/* Common Flash Interface probe code. (C) 2000 Red Hat. GPL'd. */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/mtd/xip.h> #include <linux/mtd/map.h> #include <linux/mtd/cfi.h> #include <linux/mtd/gen_probe.h> //#define DEBUG_CFI #ifdef DEBUG_CFI static void print_cfi_ident(struct cfi_ident *); #endif static int cfi_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi); static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); struct mtd_info *cfi_probe(struct map_info *map); #ifdef CONFIG_MTD_XIP /* only needed for short periods, so this is rather simple */ #define xip_disable() local_irq_disable() #define xip_allowed(base, map) \ do { \ (void) map_read(map, base); \ xip_iprefetch(); \ local_irq_enable(); \ } while (0) #define xip_enable(base, map, cfi) \ do { \ cfi_qry_mode_off(base, map, cfi); \ xip_allowed(base, map); \ } while (0) #define xip_disable_qry(base, map, cfi) \ do { \ xip_disable(); \ cfi_qry_mode_on(base, map, cfi); \ } while (0) #else #define xip_disable() do { } while (0) #define xip_allowed(base, map) do { } while (0) #define xip_enable(base, map, cfi) do { } while (0) #define xip_disable_qry(base, map, cfi) do { } while (0) #endif /* check for QRY. in: interleave,type,mode ret: table index, <0 for error */ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi) { int i; if ((base + 0) >= map->size) { printk(KERN_NOTICE "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", (unsigned long)base, map->size -1); return 0; } if ((base + 0xff) >= map->size) { printk(KERN_NOTICE "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", (unsigned long)base + 0x55, map->size -1); return 0; } xip_disable(); if (!cfi_qry_mode_on(base, map, cfi)) { xip_enable(base, map, cfi); return 0; } if (!cfi->numchips) { /* This is the first time we're called. Set up the CFI stuff accordingly and return */ return cfi_chip_setup(map, cfi); } /* Check each previous chip to see if it's an alias */ for (i=0; i < (base >> cfi->chipshift); i++) { unsigned long start; if(!test_bit(i, chip_map)) { /* Skip location; no valid chip at this address */ continue; } start = i << cfi->chipshift; /* This chip should be in read mode if it's one we've already touched. */ if (cfi_qry_present(map, start, cfi)) { /* Eep. This chip also had the QRY marker. * Is it an alias for the new one? */ cfi_qry_mode_off(start, map, cfi); /* If the QRY marker goes away, it's an alias */ if (!cfi_qry_present(map, start, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } /* Yes, it's actually got QRY for data. Most * unfortunate. Stick the new chip in read mode * too and if it's the same, assume it's an alias. */ /* FIXME: Use other modes to do a proper check */ cfi_qry_mode_off(base, map, cfi); if (cfi_qry_present(map, base, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } } } /* OK, if we got to here, then none of the previous chips appear to be aliases for the current one. */ set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ cfi->numchips++; /* Put it back into Read Mode */ cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", map->name, cfi->interleave, cfi->device_type*8, base, map->bankwidth*8); return 1; } static int __xipram cfi_chip_setup(struct map_info *map, struct cfi_private *cfi) { int ofs_factor = cfi->interleave*cfi->device_type; __u32 base = 0; int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); int i; int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA; xip_enable(base, map, cfi); #ifdef DEBUG_CFI printk("Number of erase regions: %d\n", num_erase_regions); #endif if (!num_erase_regions) return 0; cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); if (!cfi->cfiq) { printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); return 0; } memset(cfi->cfiq,0,sizeof(struct cfi_ident)); cfi->cfi_mode = CFI_MODE_CFI; cfi->sector_erase_cmd = CMD(0x30); /* Read the CFI info structure */ xip_disable_qry(base, map, cfi); for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); /* Do any necessary byteswapping */ cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); #ifdef DEBUG_CFI /* Dump the information therein */ print_cfi_ident(cfi->cfiq); #endif for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); #ifdef DEBUG_CFI printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); #endif } if (cfi->cfiq->P_ID == P_ID_SST_OLD) { addr_unlock1 = 0x5555; addr_unlock2 = 0x2AAA; } /* * Note we put the device back into Read Mode BEFORE going