lock); INIT_LIST_HEAD(&pmem[id].data_list); pmem[id].dev.name = pdata->name; pmem[id].dev.minor = id; pmem[id].dev.fops = &pmem_fops; printk(KERN_INFO "%s: %d init\n", pdata->name, pdata->cached); err = misc_register(&pmem[id].dev); if (err) { printk(KERN_ALERT "Unable to register pmem driver!\n"); goto err_cant_register_device; } pmem[id].num_entries = pmem[id].size / PMEM_MIN_ALLOC; pmem[id].bitmap = kmalloc(pmem[id].num_entries * sizeof(struct pmem_bits), GFP_KERNEL); if (!pmem[id].bitmap) goto err_no_mem_for_metadata; memset(pmem[id].bitmap, 0, sizeof(struct pmem_bits) * pmem[id].num_entries); for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--) { if ((pmem[id].num_entries) & 1<<i) { PMEM_ORDER(id, index) = i; index = PMEM_NEXT_INDEX(id, index); } } if (pmem[id].cached) pmem[id].vbase = ioremap_cached(pmem[id].base, pmem[id].size); #ifdef ioremap_ext_buffered else if (pmem[id].buffered) pmem[id].vbase = ioremap_ext_buffered(pmem[id].base, pmem[id].size); #endif else pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size); if (pmem[id].vbase == 0) goto error_cant_remap; pmem[id].garbage_pfn = page_to_pfn(alloc_page(GFP_KERNEL)); if (pmem[id].no_allocator) pmem[id].allocated = 0; #if PMEM_DEBUG debugfs_create_file(pdata->name, S_IFREG | S_IRUGO, NULL, (void *)id, &debug_fops); #endif return 0; error_cant_remap: kfree(pmem[id].bitmap); err_no_mem_for_metadata: misc_deregister(&pmem[id].dev); err_cant_register_device: return -1; } static int pmem_probe(struct platform_device *pdev) { struct android_pmem_platform_data *pdata; if (!pdev || !pdev->dev.platform_data) { printk(KERN_ALERT "Unable to probe pmem!\n"); return -1; } pdata = pdev->dev.platform_data; return pmem_setup(pdata, NULL, NULL); } static int pmem_remove(struct platform_device *pdev) { int id = pdev->id; __free_page(pfn_to_page(pmem[id].garbage_pfn)); misc_deregister(&pmem[id].dev); return 0; } static struct platform_driver pmem_driver = { .probe = pmem_probe, .remove = pmem_remove, .driver = { .name = "android_pmem" } }; static int __init pmem_init(void) { return platform_driver_register(&pmem_driver); } static void __exit pmem_exit(void) { platform_driver_unregister(&pmem_driver); } module_init(pmem_init); module_exit(pmem_exit);