into Auto * Select Mode, as some devices support nesting of modes, others * don't. This way should always work. * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and * so should be treated as nops or illegal (and so put the device * back into Read Mode, which is a nop in this case). */ cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi->mfr = cfi_read_query16(map, base); cfi->id = cfi_read_query16(map, base + ofs_factor); /* Get AMD/Spansion extended JEDEC ID */ if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e) cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 | cfi_read_query(map, base + 0xf * ofs_factor); /* Put it back into Read Mode */ cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n", map->name, cfi->interleave, cfi->device_type*8, base, map->bankwidth*8, cfi->mfr, cfi->id); return 1; } #ifdef DEBUG_CFI static char *vendorname(__u16 vendor) { switch (vendor) { case P_ID_NONE: return "None"; case P_ID_INTEL_EXT: return "Intel/Sharp Extended"; case P_ID_AMD_STD: return "AMD/Fujitsu Standard"; case P_ID_INTEL_STD: return "Intel/Sharp Standard"; case P_ID_AMD_EXT: return "AMD/Fujitsu Extended"; case P_ID_WINBOND: return "Winbond Standard"; case P_ID_ST_ADV: return "ST Advanced"; case P_ID_MITSUBISHI_STD: return "Mitsubishi Standard"; case P_ID_MITSUBISHI_EXT: return "Mitsubishi Extended"; case P_ID_SST_PAGE: return "SST Page Write"; case P_ID_SST_OLD: return "SST 39VF160x/39VF320x"; case P_ID_INTEL_PERFORMANCE: return "Intel Performance Code"; case P_ID_INTEL_DATA: return "Intel Data"; case P_ID_RESERVED: return "Not Allowed / Reserved for Future Use"; default: return "Unknown"; } } static void print_cfi_ident(struct cfi_ident *cfip) { #if 0 if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { printk("Invalid CFI ident structure.\n"); return; } #endif printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); if (cfip->P_ADR) printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); else printk("No Primary Algorithm Table\n"); printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); if (cfip->A_ADR) printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); else printk("No Alternate Algorithm Table\n"); printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); if (cfip->VppMin) { printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); } else printk("No Vpp line\n"); printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp); printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp)); if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp); printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp)); } else printk("Full buffer write not supported\n"); printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp); printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp)); if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp); printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp)); } else printk("Chip erase not supported\n"); printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); switch(cfip->InterfaceDesc) { case CFI_INTERFACE_X8_ASYNC: printk(" - x8-only asynchronous interface\n"); break; case CFI_INTERFACE_X16_ASYNC: printk(" - x16-only asynchronous interface\n"); break; case CFI_INTERFACE_X8_BY_X16_ASYNC: printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); break; case CFI_INTERFACE_X32_ASYNC: printk(" - x32-only asynchronous interface\n"); break; case CFI_INTERFACE_X16_BY_X32_ASYNC: printk(" - supports x16 and x32 via Word# with asynchronous interface\n"); break; case CFI_INTERFACE_NOT_ALLOWED: printk(" - Not Allowed / Reserved\n"); break; default: printk(" - Unknown\n"); break; } printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); } #endif /* DEBUG_CFI */ static struct chip_probe cfi_chip_probe = { .name = "CFI", .probe_chip = cfi_probe_chip }; struct mtd_info *cfi_probe(struct map_info *map) { /* * Just use the generic probe stuff to call our CFI-specific * chip_probe routine in all the possible permutations, etc. */ return mtd_do_chip_probe(map, &cfi_chip_probe); } static struct mtd_chip_driver cfi_chipdrv = { .probe = cfi_probe, .name = "cfi_probe", .module = THIS_MODULE }; static int __init cfi_probe_init(void) { register_mtd_chip_driver(&cfi_chipdrv); return 0; } static void __exit cfi_probe_exit(void) { unregister_mtd_chip_driver(&cfi_chipdrv); } module_init(cfi_probe_init); module_exit(cfi_probe_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips");